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Paramodular forms of level 16 and supercuspidal representations

Cris Poor, Ralf Schmidt and David S. Yuen

This work bridges the abstract representation theory of GSp(4) with recent computational techniques.
We construct four examples of paramodular newforms whose associated automorphic representations
have local representations at p = 2 that are supercuspidal. We classify all relevant irreducible, admissible,
supercuspidal representations of GSp(4,Q2), and show that our examples occur at the lowest possible
paramodular level, 16. The required theoretical and computational techniques include paramodular new-
form theory, Jacobi restriction, bootstrapping and Borcherds products.
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Introduction

This paper consists of a local part and a global part. In the local part we classify irreducible, admissible,
supercuspidal representations of GSp(4,Q2) with trivial central character and small conductor. In partic-
ular, we prove that there exists a unique such supercuspidal sc(16) with (the exponent of the) conductor
a(sc(16))= 4. In the global part we construct Siegel paramodular cusp forms of weights 9, 11, 13, and 14
and paramodular level 16 generating an automorphic representation with sc(16) as its 2-component. To
the best of our knowledge, these are the first examples of Siegel paramodular forms generating automor-
phic representations with a supercuspidal component. Other types of local representations can be seen
in [PSY 2018].

We give two approaches to the construction of sc(16). The first approach relies on the local Langlands
correspondence for the groups GL(2), GL(4) and GSp(4). We first construct, via automorphic induction,
a set of six supercuspidals of GL(2, E), where E =Q2(

√
5) is the unramified quadratic extension of Q2.

Up to unramified twists, these are precisely the depth zero supercuspidals of GL(2, E). We automorphi-
cally induce again to obtain three supercuspidals of GL(4,Q2). These are precisely the three depth zero
supercuspidals of GL(4,Q2) with trivial central character. Of these three, exactly one is a transfer from
a representation of GSp(4,Q2). This representation of GSp(4,Q2) is the unique generic supercuspidal
sc(16) with trivial central character and conductor 4. As a corollary to our construction, we obtain a
complete list of all supercuspidals of GSp(4,Q2) with trivial central character and conductor ≤ 4; see
Table 2. We also determine, via direct calculation, that the value of the ε-factor at 1/2 of sc(16) is −1.
This sign is important to know for global applications, as it will help us to identify sc(16) within the
automorphic representations generated by paramodular forms.

Our second approach to sc(16) is via compact induction. The Langlands parameter sc(16), known from
the first construction, is of the kind considered in [DeBacker and Reeder 2009]. The results of this paper
then exhibit sc(16) as being compactly induced from a cuspidal representation κ0 of GSp(4,Z2/2Z2)

(inflated to GSp(4,Z2) and extended trivially to include the center). Since GSp(4,Z/2Z)∼= S6, the irre-
ducible characters of this group are in bijection with the partitions of 6. The representation κ0 corresponds
to (2, 2, 1, 1) and has dimension 9. It is the unique cuspidal, generic character of GSp(4,Z/2Z).

We describe the passage from global paramodular forms to local supercuspidal representations. The
automorphic representations studied here are generated by the adelic function canonically associated
to a paramodular eigenform f ∈ Sk(K (N ))new. The interesting local representations are classified by
computing the Hecke eigenvalues of f at primes dividing the level N . In order to rigorously compute
these eigenvalues, we span the Fricke eigenspace containing f , Sk(K (N ))ε . Accurate upper bounds for
the dimension of Sk(K (N ))ε are provided by Jacobi restriction, which classifies all possible Fourier–
Jacobi coefficients from Sk(K (N ))ε to some sufficient order. Lower bounds are created by the technique
of bootstrapping. Bootstrapping seeds the target space with a Borcherds product, and then generates a
subspace that contains the seed and is stable under a good Hecke operator. Bootstrapping is run modulo
an auxiliary prime, and the subtle point is that it does not directly compute the action of a good Hecke
operator T (q) on Sk(K (N ))ε , but rather of a formal Hecke operator T (q) on the Jacobi restriction space
of initial Fourier–Jacobi expansions.

Even with the relevant spaces spanned, the eigenvalues at the bad primes resist direct computation
because they involve Fourier coefficients from more than one 1-dimensional cusp. As in [PSY 2018],
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this is overcome using the technique of restriction to a modular curve. We found symmetric f with a
supercuspidal local component early on, but only found the antisymmetric example in S14 (K (16))− as
the computations were becoming prohibitive.

1. Notation

For any commutative ring R, let

GSp(4, R)=
{
g ∈ GL(4, R) : tg Jg = µ(g)J, for some µ(g) ∈ R×

}
, J =

[
12

−12

]
.

The kernel of the multiplier homomorphism µ : GSp(4, R)→ R× is the group Sp(4, R). The C-vector
space of Siegel modular forms of weight k ∈ Z for a subgroup 0 ⊆ GSp(4,R) commensurable with
Sp(4,Z) is denoted by Mk (0), the subspace of cusp forms by Sk (0).

2. Supercuspidal representations of GSp(4,Q2) of small conductor

Let F be a non-archimedean local field of characteristic zero. Let o be its ring of integers, p the maximal
ideal of o, and q the cardinality of the residue class field o/p. When there is more than one field involved,
we sometimes write oF , pF , and qF for clarity.

Let WF be the Weil group of F , and W ′F the Weil–Deligne group. We refer to [Rohrlich 1994] or
[Gross and Reeder 2010] for basic facts about the Weil and Weil–Deligne groups and their representations.
If φ :W ′F →GL(n,C) is a representation of W ′F , then we define the (exponent of the) conductor a(φ) of
φ as in §10 of [Rohrlich 1994]. If π is an irreducible, admissible representation of GL(n, F), then the
conductor of π is defined as a(π)= a(φ), where φ :W ′F →GL(n,C) is the Weil–Deligne representation
corresponding to π via the local Langlands correspondence.

2.1. Discrete series parameters for GSp(4). The local Langlands correspondence (LLC) for GL(n)
states that there is a bijection between isomorphism classes of irreducible, admissible representations π
of GL(n, F) and Langlands parameters, i.e., conjugacy classes of admissible homomorphisms φ :W ′F →
GL(n,C). This bijection satisfies a number of desirable properties. For example, if π corresponds to φ,
then the central character of π corresponds to det(φ) under the LLC for GL(1) (which is essentially the
reciprocity law of local class field theory). Another property is that π is an essentially discrete series
representation if and only if the image of φ is not contained in a proper Levi subgroup; such φ are
therefore called discrete series parameters. Moreover, supercuspidal π correspond to irreducible φ.

The local Langlands correspondence is also a theorem for GSp(4); see [Gan and Takeda 2011]. The
Langlands parameters are now admissible homomorphisms φ :W ′F → GSp(4,C), taken up to conjugacy
by elements of GSp(4,C). A new phenomenon is that to one φ there now corresponds either a single
representation π , as in the GL(n) case, or a set of two representations {π1, π2}. In either case we speak
of the L-packet corresponding to φ. The size of the L-packet corresponding to φ equals the cardinality
of Sφ/S0

φZ , where Sφ is the centralizer of the image of φ, S0
φ is its identity component, and Z is the

center of GSp(4,C).
The LLC for GSp(4) is such that the central character of the representations in the L-packet of φ

corresponds to the multiplier µ ◦φ. As in the GL(n) case, the L-packet corresponding to φ consists of
essentially discrete series representations if and only if the image of φ is not contained in a proper Levi



292 CRIS POOR, RALF SCHMIDT AND DAVID S. YUEN

subgroup of GSp(4,C). It is also true that irreducible φ : W ′F → GSp(4,C) correspond to singleton
supercuspidal L-packets. However, there are plenty of supercuspidals whose Langlands parameter is not
irreducible.

To better understand L-parameters for supercuspidals, we recall some of the discussion of Section 7
of [Gan and Takeda 2011]. Let φ :W ′F → GSp(4,C) be a discrete series parameter for GSp(4), meaning
the image of φ is not contained in a proper Levi subgroup of GSp(4,C). Such parameters are of one of
two types (A) or (B).

