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POSITIVE TOEPLITZ OPERATORS OF

SCHATTEN–HERZ TYPE

BOORIM CHOE, HYUNGWOON KOO and KYUNGUK NA∗

Abstract. Motivated by a recent work of Loaiza et al. for the holomorphic

case on the disk, we introduce and study the notion of Schatten-Herz type

Toeplitz operators acting on the harmonic Bergman space of the ball. We

obtain characterizations of positive Toeplitz operators of Schatten-Herz type

in terms of averaging functions and Berezin transforms of symbol functions.

Our characterization in terms of Berezin transforms settles a question posed

by Loaiza et al.

§1. Introduction

For a fixed integer n ≥ 2, let B = Bn denote the open unit ball in Rn.

The harmonic Bergman space b2 = b2(B) is the set of all complex-valued

harmonic functions f on B such that

‖f‖2 =

{∫

B
|f |2 dV

}1/2

<∞

where V denotes the Lebesgue volume measure on B. For simplicity, we

use the notation dy = dV (y), etc.

For 1 ≤ p ≤ ∞, let Lp = Lp(V ) be the Lebesgue spaces on B. As is

well known, b2 is a closed subspace of L2 and hence is a Hilbert space. By

the mean value property of harmonic functions, it is easily seen that point

evaluations are continuous on b2. Thus, to each x ∈ B, there corresponds a

unique R(x, ·) ∈ b2 which has the following reproducing property:

f(x) =

∫

B
f(y)R(x, y) dy, x ∈ B(1.1)

for all f ∈ b2. The explicit formula of the kernel function R(x, y) is well
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known:

R(x, y) =
1

|B| ·
1

[x, y]n

{(
1 − |x|2|y|2

[x, y]

)2

− 4|x|2|y|2
n

}
(1.2)

for x, y ∈ B where [x, y] =
√

1 − 2x · y + |x|2|y|2. Here, as in elsewhere, we

write x · y for the dot product of x, y ∈ Rn and |E| = V (E) for the volume

of Borel sets E ⊂ B. In particular, the kernel function R(x, y) is real and

hence the complex conjugation in the integral of (1.1) can be removed. See

[1] for more information and related facts.

Let Q be the Hilbert space orthogonal projection from L2 onto b2. The

reproducing property (1.1) yields the following integral representation of Q:

(1.3) Qψ(x) =

∫

B
ψ(y)R(x, y) dy, x ∈ B

for functions ψ ∈ L2. Since the function R(x, ·) and its derivatives, when x

stays away from the boundary, are easily seen to be uniformly bounded on

B, the projection Q can be extended to an integral operator via (1.3) from

L1 into the space of all harmonic functions on B. It even extends to M,

the space of all complex Borel measures on B. Namely, for each µ ∈ M,

the integral

Qµ(x) =

∫

B
R(x, y) dµ(y), x ∈ B

defines a function harmonic on B.

For µ ∈ M, the Toeplitz operator Tµ with symbol µ is defined by

Tµf = Q(fdµ)

for f ∈ b2 ∩ L∞. In case dµ = ϕdV , we write Tµ = Tϕ. Note that Tµ is

defined on a dense subset of b2, because bounded harmonic functions form

a dense subset of b2; see, for example, Lemma 2.5 of [2].

A Toeplitz operator Tµ is called positive if µ ∈ M is a positive (finite)

Borel measure (we will simply write µ ≥ 0). For positive Toeplitz operators,

it is known that many basic properties in the holomorphic case continue to

hold for the harmonic case. See [2], [3], [4] and [10]. For example, the char-

acterizations (see Propositions 2.4 and 2.5) of boundedness, compactness

and membership of the Schatten classes for a positive Toeplitz operator are

complete analogues of characterizations in the holomorphic case obtained

by K. Zhu [12].
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Recently, M. Loaiza, M. López-Garćıa and S. Pérez-Esteva [9] studied

another aspect of positive Toeplitz operators in the holomorphic case on

the unit disk. Roughly speaking, they decomposed a given positive Toeplitz

operator into a family of local operators, introduced mixed norm spaces

associated with Schatten classes and then gave characterizations of mem-

bership in those spaces in terms of the so-called Herz spaces. Motivated by

such results in the holomorphic case, we obtain in this paper the harmonic

analogues on the ball.

In order to state our results we introduce some notation first. Through-

out the paper we let

Am = {x ∈ B : rm ≤ |x| < rm+1}

where rm = 1 − 2−m for each integer m ≥ 0. We will write χm for the

characteristic function of Am for each m. Also, given µ ∈ M, we let µχm
stand for the restriction of µ to Am for each m. Let 1 ≤ p, q ≤ ∞ and

µ ∈ M. Let Sp denote the Schatten p-class described in Section 2. We say

that Tµ is a Schatten-Herz (p, q)-type operator if Tµχm ∈ Sp for each m and

the sequence {‖Tµχm‖Sp} belongs to `q. We will write Sp,q for the space of

all Schatten-Herz (p, q)-type operators.

In this paper we give characterizations for a positive Toeplitz operator

to be of Schatten-Herz type. In view of Proposition 2.4 below one may

naturally expect such characterizations to be in terms of certain mixed norm

spaces involving averaging functions or Berezin transforms. Such mixed

norm spaces turn out to be the so-called Herz spaces Kp
q(λ) consisting of all

measurable functions f on B such that the sequence {‖fχm‖Lp(λ)} belongs

to `q. Here, and in what follows, we let λ denote the measure on B defined

by

dλ(x) = R(x, x)dx.

Also, we refer to Section 2 for definitions of the averaging functions µ̂δ and

the Berezin transform µ̃ of µ ∈ M.

The following theorem is our main result.

Theorem 1.1. Let 1 ≤ p, q ≤ ∞, δ ∈ (0, 1) and µ ≥ 0. Then the

following conditions are equivalent:

(a) Tµ ∈ Sp,q.

(b) µ̃ ∈ Kp
q(λ).



34 B. CHOE, H. KOO AND K. NA

(c) µ̂δ ∈ Kp
q(λ).

Remark. The holomorphic version of the equivalence (a) ⇐⇒ (c) above was

proved on the disk in [9]. While our method for the proof of (a) ⇐⇒ (c) is

basically adapted from [9], substantial and nontrivial amount of extra work

is required for the setting of harmonic Bergman spaces. In the same paper

[9], however, the holomorphic version of the equivalence (a) ⇐⇒ (b) was

proved only for the case p = 1 or p = q and the case q 6= p > 1 has been left

open. One can easily modify our argument of the present paper to remove

such a restriction as above.

In Section 2 we review some basic notions such as Berezin transform,

averaging functions, Schatten class operators and Herz spaces. In Section

3 we prove various mapping properties of the Berezin transform which will

be the main tool in our argument. In Section 4 we prove our main result

Theorem 1.1 and observe some consequences.

We often abbreviate inessential constants involved in inequalities by

writing X . Y for positive quantities X and Y if the ratio X/Y has a

positive upper bound. Also, we write X ≈ Y if X . Y and Y . X.

§2. Preliminaries

In this section we briefly review some basic notions and their properties.

We first recall Berezin transform and averaging functions. Let µ ∈ M.

Its Berezin transform µ̃ is then a function on B defined by

µ̃(x) =

∫

B
|r(x, y)|2 dµ(y), x ∈ B

where

r(x, ·) =
R(x, ·)

‖R(x, ·)‖2

is the normalized reproducing kernel. For ϕ ∈ L1, we define ϕ̃ = µ̃ where

dµ = ϕdV . The notion of Berezin transform can be extended even to non-

integrable functions which belongs to some weighted Lebesgue spaces. See

Proposition 3.6 below.

