Translator Disclaimer
2001 Bergman norm estimates of Poisson integrals
Boo Rim Choe, Hyungwoon Koo, Heungsu Yi
Nagoya Math. J. 161: 85-125 (2001).


On the half space ${\bf R}^n\times {\bf R}_+\,$, it has been known that harmonic Bergman space $b^p$ can contain a positive function only if $p>1+\frac 1n$. Thus, for $1\le p\le 1+\frac 1n$, Poisson integrals can be $b^p$-functions only by means of their boundary cancellation properties. In this paper, we describe what those cancellation properties explicitly are. Also, given such cancellation properties, we obtain weighted norm inequalities for Poisson integrals. As a consequence, under weighted integrability condition given by our weighted norm inequalities, we show that our cancellation properties are equivalent to the $b^p$-containment of Poisson integrals for $p$ under consideration. Our results are sharp in the sense that orders of our weights cannot be improved.


Download Citation

Boo Rim Choe. Hyungwoon Koo. Heungsu Yi. "Bergman norm estimates of Poisson integrals." Nagoya Math. J. 161 85 - 125, 2001.


Published: 2001
First available in Project Euclid: 27 April 2005

zbMATH: 0983.31001
MathSciNet: MR1820214

Primary: 31B05
Secondary: 30D55, 31B10

Rights: Copyright © 2001 Editorial Board, Nagoya Mathematical Journal


Vol.161 • 2001
Back to Top