Type (A): Viewed as a four-dimensional representation of W ′F , the map φ decomposes as φ1 ⊕ φ2,
where φ1 and φ2 are inequivalent indecomposable two-dimensional representations of W ′F with det(φ1)=

det(φ2). Explicitly, if φi (w)=
[ai (w)

ci (w)
bi (w)
di (w)

]
, then

φ(w)=

[
a1(w) b1(w)

a2(w) b2(w)
c1(w) d1(w)

c2(w) d2(w)

]
.

In this case the packet associated to φ consists of two elements, a generic representation πgen and a non-
generic πng. The common central character of these two representations corresponds to det(φ1)= det(φ2).
There are three subcases:

• (A1): Both φ1 and φ2 are irreducible. In this case πgen and πng are both supercuspidal.

• (A2): One of φ1, φ2 is irreducible, and the other is reducible (but indecomposable). In this case πgen

is a representation of type XIa in the classification of [Roberts and Schmidt 2007]; it sits inside a
representation induced from a supercuspidal representation of the Levi component of the Siegel
parabolic subgroup. The non-generic πng is supercuspidal; it is a representation of type XIa∗ in the
notation of [Roberts and Schmidt 2016].

• (A3): Both φ1 and φ2 are reducible (but indecomposable). In this case πgen is a representation of
type Va in the classification of [Roberts and Schmidt 2007]; it sits inside a representation induced
from the Borel subgroup. The non-generic πng is supercuspidal; it is a representation of type Va∗

in the notation of [Roberts and Schmidt 2016].

Hence πng is always supercuspidal, but πgen is only supercuspidal for class (A1). Note that, by Theorem
3.4.3 of [Roberts and Schmidt 2007], non-generic supercuspidals do not contain paramodular vectors
of any level. Hence, supercuspidals of the form πng cannot occur as local components in automorphic
representations attached to paramodular cusp forms.

Type (B): Viewed as a four-dimensional representation of W ′F , the map φ is indecomposable. In this case
there is a single representation π attached to φ, and this π is generic. Via the inclusion GSp(4,C) ↪→

GL(4,C) we may view φ as the Langlands parameter of a discrete series representation 5 of GL(4, F).
By the definitions involved, 5 is the image of π under the functorial lifting from GSp(4) to GL(4)
coming from the embedding GSp(4,C) ↪→ GL(4,C) of dual groups. Again there are three subcases:

• (B1): φ is irreducible as a four-dimensional representation. In this case π is supercuspidal.

• (B2): φ= ϕ⊗sp(2) with an irreducible two-dimensional representation ϕ of WF , and sp(2) being the
special indecomposable two-dimensional representation of W ′F . In this case π is a representation of
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type IXa; see Section 2.4 of [Roberts and Schmidt 2007]. This π sits inside a representation induced
from a supercuspidal representation of the Levi component of the Klingen parabolic subgroup.

• (B3): φ = ξ ⊗ sp(4) with a one-dimensional representation ξ of WF . Then π is a twist of the
Steinberg representation StGSp(4) (type IVa in the classification of [loc. cit.]).

Hence π is supercuspidal only for class (B1), i.e., if φ is irreducible. In this case π transfers to a
supercuspidal representation 5 of GL(4, F).

2.2. Counting supercuspidals for GL(2) and GL(4). We see from the parameters exhibited in the
previous section that, in order to understand supercuspidal representations of GSp(4, F), we need to
understand supercuspidal representations of GL(2, F) and GL(4, F), or equivalently, two-dimensional
and four-dimensional irreducible representations of WF . In this section we count the number of super-
cuspidals of GL(2, F) and GL(4, F) with small conductor.

The conductor a(π) of an irreducible, admissible representation of GL(n, F) is by definition the Artin
conductor a(φ) of its Langlands parameter φ; see §10 of [Rohrlich 1994]. Here, we always mean the
exponent of the conductor, so that a(π)= a(φ) is a non-negative integer. Another measure of complexity
is the depth d(π), as defined in [Moy and Prasad 1994; 1996]. For supercuspidals, there is an easy
relationship between depth and conductor, given by

d(π)=
a(π)− n

n
; (1)

see Proposition 2.2 of [Lansky and Raghuram 2003]. The set of supercuspidals of a fixed conductor is
invariant under unramified twisting.

The smallest conductor that can occur for a supercuspidal representation of GL(n, F) is a(π) = n.
By (1), these are the depth zero supercuspidals. If π is one such supercuspidal, and χ is an unramified
character, then the twist χπ is also a depth zero supercuspidal. For a positive integer n, let Zn be the
(finite) set of isomorphism classes of depth zero supercuspidals of GL(n, F) up to unramified twists. It
is known that Zn is in bijection with the set of Gal(Fqn/Fq) orbits of length n in the group of characters
of F×qn ; see Section 8 of [Deligne and Lusztig 1976] and Section 6 of [Moy and Prasad 1996]. It is an
exercise to show that

#Z2 =
1
2q(q − 1), #Z4 =

1
4q2(q2

− 1). (2)

Note that if q = 2, then every tamely ramified character of F× is unramified. Hence, in this case, every
element of Zn is represented by a unique depth zero supercuspidal with trivial central character. The
reason is that depth zero supercuspidals are compactly induced from representations of Z K , where the
representation on K = GL(2, o) is inflated from a cuspidal representation of GL(2, o/p). If o/p has only
two elements, then every representation of K thus obtained has trivial central character. In particular, we
see from (2) that GL(2,Q2) has exactly one depth zero supercuspidal with trivial central character, and
GL(4,Q2) has exactly three depth zero supercuspidals with trivial central character.

For a unitary character ω of F×, let Sω be the set of isomorphism classes of depth zero supercuspidals
of GL(2, F) with central character ω. By Proposition 3.4 of [Tunnell 1978], #Sω = 0 if a(ω) ≥ 2. If
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a(ω)≤ 1, then, by (4-1) of [Knightly and Ragsdale 2014],

#Sω =


1
2(q − 1) if q is odd and ω(q−1)/2 is trivial,
1
2(q + 1) if q is odd and ω(q−1)/2 is nontrivial,
1
2q if q is even.

(3)

2.3. Depth zero supercuspidals of GL(2,Q2(
√

5)). In this section let E =Q2(
√

5) be the unramified
quadratic extension of Q2, and let L be the unramified quadratic extension of E . Note that 2 is a
uniformizer both in E and in L . Let Fpn be the field with pn elements. The residue class field of E is
F4, and the residue class field of L is F16. The polynomial X4

+ X + 1 ∈ F2[X ] is irreducible, so that

F16 ∼= F2[X ]/(X4
+ X + 1).

Let ȳ be the image of X via this isomorphism. Then F16 = F2(ȳ), and ȳ satisfies ȳ4
= ȳ+ 1. Clearly,

the order of ȳ in F×16 is not 3 or 5, so that ȳ is a generator of the cyclic group F×16. The element ȳ5 is
then a generator of the cyclic group F×4 . Let y be an element of o×L mapping to ȳ under the projection
o×L → F×16.

Let η̄ be the character of F×16 determined by η̄(ȳ)= e2π i/15. For r ∈ Z/15Z we define a character ηr

of L× by lifting η̄r to o×L and setting ηr (2)=−1.
Let θ be the generator of Gal(L/Q2) that induces the map x 7→ x2 on F16. Then θ2 generates Gal(L/E).

We have ηθr = η2r . (If σ ∈Gal(L/F) and π is a representation of GL(n, F), then πσ is the representation
of GL(n, F) defined by πσ (g)= π(σ(g)).)

Consider automorphic induction AI = AIL/E ; see [Henniart and Herb 1995]. Recall that AI takes
characters ξ of L× to irreducible, admissible representations ρ of GL(2, E). By Proposition 4.5 of the
same reference, the central character of ρ is given by χL/E(ξ |E×), where χL/E is the quadratic character of
E× corresponding to the extension L/E . On the Galois side, AI corresponds to induction of parameters,
i.e., the parameter of ρ is

φρ = indWE
WL
(ξ).