For δ ∈ (0, 1) fixed, the averaging function µ̂δ is defined by

µ̂δ(x) =
µ[Eδ(x)]

|Eδ(x)|
, x ∈ B
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where

Eδ(x) = {y ∈ B : |x− y| < δ(1 − |x|)}
is the euclidean ball with center at x and radius δ(1 − |x|). Also, we let

µ̂δ = ϕ̂δ for dµ = ϕdV .

The estimate of the kernel function along the diagonal is easily seen.

Namely, it is straightforward from (1.1) and (1.2) to see that

R(x, x) = ‖R(x, ·)‖2
2 ≈ (1 − |x|)−n(2.1)

for x ∈ B. This estimate continues to hold even for points staying suffi-

ciently close to the diagonal in the sense that there exists some δ0 ∈ (0, 1)

for which we have

R(x, y) ≈ (1 − |x|)−n(2.2)

whenever x ∈ B and y ∈ Eδ0(x); see Lemma 2.3 of [2] on general domains.

A consequence useful for our purpose is the fact that averaging functions

over balls of small radii are dominated by Berezin transforms.

Proposition 2.1. Given δ ∈ (0, δ0), there exists a constant C = C(δ)

such that µ̂δ ≤ Cµ̃ for µ ≥ 0.

Proof. In order to see this note that we have by (2.1) and (2.2)

|r(x, y)|2 ≈ (1 − |x|)−n, y ∈ Eδ(x)

and the estimate is uniform in x ∈ B. So, for a given µ ≥ 0, we have

µ̂δ(x) ≈ (1 − |x|)−n
∫

Eδ(x)
1 dµ(y)

≈
∫

Eδ(x)
|r(x, y)|2 dµ(y)

≤
∫

B
|r(x, y)|2 dµ(y)

= µ̃(x)

as desired. The proof is complete.

For positive measures there are more useful properties of the Berezin

transform and the averaging operators. Here, we mention a couple of such

properties taken from [2] and [3] where the settings are more general. The

following is taken from Lemma 3.2 of [2].
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Proposition 2.2. Given δ, ε ∈ (0, 1), there exists a constant C =

C(δ, ε) such that µ̂δ ≤ C (̂µ̂ε)δ for µ ≥ 0.

The following is implicit in the proof of Proposition 2.14 of [3].

Proposition 2.3. Given δ ∈ (0, 1), there exists a constant C = C(δ)

such that µ̃ ≤ C˜̂µδ for µ ≥ 0.

We now turn to Schatten class operators. For a compact operator T

on b2, let {sm(T )} be the nonzero eigenvalues with multiplicity of |T | =

(T ∗T )1/2 arranged so that the sequence is non-increasing, where T ∗ denotes

the Hilbert space adjoint of T . This sequence is called the singular value

sequence of T . For 1 ≤ p <∞, we say that T is a Schatten p-class operator

if the singular value sequence {sm(T )} belongs to `p. Let Sp be the space of

all Schatten p-class operators on b2. The space Sp is then a Banach space

equipped with the norm

‖T‖Sp =

{∑

m

|sm(T )|p
}1/p

.

See [13], for example, for more information and related facts. Also, we

denote by S∞ the class of all bounded linear operators on b2 and let ‖T‖S∞

denote the operator norm ‖T‖ of T ∈ S∞.

The following characterization for a positive Toeplitz operator to be a

member of the class Sp is taken from Theorems 3.9 and 3.13 of [2] where the

setting is more general. Note that the case p = ∞ gives characterizations

for boundedness, which is also included in Proposition 2.5 below. We did

so for easier reference later.

Proposition 2.4. Let 1 ≤ p ≤ ∞, δ ∈ (0, 1) and µ ≥ 0. Then the

following conditions are equivalent:

(a) Tµ ∈ Sp.

(b) µ̃ ∈ Lp(λ).

(c) µ̂δ ∈ Lp(λ).

Moreover, the equivalences ‖Tµ‖Sp ≈ ‖µ̃‖Lp(λ) ≈ ‖µ̂δ‖Lp(λ) hold.
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We also have corresponding characterizations for boundedness (com-

pactness resp.) taken from Theorems 3.5 and 3.9 (Theorems 3.11 and 3.12

resp.) of [2]. Here, L0 denotes the space of all bounded functions f on B

such that f(x) → 0 as |x| → 1.

Proposition 2.5. Let δ ∈ (0, 1) and µ ≥ 0. Then the following condi-

tions are equivalent:

(a) Tµ is bounded (compact) on b2.

(b) µ̃ ∈ L∞ (L0).

(c) µ̂δ ∈ L∞ (L0).

(d) The inclusion Jµ : b2 ⊂ L2(µ) is bounded (compact).

Moreover, the equivalences ‖Tµ‖ ≈ ‖µ̃‖L∞ ≈ ‖µ̂δ‖L∞ ≈ ‖Jµ‖2 hold.

This proposition has the following consequence which is actually true

on the general setting of [2]. Since it is not mentioned in [2] explicitly, we

include a proof.

Proposition 2.6. Let µ ∈ M and assume that T|µ| is bounded on b2.

Then Tµ is bounded on b2 and

‖Tµ‖ ≤ C‖T|µ|‖

for some constant C independent of µ. If T|µ| is compact on b2 in addition,

then Tµ is also compact on b2.

Proof. Since T|µ| is bounded on b2 by assumption, the proof of Lemma

3.8 of [2] shows that

∫

B

∫

B
|R(x, y)| dx d|µ|(y) <∞

and therefore one can apply Fubini’s theorem to justify

∫

B
(Tµf)ḡ dV =

∫

B
fḡ dµ
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for f, g ∈ b2 ∩ L∞. Since the inclusion J|µ| : b2 ⊂ L2(|µ|) is bounded by

Proposition 2.5, it follows that
∣∣∣∣
∫

B
(Tµf)ḡ dV

∣∣∣∣ ≤ ‖f‖L2(|µ|)‖g‖L2(|µ|) ≤ ‖J|µ|‖2‖f‖2‖g‖2(2.3)

for f, g ∈ b2 ∩L∞. Now, since b2 ∩L∞ is dense in b2, we conclude that Tµ is

bounded on b2 with ‖Tµ‖ ≤ ‖J|µ|‖2 and thus the first part of the proposition

holds by Proposition 2.5.

Now, suppose that T|µ| is compact on b2. By (2.3) we have

‖Tµf‖2 ≤ ‖J|µ|‖ ‖f‖L2(|µ|)

for f ∈ b2. Thus, given a sequence {fn} in b2 which converges weakly to 0,

we obtain

‖Tµfn‖2 ≤ ‖J|µ|‖ ‖fn‖L2(|µ|) → 0, n→ ∞,

because the inclusion J|µ| is compact by Proposition 2.5. The proof is com-

plete.

Finally, we recall the Herz spaces on the ball. Let α be real and 1 ≤
p, q ≤ ∞. Then the Herz space Kp,α

q is the space consisting of all functions

f ∈ Lploc(V ) such that

‖f‖Kp,α
q

=
∥∥∥
{
2−mα ‖fχm‖Lp

}∥∥∥
`q
<∞;

recall that χm denotes the characteristic function of the annulusAm. Equipped

with the norm above, the space Kp,α
q is a Banach space. Note that an ap-

plication of Hölder’s inequality yields
∫

B
fg dV =

∑

m

∫

Am

fg dV ≤
∑

m

‖fχm‖Lp‖gχm‖Lp′

for positive measurable functions f and g. Here, and in what follows, p′

denotes the conjugate exponent of p. Now, another application of Hölder’s

inequality leads to Hölder’s inequality for the Herz spaces as follows:
∣∣∣∣
∫

B
fg dV

∣∣∣∣ ≤ ‖f‖Kp,α
q

‖g‖
Kp′ ,−α

q′
, f ∈ Kp,α

q , g ∈ Kp′,−α
q′(2.4)

for the full range 1 ≤ p, q ≤ ∞ and arbitrary α real. We remark in passing

that this Hölder’s inequality actually leads to dualities between Herz spaces;

see Theorem 2.1 and Corollary 2.7 of [7] for details.
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Note that, given 1 ≤ p ≤ ∞, we have ‖χm‖Lp ≈ 2−m/p for m ≥ 0.

