Translator Disclaimer
2000 Twistor theory of manifolds with Grassmannian structures
Yoshinori Machida, Hajime Sato
Nagoya Math. J. 160(none): 17-102 (2000).


As a generalization of the conformal structure of type $(2, 2)$, we study Grassmannian structures of type $(n, m)$ for $n, m \geq 2$. We develop their twistor theory by considerin the complete integrability of the associated null distributions. The integrability corresponds to global solutions of the geometric structures.

A Grassmannian structure of type $(n, m)$ on a manifold $M$ is, by definition, an isomorphism from the tangent bundle $TM$ of $M$ to the tensor product $V \otimes W$ of two vector bundles $V$ and $W$ with rank $n$ and $m$ over $M$ respectively. Because of the tensor product structure, we have two null plane bundles with fibres $P^{m-1}(\mathbb{R})$ and $P^{n-1}(\mathbb{R})$ over $M$. The tautological distribution is defined on each two bundles by a connection. We relate the integrability condition to the half flatness of the Grassmannian structures. Tanaka's normal Cartan connections are fully used and the Spencer cohomology groups of graded Lie algebras play a fundamental role.

Besides the integrability conditions corr[e]sponding to the twistor theory, the lifting theorems and the reduction theorems are derived. We also study twistor diagrams under Weyl connections.


Download Citation

Yoshinori Machida. Hajime Sato. "Twistor theory of manifolds with Grassmannian structures." Nagoya Math. J. 160 17 - 102, 2000.


Published: 2000
First available in Project Euclid: 27 April 2005

zbMATH: 1039.53055
MathSciNet: MR1804138

Primary: 53C28
Secondary: 53C10

Rights: Copyright © 2000 Editorial Board, Nagoya Mathematical Journal


Vol.160 • 2000
Back to Top