This parameter is irreducible, i.e., ρ is supercuspidal, if and only if ξ is not Gal(L/E)-invariant. We
have a(ρ)= 2a(ξ) by the conductor formula (a2) in §10 of [Rohrlich 1994].

We now consider AIL/E(ηr ) for r ∈ {1, . . . , 15}. This representation is supercuspidal if and only if
η4r 6= ηr , which translates into 5 - r . Since a(η)= 1, we have a(AIL/E(ηr ))= 2 for r 6= 0. The central
character ω of AIL/E(ηr ) is determined by ω(2) = 1 and ω(y5) = η5r (y) = e2π ir/3. Hence, if we let
ω j be the character of E× which is trivial on 1+ pE and satisfies ω j (2) = 1 and ω j (y5) = e2π i( j−1)/3,
then ω1, ω2, ω3 are the possible central characters of the AIL/E(ηr ). We have ωθ1 = ω1 and ωθ2 = ω3.
Considering Langlands parameters, it is easy to see that the Gal(E/Q2)-conjugate of AI (ξ) is given by
AI (ξ)θ = AI (ξ θ ), and the contragredient is AI (ξ)∨ = AI (ξ−1).

Table 1 lists the supercuspidal representations of the form AI (ηr ). For each possible central character
ω j , there are two supercuspidals, which we denote by ρ ja and ρ jb. Note from (2) that there are exactly
six depth zero supercuspidals of GL(2, E) up to unramified twists. The following lemma implies that the
six representations {ρ1a, ρ1b, ρ2a, ρ2b, ρ3a, ρ3b} represent these six classes of depth zero supercuspidals
up to unramified twists. Note that having exactly two depth zero supercuspidals for a given central
character ω j is consistent with (3).
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ξ AI (ξ) ω AI (ξ)θ AI (ξ)∨

η3 or η12 ρ1a ω1 ρ1b ρ1a

η6 or η9 ρ1b ω1 ρ1a ρ1b

η or η4 ρ2a ω2 ρ3a ρ3b

η7 or η13 ρ2b ω2 ρ3b ρ3a

η2 or η8 ρ3a ω3 ρ2a ρ2b

η11 or η14 ρ3b ω3 ρ2b ρ2a

Table 1. Representatives for the depth zero supercuspidals of GL(2, E) up to unramified
twists. The first column shows Gal(L/E)-orbits of length 2 of the characters ξ = ηr .
The ω column shows the central character of the representation AIL/E(ξ). The columns
AI (ξ)θ and AI (ξ)∨ show the Gal(E/Q2)-conjugate and contragredient of AIL/E(ξ),
respectively.

Lemma 2.3.1. Let j ∈ {1, 2, 3}.

i) The representation ρ ja is not a twist of ρ jb.

ii) Let ρ = ρ ja or ρ = ρ jb. Then ρθ is not isomorphic to a twist of ρ∨.

iii) Let ρ, ρ ′ ∈ {ρ1a, ρ1b, ρ2a, ρ2b, ρ3a, ρ3b}. Then ρ is not an unramified twist of ρ ′, unless ρ = ρ ′.

Proof. i) Assume that ρ ja = χ ⊗ ρ jb for some character χ of E×; we will obtain a contradiction. Taking
central characters on both sides, we see that χ2

= 1. We have a(χ)≤ 1 by Proposition 3.4 of [Tunnell
1978].

Assume that a(χ) = 0. Then χ is either the trivial character, or χ = χL/E , the unique nontrivial,
unramified, quadratic character of E×. In either case χ ⊗ ρ jb = ρ jb, a contradiction.

Assume that a(χ)= 1. Then χ induces a nontrivial character of o×E/(1+ pE). In particular, the image
of χ |o×E consists of the third roots of unity, contradicting χ2

= 1.
ii) follows from i) and Table 1.
iii) Assume that ρ is an unramified twist of ρ ′. Then the restrictions of the central characters of ρ and

ρ ′ to o×E coincide. Hence ρ = ρ j∗ and ρ ′ = ρ j∗ with the same j . By i), we conclude ρ = ρ ′. �

Lemma 2.3.2. Let L be the unramified extension of degree 4 over Q2. Let the characters ηr of L× be
defined as above. Then, for ξ ∈ {η3, η6, η9, η12},

ε(1/2, ξ, ψL)=−1. (4)

Here, ψL = ψ ◦ trL/Q2 , where ψ is a character of Q2 that is trivial on Z2 but not on 2−1Z2.

Proof. Let
F16 ∼= F2[X ]/(X4

+ X + 1),

and let ȳ be the element corresponding to X , as at the beginning of this section. The Frobenius of the
extension F16/F2 is given by squaring, so that

trF16/F2(x)= x + x2
+ x4
+ x8
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for any x ∈ F16. Using this formula and ȳ4
= ȳ+ 1, it is easy to calculate the trace of any element of F16.

The results are as follows:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

trF16/F2(ȳ
i ) 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

(5)

Let ξ ∈ {η3, η6, η9, η12}. By the formula (ε3) in §11 of [Rohrlich 1994],

ε(1/2, ξ, ψL)= q−a(ξ)/2
L

∫
$
−a(ξ)
L o×L

ξ−1(x)ψL(x) dx . (6)

For this formula to hold, it is important that ψL has conductor oL , which is the case for our additive
character. The element $L is a uniformizer; in our case we may take $L = 2. We further have a(ξ)= 1
and qL = 16, so that

ε(1/2, ξ, ψL)=
1
4

∫
2−1o×L

ξ−1(x)ψL(x) dx = 1
4
|2−1
|L

∫
o×L

ξ−1(2−1x)ψL(2−1x) dx

=−4
∫
o×L

ξ−1(x)ψL(2−1x) dx =−4 vol(1+ pL)
∑

x∈o×L /(1+pL )

ξ−1(x)ψL(2−1x)

=−
1
4

∑
x∈o×L /(1+pL )

ξ−1(x)ψ(2−1trL/Q2(x)).

We have

ψ(2−1trL/Q2(x))=
{

1 if trL/Q2(x) ∈ 2Z2 (equivalently, if trF16/F2(x̄)= 0),
−1 if trL/Q2(x) ∈ Z×2 (equivalently, if trF16/F2(x̄)= 1).

Hence, using (5),

ε(1/2, ξ, ψL)=−
1
4

( ∑
i∈{1,2,4,5,8,10,15}

ξ−1(yi )−
∑

i∈{3,6,7,9,11,12,13,14}

ξ−1(yi )

)
=−

1
4

(
ζ + ζ 2

+ ζ 4
+ ζ 5
+ ζ 8
+ ζ 10

+ ζ 15
− ζ 3
− ζ 6
− ζ 7
− ζ 9
− ζ 11

− ζ 12
− ζ 13

− ζ 14),
where ζ = ξ−1(y), a primitive fifth root of unity. Using ζ 5

= 1 and 1+ ζ + ζ 2
+ ζ 3
+ ζ 4

= 0, this
simplifies to

ε(1/2, ξ, ψL)=−
1
4

(
ζ + ζ 2

+ ζ 4
+ 1+ ζ 3

+ 1+ 1− ζ 3
− ζ − ζ 2

− ζ 4
− ζ − ζ 2

− ζ 3
− ζ 4)

=−
1
4

(
3− ζ − ζ 2

− ζ 3
− ζ 4)

=−1.

This concludes the proof. �

2.4. Supercuspidals of GSp(4,Q2) with small conductor. As in the previous section, let E be the
unramified quadratic extension of Q2. Let θ be the nontrivial element of Gal(E/Q2). We now consider
automorphic induction AI = AIE/Q2 . Recall that AI takes irreducible, admissible representations ρ of
GL(2, E) to irreducible, admissible representations π of GL(4,Q2). By Proposition 4.5 of [Henniart
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and Herb 1995], the central characters ωρ and ωπ are related by ωπ = ωρ |Q×2 . If φρ is the parameter of
ρ, then the parameter of π is

φπ = ind
WQ2
WE

(φρ).