Thus, the space Kp,α
q contains constant functions if and only if either (i)

α > −1/p or (ii) α ≥ −1/p and q = ∞. Thus, if either (i) α < 1/p′ or (ii)

α ≤ 1/p′ and q = 1, then we have by (2.4)

∫

B
|f | dV ≤ ‖f‖Kp,α

q
‖1‖

Kp′ ,−α

q′
<∞

for f ∈ Kp,α
q . In particular, we have Kp,α

q ⊂ L1 whenever α < 1/p′.

Given γ real, let Vγ denote the weighted measure on B defined by

dVγ(x) = (1 − |x|)γ dx.

Let 1 ≤ p < ∞ and α real. Then, given m ≥ 0, we have 1 − |x| ≈ 2−m for

x ∈ Am and thus obtain

2−mα‖fχm‖Lp =

{∫

Am

(
2−mα|f(x)|

)p
dx

}1/p

≈
{∫

Am

(1 − |x|)αp|f(x)|p dx
}1/p

≈ ‖fχm‖Lp(Vαp)

and this estimate is uniform in m. It follows that

‖f‖Kp,α
q

≈
∥∥∥
{
‖fχm‖Lp(Vαp)

}∥∥∥
`q

(2.5)

for 1 ≤ q ≤ ∞. In particular, since λ ≈ V−n, we have

‖f‖
K

p,−n/p
q

≈
∥∥∥
{
‖fχm‖Lp(λ)

}∥∥∥
`q

;

this estimate is easily seen to be valid even for p = ∞. So, equipped with

the norm of Kp,−n/p
q , the space Kp

q(λ) is precisely the same as Kp,−n/p
q for

the full range 1 ≤ p, q ≤ ∞. Also, note that

Kp
p(λ) ≈ Lp(λ)(2.6)

for 1 ≤ p ≤ ∞. That is, these two spaces are the same as sets and have

equivalent norms as Banach spaces.
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§3. Berezin Transform

In this section we prove various mapping properties of the Berezin trans-

form which we need for the proof of Theorem 1.1 in the next section.

Our first observation is that the Berezin transform continuously takes

the Herz spaces Kp
q(λ) into L∞. We begin with the Herz norm estimates of

the kernel function. For that purpose, we recall boundary integral estimates

of the kernel function. Note that each function R(x, ·), x ∈ B, has a con-

tinuous extension up to the boundary and |R(x, ζ)| . [x, ζ]−n = |x − ζ|−n
for ζ ∈ ∂B. Motivated by this, we put

Jβ(x) =

∫

∂B

dS(ζ)

|x− ζ|n+β
(3.1)

for x ∈ B and β real. Here, and in what follows, S denotes the surface area

measure on ∂B. For β > −1, it is known that

Jβ(x) .
1

(1 − |x|)β+1
, x ∈ B;(3.2)

see Lemma 3.2.(d) of [5].

Lemma 3.1. Let 1 ≤ p, q ≤ ∞ and assume −1/p < α < 2n − n/p.

Then there exists a constant C = C(α, p, q) such that

‖R2
x‖Kp,α

q
≤ C

(1 − |x|)2n−n/p−α , Rx = R(x, ·)

for x ∈ B.

Proof. Fix x ∈ B. We first estimate ‖R2
xχm‖Lp . Note that R(x, rζ) =

R(rx, ζ) for ζ ∈ ∂B and 0 < r < 1. Thus, for p <∞, we have by (3.2)

‖R2
xχm‖pLp =

∫

Am

|R(x, y)|2p dy

=

∫ rm+1

rm

rn−1

∫

∂B
|R(rx, ζ)|2p dS(ζ) dr

.

∫ rm+1

rm

J2pn−n(rx) dr

.
rm+1 − rm

(1 − rm+1|x|)2pn−n+1

.
2−m

(1 − |x| + 2−m|x|)2pn−n+1
.
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We therefore conclude

‖R2
xχm‖Lp .

2−m/p

(1 − |x| + 2−m|x|)2n−(n−1)/p
(3.3)

and this estimate is uniform in m. Also, this estimate remains valid for

p = ∞, because |R(x, y)| . [x, y]−n ≤ (1 − |x||y|)−n by (1.2).

Now, we estimate the Herz norm of R2
x. Let 1 ≤ q ≤ ∞. For |x| ≤ 1/2,

it is easily seen from (3.3) that

‖R2
x‖Kp,α

q
.

∥∥∥{2−m(α+1/p)}
∥∥∥
`q

≈ 1.

So, let |x| > 1/2. First, if (1 − |x|) ≤ 2−m, then we have by (3.3)

2−mα‖R2
xχm‖Lp .

2−m(α+1/p)

2−m(2n−(n−1)/p)
= 2m(2n−n/p−α) ≤ 1

(1 − |x|)2n−n/p−α .

Meanwhile, if (1 − |x|) > 2−m, then we have by (3.3)

2−mα‖R2
xχm‖Lp .

2−m(α+1/p)

(1 − |x|)2n−(n−1)/p
<

1

(1 − |x|)2n−n/p−α .

So, the case q = ∞ follows. Also, for q <∞, it follows from these estimates

that

‖R2
x‖qKp,α

q
=

∑

m

2−mqα‖R2
xχm‖qLp

.
∑

m≤log2(1−|x|)−1

2mq(2n−n/p−α)

+
1

(1 − |x|)q(2n−(n−1)/p)

∑

m>log2(1−|x|)−1

2−mq(α+1/p)

.
1

(1 − |x|)q(2n−n/p−α)
,

as desired. The proof is complete.

Recall that if α < 1/p′, then Kp,α
q ⊂ L1. In particular, the Berezin

transform is well defined on the space Kp
q(λ) ⊂ L1 for 1 ≤ p, q ≤ ∞.

Proposition 3.2. Let 1 ≤ p, q ≤ ∞. There exists a constant C =

C(p, q) such that

‖ϕ̃‖L∞ ≤ C‖ϕ‖Kp
q (λ)

for functions ϕ ∈ Kp
q(λ).
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Proof. Let ϕ ∈ Kp
q(λ) and x ∈ B. We may assume ϕ ≥ 0. Recall that

R(x, x) ≈ (1 − |x|)−n. Thus, by (2.4) and Lemma 3.1 with α = −n/p, we

obtain

ϕ̃(x) ≈ (1 − |x|)n
∫

B
ϕ(y)|R(x, y)|2 dy

≤ (1 − |x|)n‖ϕ‖
K

p,−n/p
q

‖R2
x‖Kp′,n/p

q′

. ‖ϕ‖
K

p,−n/p
q

(1 − |x|)n
(1 − |x|)2n−n/p′−n/p

= ‖ϕ‖
K

p,−n/p
q

.

Now, since Kp
q(λ) = Kp,−n/p

q , we conclude the proposition.

As a corollary we see that Toeplitz operators with Kp
q(λ)-symbols are

compact when q is finite.

