Translator Disclaimer
2000 The joint universality and the functional independence for Lerch zeta-functions
Antanas Laurinčikas, Kohji Matsumoto
Nagoya Math. J. 157: 211-227 (2000).

Abstract

The joint universality theorem for Lerch zeta-functions $L(\lambda_l,\alpha_l,s)$ ($1\leq l \leq n$) is proved, in the case when $\lambda_l$s are rational numbers and $\alpha_l$s are transcendental numbers. The case $n=1$ was known before ([12]); the rationality of $\lambda_l$s is used to establish the theorem for the "joint" case $n\geq 2$. As a corollary, the joint functional independence for those functions is shown.

Citation

Download Citation

Antanas Laurinčikas. Kohji Matsumoto. "The joint universality and the functional independence for Lerch zeta-functions." Nagoya Math. J. 157 211 - 227, 2000.

Information

Published: 2000
First available in Project Euclid: 27 April 2005

zbMATH: 0970.11034
MathSciNet: MR1752482

Subjects:
Primary: 11M35

Rights: Copyright © 2000 Editorial Board, Nagoya Mathematical Journal

JOURNAL ARTICLE
17 PAGES


SHARE
Vol.157 • 2000
Back to Top