Assume that ρ is supercuspidal, or equivalently, that φρ is irreducible. Then π is supercuspidal if and
only if ρ 6= ρθ , where the Galois conjugate ρθ is defined by ρθ (g)= ρ(gθ ) for g ∈ GL(2, E). In other
words, φπ is irreducible if and only if φρ 6= φθρ , where φθρ(w)= φρ(θwθ

−1) for w ∈WE (here we think
of θ as an element of WQ2 that is not in WE ). Also, we have AI (ρ)= AI (ρθ ).

We apply AI = AIE/Q2 to the supercuspidal representations of GL(2, E) listed in Table 1. It follows
from this table that

AI (ρ1a)= AI (ρ1b), AI (ρ2a)= AI (ρ3a), AI (ρ2b)= AI (ρ3b), (7)

and these are supercuspidal representations of GL(4,Q2). They all have trivial central character. By the
conductor formula for induced representations of the Weil group, see (a2) in §10 of [Rohrlich 1994],
they have conductor 4. It follows that the representations in (7) are precisely the three depth zero
supercuspidals of GL(4,Q2) with trivial central character; see Section 2.2.

We will next determine which of the three supercuspidals in (7) are transfers from GSp(4). For any p-
adic field F , an irreducible, admissible representation π of GL(4, F) is a transfer from GSp(4, F) if and
only if its parameter φπ : W ′F → GL(4,C), after suitable conjugation, has image in GSp(4,C). Assume
this is the case, and consider the exterior square map

∧2
: GL(4,C)→ GL(6,C). Since the composition

of
∧2 with the inclusion GSp(4,C) ↪→ GL(4,C) decomposes as the direct sum of a five-dimensional

and a one-dimensional representation of GSp(4,C), it follows that
∧2
◦φπ contains a one-dimensional

representation of W ′F .
The following lemma was spelled out in a preprint version of [Gan and Takeda 2011] but not in the

published version. We include a proof here.

Lemma 2.4.1. Let E/F be a quadratic extension of p-adic fields. Let θ be an element of WF that is not
in WE . Let (φ, V ) be an irreducible two-dimensional representation of WE , and let φθ (w)= φ(θwθ−1)

for w ∈WE . Then ∧2
(
indWF

WE
(φ)
)
=U ⊕ indWF

WE
(det(φ)),

where U is a 4-dimensional representation of WF whose restriction to WE is isomorphic to φ⊗φθ .

Proof. As a model for φ := indWF
WE
(φ), we may take V ⊕ V , with action

φ(w)(v1⊕ v2)= φ(w)v1⊕φ
θ (w)v2 (w ∈WE), φ(θ)(v1⊕ v2)= v2⊕φ(θ

2)v1. (8)

If spaces V1 and V2 carry an action of a group G, then∧2 (V1⊕ V2)∼=
∧2 V1 ⊕ (V1⊗ V2) ⊕

∧2 V2

as G-spaces. It follows that, as a WE -representation,∧2
(
indWF

WE
(φ)
)
= det(φ)⊕ (φ⊗φθ )⊕ det(φ)θ ,
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It is easy to see that det(φ)⊕det(φ)θ is invariant under the action of θ , and that in fact this two-dimensional
space is isomorphic to indWF

WE
(det(φ)) as a WF -representation. The space U realizing φ ⊗ φθ is also

invariant under θ . �

Lemma 2.4.2. The representations AIE/Q2(ρ2a) and AIE/Q2(ρ2b) appearing in (7) are not transfers
from GSp(4,Q2).

Proof. Let ρ = ρ2a or ρ2b. Let φ : WE → GL(2,C) be the parameter of ρ. Then the parameter of
AIE/Q2(ρ) is ind

WQ2
WE

(φ). By Lemma 2.4.1,∧2
(
ind

WQ2
WE

(φ)
)
=U ⊕ ind

WQ2
WE

(det(φ)),

where U is isomorphic to φ⊗φθ as a WE -representation. By Lemma 2.3.1 ii), the space U is irreducible,
even as a WE -representation. Since det(φ) = ω2 is not Gal(E/Q2)-invariant, the two-dimensional
ind

WQ2
WE

(det(φ)) is irreducible as a WQ2-representation. Hence
∧2
(
ind

WQ2
WE

(φ)
)

does not contain any one-
dimensional component. By our remarks above, AIE/Q2(ρ) cannot be a transfer from GSp(4,Q2). �

Theorem 2.4.3. The group GSp(4,Q2) admits a unique generic supercuspidal representation sc(16)
with conductor a(sc(16))= 4 and trivial central character. As a four-dimensional representation of WQ2 ,
the Langlands parameter of sc(16) is

φsc(16) = ind
WQ2
WL

(ξ), (9)

where L is the unramified extension of Q2 of degree 4, and ξ is any character of L× with the following
properties: ξ is trivial on 1+ pL ; the values of the restriction of ξ to o×L are the fifth roots of unity;
ξ(2)=−1. We have ε(1/2, sc(16), ψ)=−1, where ψ is a character of Q2 which is trivial on Z2 but not
on 2−1Z2.

Proof. Let π be a generic supercuspidal representation of GSp(4,Q2) with a(π)= 4 and trivial central
character. The requirement that π be generic excludes supercuspidals of type Va∗ and XIa∗; these are the
ones with parameters of type (A2) and (A3), as defined in Section 2.1. Assume that π has a parameter of
type (A1); we will obtain a contradiction. Parameters of type (A1) are of the form φ1⊕φ2, where φ1, φ2

are inequivalent irreducible, two-dimensional representations of WQ2 with det(φ1)= det(φ2)= 1. Since
a(π)= 4, we must have a(φ1)= a(φ2)= 2. Hence φ1 and φ2 correspond to supercuspidals of GL(2,Q2)

with conductor 2 and trivial central character. By (3), there exists only one such supercuspidal. Hence
φ1 ∼= φ2, a contradiction.

By our considerations in Section 2.1, the parameter of π is of type (B1), i.e., irreducible as a four-
dimensional representation. Hence π transfers to a supercuspidal representation π ′ on GL(4,Q2) with
trivial central character and a(π ′) = 4. It follows that π ′ is one of the representations in (7). By
Lemma 2.4.2 we must have π ′ = AIE/Q2(ρ1a) = AIE/Q2(ρ1b), where E is the unramified quadratic
extension of Q2. This shows that, as a four-dimensional representation, the parameter of π is

ind
WQ2
WE

(φa)= ind
WQ2
WE

(φb), (10)

where φ∗ is the parameter of ρ1∗. By the considerations on p. 284/285 of [Roberts 2001], there exists a
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a(π) π type generic ε(1/2, π) L(s, π)−1

2 δ∗([ξ, νξ ], ν−1/2) Va∗ no −1 1− q−2s−1

3
{

δ∗(ν1/2τ2, ν
−1/2) XIa∗ no 1 1− q−s−1/2

δ∗(ν1/2τ2, ν
−1/2ξ) XIa∗ no −1 1+ q−s−1/2

δ∗(ν1/2τ3, ν
−1/2) XIa∗ no −1 1− q−s−1/2

δ∗(ν1/2τ3, ν
−1/2ξ) XIa∗ no −1 1+ q−s−1/2

4

 δ∗(ν1/2ξτ3, ν
−1/2) XIa∗ no 1 1− q−s−1/2

δ∗(ν1/2ξτ3, ν
−1/2ξ) XIa∗ no 1 1+ q−s−1/2

sc(16) yes −1 1

Table 2. The supercuspidals π of GSp(4,Q2) with conductor a(π)≤ 4 and trivial central
character. The character ξ is the unique nontrivial, unramified, quadratic character of
Q×2 . The representation τ2 is the unique supercuspidal of GL(2,Q2) with trivial central
character and conductor 2. The representation τ3 (resp. ξτ3) is the unique supercuspidal
of GL(2,Q2) with trivial central character, conductor 3 and root number 1 (resp. −1).
The representation sc(16) is the one from Theorem 2.4.3. The non-generic supercuspi-
dals δ∗(. . .) share an L-packet with the generic square-integrable representations δ(. . .)
of type Va resp. XIa; see Section 4.6 of [Roberts and Schmidt 2016].

unique symplectic structure on the space of ind
WQ2
WE

(φ∗) for which WQ2 acts with trivial similitude. We
proved that the parameter of π is uniquely determined. The uniqueness and existence of π now follows
from the local Langlands correspondence for GSp(4,Q2).