Corollary 3.3. Let 1 ≤ p ≤ ∞, 1 ≤ q < ∞ and ϕ ∈ Kp
q(λ). Then

Tϕ is compact on b2.

Proof. Given an integer N ≥ 0, let ψN = ϕ(χ0 + · · · + χN ) and τN =

|ϕ− ψN |. Then, by Propositions 2.6, 2.5 and 3.2, we have

‖Tϕ − TψN
‖ . ‖TτN ‖ ≈ ‖τ̃N‖L∞ . ‖τN‖Kp

q (λ) = ‖ϕ− ψN‖Kp
q (λ).

Meanwhile, since ‖ϕχm‖Lp(λ) ≈ ‖ϕχm‖Kp
q(λ) for all m, we have

‖ϕ− ψN‖qKp
q(λ)

≈
∑

m≥N+1

‖ϕχm‖qKp
q (λ)

→ 0

as N → ∞ (recall q < ∞). Accordingly, we see that TψN
→ Tϕ in the

operator norm. Note that each operator TψN
is compact on b2, because its

symbol is supported in a compact subset of B. Thus Tϕ is compact on b2.

The proof is complete.

We now turn to the boundedness of the Berezin transform on the spaces

Kp,α
q for a certain range of parameters. As a preliminary step we first es-

tablish the boundedness of the Berezin transform on the weighted Lebesgue

spaces Lp(Vγ). We actually prove a more general version. We need a couple

of lemmas.
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Given x ∈ B with x 6= 0, let x̄ = x/|x|2 stand for the inversion of x

with respect to ∂B and define a non-tangential type approach region Γ(x)

by

Γ(x) = {y ∈ B : |x̄− y| < ν(|x̄| − |y|)}

where ν is an arbitrary but fixed number such that 1 < ν < 3/2
√

2. Note

that |x̄| = 1/|x|.

Lemma 3.4. There is a constant C = C(n) such that

R(x, y) ≥ C

|x̄− y|n

for x, y ∈ B such that |x̄| − |y| ≤ 1/5 and y ∈ Γ(x).

Proof. First, note that

[x, y] =
∣∣|x̄|x− |x|y

∣∣ = |x||x̄− y| ≤ |x̄− y|

and therefore we have by (1.2)

|B||x̄− y|nR(x, y) ≥
(

1 − |x|2|y|2
|x̄− y|

)2

− 4

n
(3.4)

for x, y ∈ B.

Now, let x, y ∈ B be arbitrary points such that |x̄| − |y| ≤ 1/5 and

y ∈ Γ(x). Then, since |x̄| − 1 < |x̄| − |y| ≤ 1/5, we have

5

6
(|x̄| − |y|) ≤ |x|(|x̄| − |y|) = 1 − |x||y| ≤ 1

5

and thus

1 − |x|2|y|2 = (1 − |x||y|)(1 + |x||y|) ≥ 3

2
(|x̄| − |y|) > 3

2ν
|x̄− y|.

This, together with (3.4), implies the lemma, because (3/2ν)2 > 4/n by our

choice of ν. The proof is complete.

Lemma 3.5. For −1 < α <∞ and c real, let

Iα,c(x) =

∫

B
|R(x, y)|1+(α+c)/n(1 − |y|)α dy
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for x ∈ B. Then the following estimates hold:

Iα,c(x) ≈





1 if c < 0

log 1
1−|x| if c = 0
1

(1−|x|)c if c > 0

as |x| → 1.

Proof. Let −1 < α < ∞ and c real be given. Fix an arbitrary point

x ∈ B. We first prove the lower estimates. We only need to consider

x sufficiently close to ∂B so that |x̄| − 1 < min{1 − ν−1, (10ν)−1}. Put

η = x/|x|. Let

G(x) = {ζ ∈ ∂B : ζ + x̄ ∈ Γ(x)}

and

G(η) = {ζ ∈ ∂B : ζ + η ∈ Γ(η)}.

Note that

|ζ + x̄| < 2(1 − ν−1), ζ ∈ G(x)(3.5)

by definition of the set G(x). Let G∗(x) be the convex hull of G(x) and the

origin. Also, let

Ω(x) = {z ∈ G∗(x) : 2ν(|x̄| − 1) ≤ |z| < 1/5} .

We need some properties relevant to these sets. First, we have inclusions

G(η) ⊂ G(x), x̄+ Ω(x) ⊂ Γ(x) ∩B(x̄)(3.6)

where B(x̄) is the ball with center at x̄ and radius 1/5. To see the first

inclusion, let ζ ∈ G(η). Note that (3.5) remains valid with η in place of x.

So, we have

|ζ + x̄| ≤ |ζ + η| + |x̄− η| < 2(1 − ν−1) + |x̄| − 1 < 3(1 − ν−1) < 1

and

|ζ| < ν(1 − |ζ + η|) = ν(|x̄| − |x̄− η| − |ζ + η|) ≤ ν(|x̄| − |x̄+ ζ|)
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so that ζ ∈ G(x). To see the second inclusion, given ζ ∈ G(x), let tζ ∈ (0, 1)

be the number such that tζζ + x̄ ∈ ∂B. Then we have tζ + x̄ ∈ B for

tζ < t ≤ 1. Note that we have

t|ζ| = t|(ζ + x̄) − x̄|
< tν(|x̄| − |ζ + x̄|)
= ν

(
|x̄| − t|ζ + x̄| − (1 − t)|x̄|

)

≤ ν(|x̄| − |tζ + x̄|)

for 0 < t ≤ 1. Thus, tζ + x̄ ∈ Γ(x) for tζ < t ≤ 1. So, since tζ = |tζζ| <
ν(|x̄| − 1), we have tG(x) + x̄ ⊂ Γ(x) for ν(|x̄| − 1) ≤ t < 1, which implies

the desired inclusion.

Next, we claim

1 − |y| ≈ |x̄− y|, y ∈ x̄+ Ω(x).(3.7)

One direction is clear, because 1− |y| ≤ |x̄| − |y| ≤ |x̄− y|. To see the other

direction, pick any y ∈ x̄+ Ω(x)∩B(x) and put y− x̄ = tζ where ζ ∈ G(x)

and 2ν(|x̄|−1) ≤ t < 1/5. Note that −η ∈ G(x) and thus |ζ+η| < 4(1−ν−1)

by (3.5). It follows that

|y| ≤ |y − x̄+ tη| + |x̄| − t = |x̄| − t(1 − |ζ + η|) < |x̄| − t(4ν−1 − 3)

and thus

1 − |y| ≥ t(4ν−1 − 3) − (|x̄| − 1) ≥ (7 − 6ν)(|x̄| − 1).

Now, since y ∈ Γ(x) by (3.6), it follows that

|x̄− y| < ν(|x̄| − |y|) . (1 − |x|) + (1 − |y|) . 1 − |y|

as desired.
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Now, by Lemma 3.4, (3.6) and (3.7), we have

Iα,c(x) ≥
∫

Γ(x)∩B(x̄)

(1 − |y|)α
|x̄− y|n+α+c

dy

&

∫

x̄+Ω(x)

dy

|x̄− y|n+c

=

∫

Ω(x)

dz

|z|n+c

= S[G(x)]

∫ 1/5

2ν(|x̄|−1)

dr

r1+c

≥ S[G(η)]

∫ 1/5

2ν(|x̄|−1)

dr

r1+c

as |x| → 1; recall that S denotes the surface area measure on ∂B. This

yields the desired lower estimates.