Let η j be as in Table 1. Then η3, η6, η9, η12 are precisely the characters ξ of L× with ξ(2) = −1,
trivial on 1+pL , and such that the values of the restriction of ξ to o×L are the fifth roots of unity. Inducing
η3 or η12 to WE gives the parameter φa of ρ1a , and inducing η6 or η9 to WE gives the parameter φb of
ρ1b. Hence (9) follows by transitivity of induction.

We have ε(1/2, π, ψ)= ε(1/2, ξ, ψL) by Corollary 4 to Theorem 5.6 of [Henniart and Herb 1995], or
by (ε2) in §11 of [Rohrlich 1994]. Hence the assertion about ε(1/2, π, ψ) follows from Lemma 2.3.2. �

Corollary 2.4.4. Table 2 contains a complete list of all the irreducible, admissible, supercuspidal repre-
sentations π of GSp(4,Q2) with trivial central character and conductor a(π)≤ 4.

Proof. Let π be an irreducible, admissible, supercuspidal representations of GSp(4,Q2) with trivial
central character and conductor a(π)≤ 4. Assume first that π is generic. Then π cannot be of type Va∗

or XIa∗. Equivalently, the Langlands parameter φ of π cannot be of type (A2) or (A3). Assume that φ is
of type (A1), so that φ = φ1⊕φ2 with irreducible, two-dimensional, inequivalent representations φ1, φ2

of WQ2 for which det(φ1)= det(φ2)= 1. Since a(φ1), a(φ2)≥ 2 and a(φ)≤ 4, we have a(φ1)= a(φ2)= 2
and a(φ)= 4. It follows that π must be the representation sc(16) of Theorem 2.4.3. But then π transfers
to a supercuspidal on GL(4,Q2), contradicting the reducibility of φ. This contradiction shows that φ
cannot be of type (A1). Alternatively, one can argue that, by (3), there is only one supercuspidal τ2 of
GL(2,Q2) with conductor 2 and trivial central character, contradicting the inequivalence of φ1 and φ2.
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We proved that a generic supercuspidal π of GSp(4,Q2) with trivial central character and conductor
a(π)≤ 4 must have a parameter φ of type (B1). Hence π transfers to a supercuspidal on GL(4,Q2) and
must have a(π)= 4. Thus π is the representation sc(16) of Theorem 2.4.3.

Next assume that π is a non-generic supercuspidal of GSp(4,Q2) with trivial central character and
conductor a(π)≤ 4. Then π must have a parameter φ of type (A). Since a(φ)≤ 4, the argument above
shows that φ cannot be of type (A1), so that φ is of type (A2) or (A3).

Assume that φ is of type (A3). By definition, φ = φ1⊕φ2, where φ1, φ2 are reducible but indecompos-
able, inequivalent, and satisfy det(φ1)= det(φ2)= 1. Hence φi is the parameter of σi StGL(2) for distinct
quadratic characters σ1, σ2 of Q×2 . The restrictions on the conductors imply that σ1 and σ2 must both be
unramified; see the proposition in §10 of [Rohrlich 1994]. Hence one of σ1, σ2 is trivial, and the other
is the unique nontrivial, unramified, quadratic character ξ of Q×2 . (This ξ is given by the local Hilbert
symbol (·, 5).) The corresponding π is the representation δ∗([ξ, νξ ], ν−1/2) of type Va∗.

Assume that φ is of type (A2). By definition, φ = φ1 ⊕ φ2, where φ1 is irreducible and φ2 is the
parameter of σStGL(2) for some character σ of Q×2 . Moreover det(φ1) = det(φ2) = 1. Since a(φ) ≤ 4,
the character σ must be unramified, so that either σ = 1 or σ = ξ . In both cases a(φ2) = 1, which
implies a(φ1) ∈ {2, 3}. There is only one possible φ1 with a(φ1) = 2, namely the parameter of τ2, the
unique supercuspidal of GL(2,Q2) with trivial central character and conductor 2; see (3). From this φ1

we therefore obtain two supercuspidals π with a(π)= 3. Using the notation of [Roberts and Schmidt
2016], these are the representations δ∗(ν1/2τ2, ν

−1/2) and δ∗(ν1/2τ2, ξν
−1/2) of type XIa∗.

Finally, consider the case a(φ1)= 3. By Theorem 3.9 of [Tunnell 1978], there are exactly two pos-
sibilities for φ1. One corresponds to a supercuspidal representation τ3 of GL(2,Q2) with trivial central
character, a(τ3)= 3 and ε(1/2, τ3)= 1. The other corresponds to the twist ξτ3, which is distinguished
from τ3 by the value of the ε-factor ε(1/2, ξτ3)=−1. The two possibilities of φ1, together with the two
possibilities for σ , lead to four supercuspidals π of type XIa∗.

For the non-generic representations, the values of the L- and ε-factors in Table 2 can be read off
Tables A.8 and A.9 of [Roberts and Schmidt 2007]. Note that Va∗ has the same factors as Va, since
they constitute a two-element L-packet; similarly for XIa and XIa∗. The ε-factor for sc(16) is given in
Theorem 2.4.3. The L-factor for sc(16) is 1, since the parameter of sc(16) is irreducible. �

We refer to Section 4 of [Roberts and Schmidt 2016] for a construction of the representations of type
Va∗ and XIa∗ in terms of the theta correspondence. Note that the representation of type Va∗ occurring in
Table 2 is invariant under twisting by the unramified character ξ .

2.5. The representation sc(16) via compact induction. We give an alternative construction of the su-
percuspidal representation sc(16) by employing compact induction. Consider the Langlands parameter
φsc(16) of sc(16) given in (9). After choosing a suitable basis of ind

WQ2
WL

(ξ) we may think of φsc(16) as a
map WQ2 → GSp(4,C). The image lies in fact in Sp(4,C), the dual group of G = SO(5) ∼= PGSp(4),
so that, if we wish, we may work in a semisimple context.

In this section we consider the Vogan L-packet of φsc(16). Recall that a Vogan L-packet may contain
representations across all pure inner forms of a group; see [Vogan 1993] or the overview in Section 3
of [Gross and Prasad 1992]. As explained in Section 8 of [Gross and Reeder 2010], the split group
SO(2n+ 1) has a unique non-split pure inner form SO∗(2n+ 1). We will see that the L-packet of φsc(16)
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has two elements, one being a representation of SO(5,Q2)∼= PGSp(4,Q2) (this is our sc(16)), the other
one a representation of SO∗(5,Q2).

The parameter φsc(16) :WQ2→ Sp(4,C) is discrete in the sense that its image has finite centralizer. It is
tame in the sense that the image of wild inertia is trivial; this is because the character ξ : L×→C× is trivial
on 1+ pL . Moreover, φsc(16) is in general position, meaning the image of tame inertia is generated by a
regular, semisimple element. Hence φsc(16) is among the Langlands parameters considered in [DeBacker
and Reeder 2009]. The construction in [DeBacker and Reeder 2009] attaches a Vogan L-packet to each
tame, discrete Langlands parameter in general position. In the context of GSp(4), the paper [Lust 2013]
assures that the packets thus obtained coincide with the L-packets defined in [Gan and Takeda 2011] and
[Gan and Tantono 2014].

The centralizer Cφ of the image of φsc(16) :WQ2 → Sp(4,C) is precisely the center ±I4 of Sp(4,C).
The work [DeBacker and Reeder 2009] attaches to each irreducible character ρ of Cφ a depth-zero
supercuspidal representation on a pure inner form of the group under consideration. In our case, going
through the definitions shows that the trivial character of Cφ gives rise to a representation of SO(5,Q2),
and the nontrivial character to a representation of SO∗(5,Q2). We will concentrate on the former, since
(by [Lust 2013]) this is our supercuspidal sc(16).

As explained in Section 4.4 of [DeBacker and Reeder 2009], each irreducible character ρ of Cφ gives
rise to an orbit of vertices in the Bruhat–Tits building of G = PGSp(4) over Q2. By Lemma 6.2.1 of
[DeBacker and Reeder 2009], these vertices are hyperspecial if and only if ρ is trivial. It is exactly the
hyperspecial vertices that lead to generic depth-zero supercuspidals, consistent with the fact that sc(16)
is generic.

We may work with the hyperspecial vertex x0 whose associated parahoric subgroup is p(K ), where
K = GSp(4,Z2) and p : GSp(4,Q2)→ G(Q2) is the projection. Let G0 be the reductive group over
the residue class field f = F2 attached to x0, so that G0(f) ∼= p(K )/p(K )+, where p(K )+ is the pro-
unipotent radical of p(K ). In our case p(K )+ is a principal congruence subgroup, and G0 = Sp(4). The
construction of sc(16) is then as follows. The parameter φsc(16) determines an f-minisotropic maximal
torus T0 in G0. The restriction of φsc(16) to tame inertia defines a character θ of T0(f) via the tame
local Langlands correspondence for tori. Since φsc(16) is in general position, the character θ will be in
general position in the sense of Definition 5.15 of [Deligne and Lusztig 1976]. Deligne–Lusztig induction
therefore yields an irreducible, cuspidal character

κ0 =±RT,θ (11)

of G0(f)∼= Sp(4, f). Let κ be the inflation of κ0 to p(K ) via G0(f)∼= p(K )/p(K )+. Then

sc(16)= c-IndG(Q2)
p(K ) (κ), (12)

where we identify representations of G(Q2) with representations of GSp(4,Q2) with trivial central char-
acter. Alternatively, we can first pull back κ to a character of K , extend it trivially to Z K , where Z is
the center of GSp(4,Q2), and compactly induce to GSp(4,Q2). By Proposition 6.6 of [Moy and Prasad
1996], the induced representation in (12) is irreducible and supercuspidal.

Making things explicit, one finds that T0 is the maximal torus corresponding to the conjugacy class
consisting of length 2 elements in the 8-element Weyl group of G0; see Section 3.3 of [Carter 1985] for
the correspondence between conjugacy classes in the Weyl group and maximal tori. The group T0(f) is
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cyclic of order 5. The characters θ of T0(f) in general position are precisely the isomorphisms of this
group with the fifth roots of unity. By Corollary 7.2 of [Deligne and Lusztig 1976], the character κ0 in
(11) has degree 9.

It is an exercise in elementary character theory to show that Sp(4, f) has exactly one irreducible,
cuspidal representation κ0 of dimension 9, and that this representation is generic; see [Enomoto 1972]
for information on the characters of Sp(4, F2n ). This κ0 corresponds to the irreducible character with
Young diagram

(13)

under the isomorphism of Sp(4, f) with the symmetric group S6 described in Section 3.5.2 of [Wil-
son 2009]. There is in fact only one other irreducible, cuspidal character of Sp(4, f), namely the one-
dimensional sign character under the isomorphism Sp(4, f)∼= S6.

To summarize, sc(16) is a depth-zero supercuspidal representation of GSp(4,Q2) which may be
constructed as follows. Take the unique irreducible, cuspidal character κ0 of Sp(4, f) that is not one-
dimensional; it has dimension 9 and is generic. Inflate κ0 to a representation κ of K =GSp(4,Z2) and ex-
tend it to Z K by making it trivial on the center Z of GSp(4,Q2). Then we have sc(16)= c-IndGSp(4,Q2)

Z K (κ).
The Vogan L-packet of sc(16) contains an additional representation which lives on the non-split inner
form of GSp(4).

3. Paramodular cusp forms of weight k ≤ 14 and level N = 16

A good reference for the notation in this section and hereafter is [PSY 2018]. For each N ∈ N, the
paramodular group, K (N ), and its normalizing Fricke involution, µN , are defined by

K (N )=


∗ N∗ ∗ ∗

∗ ∗ ∗ ∗/N
∗ N∗ ∗ ∗

N∗ N∗ N∗ ∗

∩Sp(4,Q), ∗ ∈ Z ; µN =
1
√

N


0 −N 0 0
1 0 0 0
0 0 0 −1
0 0 N 0

 .
Let Sk(K (N ))ε for ε = ± denote the Fricke eigenspace of Sk(K (N )) with eigenvalue ±1, so that

we have the decomposition Sk(K (N ))= Sk(K (N ))+⊕ Sk(K (N ))−. In the case where N is a power of
a prime, the Fricke sign is also the Atkin–Lehner sign at that prime. The Gritsenko lift is an injective
linear map from J cusp

k,N to Sk(K (N ))ε for ε = (−1)k . Paramodular forms that are not Gritsenko lifts will
be called nonlifts.

We are searching for a supercuspidal paramodular form, i.e., a newform f ∈ Sk(K (N )) whose associ-
ated adelic representation has a supercuspidal local component. Since non-generic supercuspidals do not
admit non-zero paramodular vectors by Theorem 3.4.3 of [Roberts and Schmidt 2007], a supercuspidal
coming from a paramodular newform f is necessarily generic. In particular, f must be a nonlift. By
Table 2, among 2-powers, the smallest N for which f can be supercuspidal is N = 16. By Corollary 7.5.5
of [Roberts and Schmidt 2007], the value of the ε-factor at 1/2 of an irreducible, admissible, generic
representation coincides with the eigenvalue of the Atkin–Lehner involution on the newform. It therefore
follows from Table 2 that if Sk(K (16)) contains a supercuspidal form, it must occur in Sk(K (16))−.
Hence, we pay special attention to these spaces.
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Our first goal is to find all the nonlift newforms in Sk(K (16))± for k ≤ 14. In order to separate the
nonlift newforms from the nonlift oldforms, we also find all the nonlift eigenforms in Sk(K (N )) for
k ≤ 14 and N ∈ {1, 2, 4, 8}; we separate these eigenforms into their Fricke eigenspaces as well. The
dimensions of Sk(K (N )) are known for N ∈ {1, 2, 4}, see [Igusa 1962; Ibukiyama and Onodera 1997;
Poor and Yuen 2013]. Comparing with the known [Skoruppa and Zagier 1989] dimensions of Jacobi
cusp forms J cusp

k,N , we see that Sk(K (N )) for N ∈ {1, 2} and k ≤ 14 does not have any nonlifts. Thus we
need only consider N ∈ {4, 8, 16} in this section. Our first task is to compute the dimension of each of
these spaces, and this will entail finding upper and lower bounds that are equal.