We now turn to the upper estimates. Note that if Iα,c′ is bounded on

B for some c′ < 0, then so is Iα,c for every c < c′. So, it suffices to consider

c > −1; another proof for c > 0 can be found in Lemma 3.2.(c) of [5]. Let Jβ
denote the integral defined in (3.1). Then, integrating in polar coordinates

and then manipulating the resulting integral, we have

Iα,c(x) .

∫ 1

0
(1 − t)αJα+c(tx) dt . 1 +

∫ 1

0
(1 − t)α+1Jα+c+1(tx) dt;

the second inequality holds by integration by parts and the estimate∣∣ ∂
∂t [Jα+c(tx)]

∣∣ ≤ 2Jα+c+1(tx). Now, since α + 1 > 0, the integral in the

rightmost side of the above is dominated by

∫ 1

0
Jc(tx) dt .

∫ 1

0

1

(1 − t|x|)c+1
dt

where the inequality holds by (3.2), because c > −1. It is now elementary

to see that the last integral above satisfies the desired estimates for c > −1.

The proof is complete.

Given α and β real, we let

Φα,βf(x) = (1 − |x|)α
∫

B
f(y)|R(x, y)|1+(α+β)/n dVβ(y), x ∈ B
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whenever the integral is well defined. A complete range of parameters, which

ensures the boundedness of these operators on weighted Lebesgue spaces, is

given as in the next proposition. Note that Φn,0 is equivalent to the Berezin

transform.

Proposition 3.6. Let 1 ≤ p < ∞ and α, β, γ be real. Then Φα,β is

bounded on Lp(Vγ) if and only if −pα < γ + 1 < p(β + 1).

The holomorphic version of the above proposition is well known. See

Theorem 1.9 of [6]. We here included the proof below, which is a modifica-

tion of the proof of Theorem 1.9 of [6], for completeness.

Proof. We first prove the necessity. Suppose Φα,β is bounded on

Lp(Vγ). Apply Φ to a function of the form f(x) = (1 − |x|)N , where N

is chosen sufficiently large so that N > α and N > −β − 1. Then we have

Φα,βf(x) ≈ (1 − |x|)α, x ∈ B

by Lemma 3.5. Since Φα,βf ∈ Lp(Vγ) by assumption, the above yields the

inequality pα+γ > −1. It remains to prove the inequality γ+1 < p(β+1).

First, consider the case p > 1 and let Φ∗
α,β be the adjoint operator of Φα,β

with respect to the dual action induced by the inner product of L2(Vγ). A

little manipulation yields the relation Φ∗
α,β = Φβ−γ,α+γ . Note that Φ∗

α,β

is bounded on Lp
′

(Vγ). Thus, applying the same reasoning as above, we

have the inequality p′(β− γ)+ γ > −1, or equivalently, p(β+1) > γ+1, as

desired. Next, consider the case p = 1. We then need to show the inequality

β > γ. Note that Φ∗
α,β is bounded on L∞(Vγ). In particular, Φ∗

α,β1 is a

bounded function on B. More explicitly, we have

sup
x∈B

(1 − |x|)β−γ
∫

B
|R(x, y)|1+(α+β)/n(1 − |y|)α+γ dy <∞.

This, together with Lemma 3.5, yields β > γ as desired and the proof of

the necessity is complete.

We now prove the sufficiency. So, assume −pα < γ+1 < p(β+1). The

case p = 1 is an easy consequence of Lemma 3.5 and Fubini’s theorem. So,

assume p > 1. Since

γ + 1 < p(β + 1) ⇐⇒ −β + 1

p′
<
β − γ

p

−pα < γ + 1 ⇐⇒ −α+ γ + 1

p
<
α

p′
,
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we see that the intersection of intervals
(
−β + 1

p′
,
α

p′

)⋂(
−α+ γ + 1

p
,
β − γ

p

)

is nonempty. Fix any s in this intersection so that

β + p′s > −1, α− p′s > 0, α+ ps+ γ > −1, β − ps− γ > 0.

Thus, by Lemma 3.5, we have
∫

B
(1 − |y|)β+p′s|R(x, y)|1+(α+β)/n dy . (1 − |x|)−α+p′s, x ∈ B

∫

B
(1 − |x|)α+ps+γ |R(x, y)|1+(α+β)/n dx . (1 − |y|)−β+ps+γ , y ∈ B.

Now, setting

K(x, y) = (1 − |x|)α(1 − |y|)β−γ |R(x, y)|1+(α+β)/n

which is the kernel for the operator Φα,β against the measure Vγ(y), we can

rewrite the above estimates as
∫

B
(1 − |y|)p′sK(x, y) dVγ(y) . (1 − |x|)p′s, x ∈ B

∫

B
(1 − |x|)psK(x, y) dVγ(x) . (1 − |y|)ps, y ∈ B;

the suppressed constants in these estimates are independent of x, y ∈ B.

We now conclude the boundedness of Φα,β on Lp(Vγ) by Schur’s test (see,

for example, Theorem 1.8 of [13]). The proof is complete.

Remark. In case (α+ β)/n is an integer, let

Λα,βf(x) = (1 − |x|)α
∫

B
f(y)R(x, y)1+(α+β)/n dVβ(y), x ∈ B

whenever the integral is well defined. Then, as in Theorem 1.9 of [13], one

can see that, for 1 ≤ p < ∞, the parameter range for the boundedness of

Λα,β on Lp(Vγ) is also precisely −pα < γ + 1 < p(β + 1). In particular, the

special case α = β = γ = 0 shows that the projection Q is bounded on Lp

if and only if 1 < p <∞; also, see [11].

Next, we need an interpolation property of operators on the Herz spaces.

Let M+ be the class of all positive (possibly infinite) measurable functions

on B.
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Lemma 3.7. Let 1 ≤ p <∞, 1 ≤ q ≤ ∞ and α be real. Assume that a

mapping T : M+ → M+ satisfies the following conditions for functions f, g

and sequences {fj} in M+:

(i) T (f + g) ≤ Tf + Tg.

(ii) T (lim inf fj) ≤ lim inf Tfj.

(iii) ‖Tf‖Lp(Vαp±ε) ≤ C1‖f‖Lp(Vαp±ε) for some constants ε, C1 > 0 indepen-

dent of f .

Then there is a constant C such that

‖Tf‖Kp,α
q

≤ C‖f‖Kp,α
q

for f ∈ M+.

Proof. Let f ∈ M+. By (iii) we have

∫

B
|T (fχm)|p dVαp±ε ≤ C1

∫

Am

|f |p dVαp±ε

for each m ≥ 0. Note that 1 − |x| ≈ 2−m for x ∈ Am and m ≥ 0. Thus the

above estimate yields

∫

Ak

|T (fχm)|p dVαp ≈ 2∓εk
∫

Ak

|T (fχm)|p dVαp±ε

. 2∓εk
∫

Am

|fχm|p dVαp±ε

≈ 2∓ε(k−m)

∫

B
|fχm|p dVαp

so that

‖T (fχm)χk‖Lp(Vαp) . 2−ε|k−m|/p‖fχm‖Lp(Vαp)(3.8)

for all integers m, k ≥ 0.

Now, since T (
∑N

m=1 fχm) ≤ ∑N
m=1 T (fχm) for each N by (i), we have

Tf ≤ ∑
m T (fχm) by (ii). So, for each k = 0, 1, · · · , we have by (3.8)

‖(Tf)χk‖Lp(Vαp) ≤
∑

m

‖T (fχm)χk‖Lp(Vαp) .
∑

m

2−ε|k−m|/p‖fχm‖Lp(Vαp)
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and therefore conclude by (2.5)

‖Tf‖Kp,α
q

.