3.1. Paramodular forms and Fourier expansions. A paramodular form f ∈ Sk(K (N )) has a Fourier
expansion

f (�)=
∑

t

a(t; f )e (〈�, t〉)

where the sum is over t ∈ X2(N ) =
{[ n

r/2
r/2
Nm

]
> 0 : n, r,m ∈ Z

}
and where 〈�, t〉 = tr(�t). The

similarity group
{
u ∈ GL(2,R) :

[
u 0
0 u∗

]
∈ K (N )

}
equals 0̂0(N ) =

〈
00(N ),

[
1 0
0 −1

]〉
, where, as usual,

00(N ) =
{[

a b
c d

]
∈ SL(2,Z) : b ≡ 0 mod N

}
, and hence the Fourier coefficients satisfy the following

relations amongst themselves: for t[u] = t utu,

a(t[u]; f )= det(u)ka(t; f ), for all u ∈ 0̂0(N ). (14)

Another set of important relations among the Fourier coefficients comes from the Fricke involution µN ;
we have a(t; f |µN )= a(Twin(t); f ) for

t =
[ n

r/2
r/2
Nm

]
, Twin(t)=

[ m
−r/2

−r/2
Nn

]
, (15)

so that t 7→ Twin(t) gives the action of µN on the Fourier coefficients. Therefore Fricke eigenforms obey
the additional conditions

a (Twin(t); f )= ε a(t; f ), for f ∈ Sk(K (N ))ε . (16)

Note that twinning stabilizes X2(N ) and respects 0̂0(N )-classes. These observations follow from the
equation Twin(t) = FN t tFN , for FN =

1√
N

[
0 −1
N 0

]
, the elliptic Fricke involution on 00(N ). We may

view the Fourier expansion as a map FE : Sk(K (N ))→
∏

t∈X2(N ) C that sends f to (a(t; f ))t∈X2(N ).
Relations (14) and (16) above show that the image of Sk(K (N ))ε under FE lies in a very special subspace.

For a ring R ⊆ C, we define Sk(K (N ))(R) ⊆ Sk(K (N )) to be the R-module of paramodular cusp
forms f ∈ Sk(K (N )) with a(t; f ) ∈ R for all t ∈ X2(N ). Fundamental results of Shimura [1975] show
that general spaces of modular forms have integral bases, i.e., a basis with integral Fourier coefficients.

The natural reduction map Rp : Z→ Fp allows us to define modular forms over Fp, a concept useful
for both theory and computations: Sk(K (N ))(Fp)= Rp ◦FE (Sk(K (N ))(Z)). Thus paramodular forms
over Fp are formal series with coefficients in Fp and the Fourier expansion map FE : Sk(K (N ))(Fp)→∏

t∈X2(N ) Fp is really the identity map. From the existence of an integral basis, it follows from the
structure theorem for finitely generated Z-modules that

dimC Sk(K (N ))ε = rankZ Sk(K (N ))ε(Z)= dimFp Sk(K (N ))ε(Fp).

For odd primes p, we have the direct sum Sk(K (N ))(Fp)= Sk(K (N ))+(Fp)⊕ Sk(K (N ))−(Fp).
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3.2. Good Hecke operators and their action on Fourier coefficients. A Hecke operator is called good
when its similitude is prime to the level. For each prime q not dividing N , we use the good Hecke operator
T (q) : Sk(K (N ))→ Sk(K (N )) defined as follows. Decompose K (N ) diag(1, 1, q, q)K (N )=∪ j K (N )γ j

into a union of distinct cosets. For f ∈ Sk(K (N )), set f |T (q)=
∑

j f |γ j , which is again in Sk(K (N )).
Since T (q) commutes with the Fricke involution µN , T (q) also stabilizes Sk(K (N ))ε . The action of T (q)
on the Fourier expansion of f is given by

a(t; f |T (q))= a(qt; f )+ qk−2a
(
q−1 t

[q
0

0
1

]
; f
)
+ qk−2 ∑

j mod q
a
(
q−1 t

[ 1
j

0
q

]
; f
)
+ q2k−3a(q−1 t; f ). (17)

For k ≥ 2, this equation shows that T (q) stabilizes Sk(K (N ))ε(R) and is R-linear for subrings R of C. On
Sk(K (N ))ε(Fp), the reduction of T (q), T (q)p, is defined by

(
Rp ◦FE( f )

)
|T (q)p = Rp ◦FE ( f |T (q))

and also obeys equation (17).
A possible source of confusion is that equation (17) is valid for the classical normalization of the

slash, setting σ =
[

A B
C D

]
∈ GSp(4,R)+ with similitude µ= µ(σ)= det(σ )1/2,

( f |kσ) (�)= µ2k−3 det(C�+ D)−k f
(
(A�+ B)(C�+ D)−1) .

In contrast, representation theory employs the scalar invariant slash where the power of the similitude is
µk instead of µ2k−3. The tension between these normalizations is real because local Euler factors depend
only upon the local representation for the scalar invariant action of the Hecke algebra, whereas T (q)
is uniformly defined over Z for weights k ≥ 2 only for the classical action. Our concession to this
tension is to write the scalar invariant action of the left and the classical action on the right, so that
f |T (q)= qk−3T (q) f .

3.3. Fourier–Jacobi expansions, Jacobi forms, and Jacobi Hecke operators. The Fourier expansion of
a paramodular cusp form f ∈ Sk(K (N )) may be rearranged to give the Fourier–Jacobi expansion, setting
�=

[
τ z
z ω
]
∈H2, and q = e(τ ), ζ = e(z),

f (�)=
∞∑
j=1
φ j (τ, z)e(N jω), (18)

φ j (τ, z)=
∑

n,r∈Z

4nN j>r2

a
([ n

r/2
r/2
N j

]
; f
)
qnζ r . (19)

When we want to indicate the dependence of the φ j on f we will write φ j (τ, z; f ) instead of φ j (τ, z),
or φ j ( f ) instead of φ j . We recall the definition of a Jacobi form and the following subgroups, for rings
R ⊆ C,

P2,1(R)=

∗ 0 ∗ ∗
∗ ∗ ∗ ∗

∗ 0 ∗ ∗
0 0 0 ∗

∩Sp(4, R); GP2,1(R)=

∗ 0 ∗ ∗
∗ ∗ ∗ ∗

∗ 0 ∗ ∗
0 0 0 ∗

∩GSp(4, R).

A Jacobi form φ ∈ Jk,m of weight k ∈ Z and index m ∈ Z≥0 is a holomorphic function φ :H×C→

C such that the associated function Emφ : H2 → C given by (Emφ)(�) = φ(τ, z)e(mω) is invariant
under P2,1(Z), and is bounded on domains of the type {� ∈H2 : Im�> Yo}. The boundedness condition
is essential and, given the other assumptions, is equivalent to a Fourier expansion for φ of the form
φ(τ, z)=

∑
n,r∈Z: n≥0, 4nm≥r2 c(n, r;φ)qnζ r . For Jacobi cusp forms φ ∈ J cusp

k,m , we require 4mn > r2. For
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a weakly holomorphic ψ ∈ J wh
k,m we drop the boundedness condition and require n�−∞. Indices with

4mn ≤ r2 are called singular. Spaces of Jacobi forms have integral bases by [Eichler and Zagier 1985]
and so we may define J cusp

k,m (R) for R a subring of C or for Fp as in the case of paramodular forms.
The subgroup K∞(N )= P2,1(Q)∩ K (N ) stabilizes the Fourier–Jacobi expansion (18) term by term,

so that each φ j ∈ J cusp
k,N j is a Jacobi form and the Fourier coefficients of the φ j are

c(n, r;φ j )= a
([ n

r/2
r/2
N j

]
; f
)
. (20)

The Fourier–Jacobi expansion defines a map

FJ : Sk(K (N ))→
∞∏
j=1

J cusp
k,N j , f 7→

∞∑
j=1

φ j ξ
N j , (21)

where we have let ξ = e(ω) and identified the sum on the right with the vector (φ j ).
The infinite direct product

∏
∞

j=1 J cusp
k,N j is an inverse limit with respect to the projection maps

projud :
u⊕

j=1

J cusp
k,N j →

d⊕
j=1

J cusp
k,N j , for d ≤ u.