{∑

k

2−εk/p

}∥∥∥{‖fχm‖Lp(Vαp)}
∥∥∥
`q

≈ ‖f‖Kp,α
q

where the first inequality holds by Young’s inequality. The proof is com-

plete.

We are now ready to prove the following Kp,α
q -boundedness of the Berezin

transform.

Proposition 3.8. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and α be real. If

−n − 1/p < α < 1/p′, then the Berezin transform is bounded on Kp,α
q . In

particular, the Berezin transform is bounded on Kp
q(λ).

Proof. Assume −n−1/p < α < 1/p′, or equivalently, −np < αp+1 < p.

Note that the Berezin transform is well defined on Kp,α
q ⊂ L1, because

α < 1/p′. Also, note that the Berezin transform takes M+ into itself. Thus,

for boundedness on Kp,α
q , it is sufficient to show that the Berezin transform,

when restricted to M+, satisfies all the three conditions in the hypothesis of

Lemma 3.7. First, the conditions (i) and (ii) hold by linearity and Fatou’s

lemma. Next, choosing an ε > 0 such that

−np < αp± ε+ 1 < p,

we see by Proposition 3.6 (with α = n and β = 0) that the Berezin transform

is actually bounded on Lp(Vαp±ε). So, the condition (iii) also holds. This

completes the proof of the first part of proposition. Taking α = −n/p, we

have the second part of the proposition. The proof is complete.

The second part of Proposition 3.8 remains true even for p = ∞. See

Corollary 4.5.

§4. Positive Toeplitz operators in Sp,q

In this section we prove our main result Theorem 1.1 and observe some

consequences. Given 1 ≤ p, q ≤ ∞, recall that the space Sp,q consists of all

Toeplitz operators Tµ of Schatten-Herz (p, q)-type, meaning that Tµχm ∈ Sp
for each m and the sequence {‖Tµχm‖Sp} belongs to `q. The norm of Tµ ∈
Sp,q is given by

‖Tµ‖Sp,q =
∥∥∥
{
‖Tµχm‖Sp

}∥∥∥
`q
.

We begin with a simple covering lemma.
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Lemma 4.1. Given δ ∈ (0, 1), there exists an integer N = N(δ) such

that

Eδ(x) ⊂
m+N⋃

k=m−1

Ak (A−1 = ∅)

for x ∈ Am and m ≥ 0.

Proof. Fix δ ∈ (0, 1) and let N be an integer such that (1−δ)2N−1 ≥ 1.

Let m ≥ 1 and x ∈ Am. Consider an arbitrary point y ∈ Eδ(x). Then we

have

|y| < |x| + δ(1 − |x|) = 1 − (1 − |x|)(1 − δ) < 1 − (1 − rm+1)2
1−N = rm+N

and

|y| > |x| − δ(1 − |x|) = 1 − (1 − |x|)(1 + δ) ≥ 1 − 2(1 − rm) = rm−1

for m ≥ 1. So, we see that Eδ(x) is contained in the annulus with inner

radius rm−1 and outer radius rm+N . For m = 0 one may easily modify this

argument. The proof is complete.

Next, we need a certain sup-norm estimates of the Berezin transforms

on each piece of the annuli. For that purpose we introduce more notation.

In what follows we let

Aδm,`(ζ) = Am
⋂[

B
(
ζ, `δ2−m

)
\ B

(
ζ, (`− 1)δ2−m

)]

for m ≥ 0, ` ≥ 1, δ ∈ (0, 1) and ζ ∈ ∂B. Here, B(ζ, t) = ∅ for t ≤ 0

and B(ζ, t), t > 0, denotes the euclidean ball with center at ζ and radius

t. Also, we let Σ(ζ, t) = B(ζ, t) ∩ ∂B. Note that η ∈ Σ(ζ, t) if and only if

1 − t2/2 < ζ · η ≤ 1. Thus, by slice integration (see, for example, Corollary

A.5 of [1]), we obtain

S[Σ(ζ, t)] = cn

∫ 1

1− t2

2

(1 − r2)
n−3

2 dr, 0 < t ≤ 2(4.1)

where cn is the surface area of (n− 2)-dimensional unit sphere; recall that

S denotes the surface area measure on ∂B.
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Given Aδm,`(ζ), pick a maximal collection of points xm,`,1, . . . , xm,`,Mm`

in Aδm,`(ζ) subject to the separation condition Eδ/4(xm,`,i)∩Eδ/4(xm,`,j) = ∅
for i 6= j. Then we have

Aδm,`(ζ) ⊂
Mm`⋃

j=1

Eδ(xm,`,j)(4.2)

by maximality. In order to see this, let x ∈ Aδm,`(ζ). Maximality then

provides a common point y of some Eδ/4(xm,`,j) and Eδ/4(x). Since 1−|x| ≤
2−m < 2(1 − |xm,`,j|), we have with such y

|x− xm,`,j| ≤ |x− y| + |y − xm,`,j|

<
δ

4
(1 − |x| + 1 − |xm,`,j|)

< δ(1 − |xm,`,j|)

so that x ∈ Eδ(xm,`,j). So, (4.2) holds.

By rotation invariance it is clear that Mm`, the number of points intro-

duced above, is independent of ζ. What we need is a uniform estimate for

upper bounds of Mm` = Mm`(δ) as in the following.

Lemma 4.2. There exists a positive integer N1 = N1(n) such that

Mm`(δ) ≤ N1δ
−n`n−2

whenever m ≥ 0, ` ≥ 1, δ ∈ (0, 1) and ζ ∈ ∂B.

Proof. Let m ≥ 0, ` ≥ 1, δ ∈ (0, 1) and ζ ∈ ∂B be given. We continue

using notation introduced in (4.2). Note that

Eδ(xm,`,j) ⊂ B
(
ζ, (`+ 1)δ2−m

)
\ B

(
ζ, (`− 2)δ2−m)

)

for each j and thus

Mm`⋃

j=1

Eδ(xm,`,j) ⊂
m+N⋃

k=m−1

`+1⋃

j=`−1

Aδk,j(ζ)(4.3)

where N = N(δ) is the integer provided by Lemma 4.1. We will derive the

desired estimate by a standard volume argument using the inclusion above.

So, we need to estimate the volume of the set Aδm,`(ζ). Put

Σδ
m,`(ζ) = Σ

(
ζ, (`+ δ−1)δ2−m

)
\ Σ

(
ζ, (`− 1 − δ−1)δ2−m

)
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and let Dδ
m,`(ζ) be the set of all y = |y|η ∈ Am where η ∈ Σδ

m,`(ζ). Then it

is easily seen that Aδm,`(ζ) ⊂ Dδ
m,`(ζ).

We first estimate the surface area of the set Σδ
m,`(ζ). Note that Σδ

m,`(ζ) =

∅ for 2 < (` − 1 − δ−1)δ2−m. For 0 < (` − 1 − δ−1)δ2−m ≤ 2, we have by

(4.1)

S[Σδ
m,`(ζ)] . (δ2−m)(n−1)[(`+ δ−1)n−1 − (`− 1 − δ−1)n−1]

≈ 2−m(n−1)`n−2.

Also, for (`− 1 − δ−1)δ2−m ≤ 0, we have

S[Σδ
m,`(ζ)] . (δ2−m)(n−1)(`+ δ−1)n−1 . 2−m(n−1)`n−2

because ` ≤ 1 + δ−1. In summary, we have

S[Σδ
m,`(ζ)] . 2−m(n−1)`n−2

and the constant suppressed in the above inequality depends only on n. So,

we have

|Aδm,`(ζ)| ≤ |Dm,`(ζ)| ≈ 2−m · S[Σδ
m,`(ζ)] . 2−mn`n−2(4.4)

by integration in polar coordinates. We now deduce from (4.3) and (4.4)

that

Mm`δ
n2−mn ≈

Mm∑̀

j=1

∣∣Eδ/4(xm,`,j)
∣∣ =

∣∣∣∣∣∣

Mm`⋃

j=1

Eδ/4(xm,`,j)

∣∣∣∣∣∣
. 2−mn`n−2

and this estimate is uniform in m, `, δ and ζ. This yields an integer N1 =

N1(n) with the desired property. The proof is complete.

Now, we prove the sup-norm estimates of the Berezin transforms on

each piece of the annuli as in the next lemma.

Lemma 4.3. Given δ ∈ (0, 1), there exists a constant C = C(δ) such

that

‖µ̃χk‖L∞ ≤ C

∞∑

m=0

‖(µ̂χm)δ‖L∞

2|m−k|
, k = 0, 1, . . .

for all µ ≥ 0.
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Proof. Let µ ≥ 0 and k ≥ 0 be given. Let x ∈ Ak be an arbitrary

point. We have

µ̃(x) =

∫

B
|r(x, y)|2 dµ(y)

.

∫

B

(1 − |x|)n
[(1 − |x|) + (1 − |y|) + |x− y|]2n dµ(y)

(4.5)

where the second inequality holds by (2.1) and the estimate

|R(x, y)| . [(1 − |x|) + (1 − |y|) + |x− y|]−n, y ∈ B;

see Theorem 1.1 of [8].

Let x = |x|ζ where ζ ∈ ∂B. We continue using notation introduced

in Lemma 4.2. We will estimate the last integral in (4.5) by using the

decomposition

B =

∞⋃

m=0

Am =

∞⋃

m=0

∞⋃

`=1

Aδm,`(ζ).(4.6)

With this in mind, note that, given Aδm,`(ζ), we have

|x− y| ≥ |ζ − y| − |x− ζ| ≥ (`− 1)δ2−m − 2−k−1

for y ∈ Aδm,`(ζ) and thus

(1 − |x|) + (1 − |y|) + |x− y| & 2−k + `2−m, y ∈ Aδm,`(ζ)(4.7)

for all m and `, because 1 − |x| ≈ 2−k and 1 − |y| ≈ 2−m. Also, note that

we have by (4.2) and Lemma 4.2

µ[Aδm,`(ζ)] ≤
Mm`∑

j=1

µ[Am ∩Eδ(xm,`,j)]

. ‖(µ̂χm)δ‖L∞

Mm`∑

j=1

|Eδ(xm,`,j)|

≈Mm`2
−mn‖(µ̂χm)δ‖L∞

. N1δ
−n2−mn`n−2‖(µ̂χm)δ‖L∞

(4.8)

for all m and `.
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Now, it follows from (4.5), (4.6), (4.7) and (4.8) that

µ̃(x) ≤
∞∑

m=0

∞∑

`=1

∫

Aδ
m,`(ζ)

(1 − |x|)n
[(1 − |x|) + (1 − |y|) + |x− y|]2n dµ(y)

.

∞∑

m=0

∞∑

`=1

2n(k−m)`n−2

(1 + `2k−m)2n
‖(µ̂χm)δ‖L∞

=

∞∑

m=0

2n(k−m)Jmk‖(µ̂χm)δ‖L∞

(4.9)

where

Jmk =

∞∑

`=1

`n−2

(1 + `2k−m)2n
.

To estimate these sums, we only consider m ≥ k; the case m < k is simpler.

Since m ≥ k, we have

Jmk ≈
2m−k∑

`=1

`n−2 +

∞∑

`=2m−k

`n−2

(`2k−m)2n

≈ 2(n−1)(m−k) + 22n(m−k)

∫ ∞

2m−k

dt

tn+2

≈ 2(n−1)(m−k)

=
1

2n(k−m)

1

2|k−m|
.

This, together with (4.9), yields the desired estimate. The proof is complete.

We now turn to the proof of Theorem 1.1. Here, we actually prove a

more precise version including the equivalences of associated norms.

Theorem 4.4. Let 1 ≤ p, q ≤ ∞, δ ∈ (0, 1) and µ ≥ 0. Then the

following conditions are equivalent:

(a) Tµ ∈ Sp,q.

(b) µ̃ ∈ Kp
q(λ).

(c) µ̂δ ∈ Kp
q(λ).

Moreover, the equivalences ‖Tµ‖Sp,q ≈ ‖µ̃‖Kp
q (λ) ≈ ‖µ̂δ‖Kp

q (λ) hold.
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Proof. We first show the equivalence (a) ⇐⇒ (c). It is sufficient to

show the estimate

‖µ̂δ‖Kp
q (λ) ≈ ‖Tµ‖Sp,q .(4.10)

We prove this for q <∞; the case q = ∞ is simpler. We use the convention

that Am = ∅ and χm = 0 for a negative integer m. Fix µ ≥ 0 and choose

N = N(δ) > 3 as in Lemma 4.1. We then have by Lemma 4.1

µ̂δχm ≤
m+N∑

k=m−1

(µ̂χk)δ

and thus

‖µ̂δχm‖qLp(λ) ≤ (N + 2)q−1
m+N∑

k=m−1

‖(µ̂χk)δ‖qLp(λ)

for all m ≥ 0. Summing up these estimates, we have

∞∑

m=0

‖µ̂δχm‖qLp(λ) ≤ (N + 2)q
∞∑

k=0

‖(µ̂χk)δ‖qLp(λ).

Accordingly, we conclude

‖µ̂δ‖qKp
q (λ)

.

∞∑

k=0

‖(µ̂χk)δ‖qLp(λ) ≈
∞∑

k=0

‖Tµχk
‖qSp

= ‖Tµ‖qSp,q
(4.11)

where the second equivalence comes from Proposition 2.4.

We now prove the other direction of the estimate (4.11). Note that

Eδ(x) can intersect Am with m ≥ 0 only when x ∈ ∪m+1
k=m−NAk by Lemma

4.1. Thus, we have

(µ̂χm)δ =

m+1∑

k=m−N

(µ̂χm)δχk ≤
m+1∑

k=m−N

µ̂δχk

and thus

‖(µ̂χm)δ‖qLp(λ) ≤ (N + 2)q−1
m+1∑

k=m−N

‖µ̂δχk‖qLp(λ)
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for each m ≥ 0. Summing up these estimates, we have

∞∑

m=0

‖(µ̂χm)δ‖qLp(λ) ≤ (N + 2)q
∞∑

k=0

‖µ̂δχk‖qLp(λ).(4.12)

Consequently, reversing the estimate in (4.11), we obtain

‖Tµ‖qSp,q
. ‖µ̂δ‖qKp

q (λ)

and thus we conclude (4.10).

Next, we prove the equivalence (b) ⇐⇒ (c). Choose ε ∈ (0, δ0) where δ0
is the number provided by Proposition 2.1. Then, by (4.10) and Proposition

2.1, we have

‖µ̂δ‖Kp
q(λ) ≈ ‖µ̂ε‖Kp

q(λ) . ‖µ̃‖Kp
q (λ)

for the full range 1 ≤ p, q ≤ ∞.

On the other hand, by Propositions 2.3 and 3.8, we have

‖µ̃‖Kp
q (λ) . ‖˜̂µδ‖Kp

q (λ) . ‖µ̂δ‖Kp
q(λ)

for 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Also, for p = q = ∞, we have ‖µ̂δ‖L∞ ≈
‖µ̃‖L∞ by Proposition 2.4 and (2.6). Now, consider the case where p = ∞
and q <∞. In this case, we have

‖µ̃‖K∞
q (λ) ≈

∥∥{‖µ̃χk‖L∞}
∥∥
`q

.

{
∞∑

k=0

2−k

}
∥∥{‖(µ̂χm)δ‖L∞}

∥∥
`q

by Lemma 4.3 and Young’s inequality. Meanwhile, we have

∥∥{‖(µ̂χm)δ‖L∞}
∥∥
`q

.

{
∞∑

k=0

‖µ̂δχk‖qL∞

}1/q

≈ ‖µ̂δ‖K∞
q (λ)

as in the proof of (a) ⇐⇒ (c) above. Combining these estimates, we have

‖µ̃‖K∞
q (λ) . ‖µ̂δ‖K∞

q (λ), as desired. This completes the proof.

We now observe some consequences. Given δ ∈ (0, 1), it is not hard to

see that the averaging operator ϕ 7→ ϕ̂δ is Lp-bounded for p = 1 or p = ∞
and thus for all 1 ≤ p ≤ ∞ by the Riesz-Thorin interpolation theorem. It

turns out that the averaging operator is bounded on each of the Herz spaces

Kp
q(λ). Combining this fact with Theorem 4.4, we have the boundedness of

the Berezin transform on K∞
q (λ) which is the missing case in Proposition

3.8.
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Corollary 4.5. Let 1 ≤ p, q ≤ ∞ and δ ∈ (0, 1). Then the averaging

operator ϕ 7→ ϕ̂δ is bounded on Kp
q(λ). Also, the Berezin transform is

bounded on Kp
q(λ).

Proof. Let ϕ ∈ Kp
q(λ) and assume ϕ ≥ 0 without loss of generality. We

first consider the case p = ∞ and q <∞. We have

‖ϕ̃‖qK∞
q (λ) ≈ ‖ϕ̂δ‖qK∞

q (λ) .

∞∑

k=0

‖(ϕ̂χk)δ‖qL∞ ≤
∞∑

k=0

‖ϕχk‖qL∞ ≈ ‖ϕ‖qK∞
q (λ)

by Theorem 4.4 and the first inequality in (4.11). All the remaining cases

follows from Theorem 4.4 and Proposition 3.8. The proof is complete.

Next, the following is an immediate consequence of (2.6), Proposition

2.4 and Theorem 4.4.

Corollary 4.6. Let 1 ≤ p ≤ ∞ and µ ≥ 0. Then Tµ ∈ Sp,p if and

only if Tµ ∈ Sp.

Also, we observe that the operator norm of positive Toeplitz operators

are dominated by their Sp,q-norms. This consequence in turn implies that

operators in Sp,q are all compact for finite q.

Corollary 4.7. Let 1 ≤ p, q ≤ ∞. Assume µ ∈ M and T|µ| ∈ Sp,q.

Then

‖Tµ‖ ≤ C‖T|µ|‖Sp,q

for some constant C = C(p, q) independent of µ. If q < ∞ and dµ = ϕdV

in addition, then Tµ is compact on b2.

Proof. By Proposition 2.6 we may assume µ ≥ 0 without loss of gen-

erality. First, we have

‖Tµ‖ ≈ ‖µ̂δ‖L∞ . ‖(̂µ̂δ)δ‖L∞

by Propositions 2.4 and 2.2. Meantime, we have

‖(̂µ̂δ)δ‖L∞ ≈ ‖(̃µ̂δ)‖L∞ . ‖µ̂δ‖Kp
q (λ) ≈ ‖Tµ‖Sp,q

by Propositions 2.4, 3.2 and Theorem 4.4. This proves the first part of the

corollary.
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Now suppose that ϕ ∈ L1 and T|ϕ| ∈ Sp,q. Given an integer N ≥ 0, let

ψN = |ϕ|(χ0 + · · · + χN ). Then we have

‖T|ϕ| − TψN
‖qSp,q

=
∑

m≥N+1

‖T|ϕ|χm
‖qSp

by definition of Sp,q-norm. Note that the right side of the above tends to 0

as N → ∞ for q < ∞. So, the second part of the lemma follows as in the

proof of Corollary 3.3. The proof is complete.

Finally, we prove that the spaces Sp,q are all different by constructing

explicit examples.

Corollary 4.8. Let 1 ≤ p, q, p1, q1 ≤ ∞. Then Sp,q = Sp1,q1 if and

only if p = p1 and q = q1.

Proof. Given 1 ≤ a, b ≤ ∞, put

ϕ = ϕa,b =

∞∑

k=1

log k

2k(n−1)/ak1/b
χk.

Let δ ∈ (0, 1) be a sufficiently small number. For example, one may take

δ < 1/5. Let 1 ≤ s ≤ ∞. We first prove

‖ϕ̂δχm‖Ls(λ) ≈
logm

2m(n−1)(1/a−1/s)m1/b
(4.13)

for integers m ≥ 2.

Let m ≥ 2 and put

A∗
m =

{
y ∈ B : rm +

1

3
· 1

2m+1
≤ |y| < rm+1 −

1

3
· 1

2m+1

}
.

Note that λ(A∗
m) ≈ 2mn|A∗

m| ≈ 2m(n−1). Similarly, λ(Am) ≈ 2m(n−1). Also,

since δ < 1/5, it is easily checked that Eδ(x) ⊂ Am for x ∈ A∗
m as in the

proof of Lemma 4.1. It follows that (χ̂m)δ = 1 on A∗
m and thus

‖(χ̂m)δχm‖Ls(λ) ≥ λ(A∗
m)1/s ≈ 2m(n−1)/s.

This yields the lower estimate

‖ϕ̂δχm‖Ls(λ) ≥
logm

2m(n−1)/am1/b
‖(χ̂m)δχm‖Ls(λ)

&
logm

2m(n−1)(1/a−1/s)m1/b
.
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We now prove the upper estimate. Since (χ̂k)δ ≤ 1 on B, we obtain

‖(χ̂k)δχm‖Ls(λ) ≤ ‖χm‖Ls(λ) = λ(Am)1/s ≈ 2m(n−1)/s

for k ≥ 1. Also, we have Eδ(x) ⊂ ⋃m+2
k=m−1Ak for x ∈ Am by Lemma 4.1.

Accordingly, we conclude

‖ϕ̂δχm‖Ls(λ) ≤
m+2∑

k=m−1

log k

2k(n−1)/ak1/b
‖(χ̂k)δχm‖Ls(λ)

.
logm

2m(n−1)(1/a−1/s)m1/b
,

as desired.

Now, assume that either p 6= p1 or q 6= q1. We only need to consider

two cases:

(i) p < p1;

(ii) p = p1 and q < q1.

By Theorem 4.4 it suffices to prove that

ϕ̂δ ∈ Kp1
q1 (λ), ϕ̂δ /∈ Kp

q(λ)(4.14)

for some choice of a and b. Before proceeding, note that ‖ϕ̂δχm‖Ls(λ) <∞
for m = 0, 1. First, consider Case (i). In this case we take a = p and b = ∞.

Then, for 1 ≤ s, t ≤ ∞, it follows from (4.13) that

ϕ̂δ ∈ Ks
t (λ) ⇐⇒

{
logm

2m(n−1)(1/p−1/s)

}
∈ `t ⇐⇒ p < s

and therefore (4.14) holds. Next, consider Case (ii). In this case we take

a = p and b = q. Then, for 1 ≤ t ≤ ∞, we have by (4.13)

ϕ̂δ ∈ Kp
t (λ) ⇐⇒

{
logm

m1/q

}
∈ `t ⇐⇒ q < t

so that (4.14) holds. The proof is complete.
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