We also define proj∞d :
∞∏
j=1

J cusp
k,N j →

d⊕
j=1

J cusp
k,N j . The projection onto the first u Fourier–Jacobi coefficients

proj∞u ◦FJ : Sk(K (N ))ε→
u⊕

j=1

J cusp
k,N j (22)

injects for sufficiently large u and algorithms to find u0 such that the map (22) injects for u ≥ u0 may be
found in [Breeding et al. 2016]. When N is a prime power for example, u0 is roughly Nk/5 and Table 3
displays u0 for 1≤ k ≤ 14 and N ∈ {4, 8, 16}. We write Sk(K (N ))ε[u] for the projection of Sk(K (N ))ε

onto its first u Fourier–Jacobi coefficients, i.e.,

Sk(K (N ))ε[u] = proj∞u ◦FJ
(
Sk(K (N ))ε

)
.

One cannot take an arbitrary sequence of Jacobi forms φ j and obtain the Fourier–Jacobi expansion∑
∞

j=1 φ jξ
N j of some paramodular form. Indeed, the Fourier–Jacobi coefficients of a paramodular Fricke

eigenform satisfy the following symmetries. Let f ∈ Sk(K (N ))ε have the Fourier–Jacobi expansion∑
∞

j=1 φ jξ
N j . Then

for all t1 =
[ n1

r1/2
r1/2
Nm1

]
, t2 =

[ n2
r2/2

r2/2
Nm2

]
∈ X2(N ), and u ∈ 0̂0(N ),

t1[u] = t2 =⇒ c(n1, r1;φm1)= det(u)kc(n2, r2;φm2), (23)

and
for all t =

[ n
r/2

r/2
Nm

]
∈ X2(N ), c(n, r;φm)= (−1)kε c(m, r;φn). (24)

Equations (23) and (24) are consequences of (14) and (16). We refer to equation (24) as the involution
conditions. Formal series of Jacobi forms that satisfy (23) and (24) and converge in an appropriate sense
are in fact Fourier–Jacobi expansions of paramodular forms; see [Ibukiyama et al. 2013].



306 CRIS POOR, RALF SCHMIDT AND DAVID S. YUEN

u0 u+1 , u−1

k K (4) K (8) K (16)
1 0 0 0
2 0 0 2
3 0 1 4
4 0 2 7
5 1 3 9
6 1 4 11
7 2 5 14
8 3 6 16
9 4 8 18

10 4 9 21
11 5 10 23
12 5 11 25
13 6 12 28
14 6 13 30

k K (4) K (8) K (16)
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 1, 0
5 0 0, 1 0, 1
6 0 1, 0 2, 0
7 0, 1 0, 1 0, 2
8 1, 0 1, 0 2, 0
9 0, 1 0, 2 1, 3

10 1, 0 2, 0 3, 1
11 0, 2 1, 2 2, 4
12 2, 0 3, 1 4, 2
13 0, 2 2, 3 3, 4
14 2, 0 3, 2 5, 3

Table 3. A sufficient number u0 to make projection from Sk(K (N ))ε onto the first u0

Jacobi coefficients injective. An improved number uε1 is given in the second set.

Following [Gritsenko 1995], we present the action of T (q) on the Fourier–Jacobi coefficients of a
paramodular cusp form in terms of the Jacobi raising and lowering operators, Vq and Wq . The raising
operator Vq : Jk,m→ Jk,mq is defined, for primes q , by

(
φ|Vq

)
(τ, z)= qk−1φ(qτ, qz)+

1
q

∑
λ mod q

φ

(
τ + λ

q
, z
)
,

or equivalently by

c(n, r;φ|Vq)= qk−1c(
n
q
,

r
q
;φ)+ c(qn, r;φ), (25)

as in [Eichler and Zagier 1985]. The lowering operators Wq : Jk,m→ Jk,m
q

were introduced in a special
case in [Kohnen and Skoruppa 1989]. Their image is zero when the prime q does not divide m. When
q divides m, we have

(φ|Wq)(τ, z)= qk−2
∑

λ mod q

φ(qτ, z+ λτ)e
(

m
q
(2λz+ λ2τ)

)
+ q−2

∑
λ,µ mod q

φ

(
τ + λ

q
,

z+µ
q

)
,

or equivalently

c(n, r;φ|Wq)= c(qn, qr;φ)+ qk−2
∑

λ mod q

c
(n+ λr + m

q λ
2

q
,

r + 2 m
q λ

q
;φ

)
. (26)
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The invariance properties of the raising and lowering operators, i.e., that they send Jacobi forms to Jacobi
forms, can be obtained by considering them as the Hecke operators Vq = K∞(N ) diag(q, q, 1, 1)K∞(N )
and Wq = K∞(N ) diag(1, 1, q, q)K∞(N ) for the noncommutative Jacobi Hecke algebra for K∞(N )
inside GP2,1(Q), see [Gritsenko 1995]. The action of T (q) on the Fourier–Jacobi expansion of an
f ∈ Sk(K (N )) is given by

FJ( f )=
∞∑
j=1

φ jξ
N j
; FJ( f |T (q))=

∞∑
j=1

(
φq j |Wq + qk−2φ j/q |Vq

)
ξ N j , (27)

as can be directly verified by comparing equations (25) and (26) with (17) using (20).

3.4. Jacobi restriction and upper bounds. In this section we define the Jacobi restriction spaces J ε
u (R)

for R being Fp or a subring of C. Jacobi restriction is described in [Ibukiyama et al. 2013; Breeding et al.
2016] but we cover it here in further detail because the extension of T (q) to J ε

u (Fp) in Section 3.7 is
subtle.

By collectively ordering the index sets of the Fourier expansions of J cusp
k,N j for all j ∈ N in some way,

we view
∏
∞

j=1 J cusp
k,N j (R)⊆ R∞.

Definition 3.4.1. Let N , u, D0 ∈N, k ∈Z, and ε ∈ {−1, 1}. Let R be Fp or a subring of C. The R-module

J ε
u (R)⊆

u⊕
j=1

J cusp
k,N j (R)⊆ R∞

consists of the f=
∑u

j=1 f j ξ
N j
∈
⊕u

j=1 J cusp
k,N j (R) that satisfy the following conditions:

for all t1 =
[ n1

r1/2
r1/2
Nm1

]
, t2 =

[ n2
r2/2

r2/2
Nm2

]
∈ X2(N ) and U ∈ 0̂0(N ),

t1[U ] = t2 and det(2t1), det(2t2)≤ D0 and m1,m2 ≤ u =⇒ c(n1, r1;fm1)= det(U )kc(n2, r2;fm2), (28)

and

for all t =
[ n

r/2
r/2
Nm

]
∈ X2(N ), det(2t) ≤ D0 and n,m ≤ u =⇒ c(n, r;fm)= (−1)kε c(m, r;fn). (29)

This important construction calls for a number of comments. The defining equations in Definition 3.4.1
are truly elementary, one coordinate in R∞ equals ±1 times another, so that J ε

u (R) is defined over the var-
ious commutative rings R. The R-module J ε

u (R) also depends on N , k, and D0 so that J ε
u (R, N , k, D0)

would be more proper, but we supress N , k, and D0 to lighten the notation somewhat. When no ring is
indicated the field of complex numbers is meant, so J ε

u = J ε
u (C). We have written a program, which we

call Jacobi restriction, for the cases R = Z and R = Fp. This program accepts input (N , k, ε, D0, u, R)
and returns initial expansions, out to (n, r) satisfying 4nN j−r2

≤ D0, of an R-basis of J ε
u (R). We always

choose D0 large enough so that elements of J cusp
k,N j (R) for j ≤ u are determined by their initial expansions

out to 4nN j − r2
≤ D0; thus, the output characterizes a basis of J ε

u (R), and J ε
u (R) is an R-module of

finite rank very amenable to computation. In particular, rankR J ε
u (R) is always known. Finally, because

the spaces J cusp
k,m have integral bases, the output for R = Z also works for any subring R ⊆ C.

The next lemma shows that J ε
u is an upper approximation of the space Sk(K (N ))ε[u].
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Lemma 3.4.2. Let N , u ∈ N, k ∈ Z, and ε ∈ {−1, 1}. We have

proj∞u ◦FJ : Sk(K (N ))ε→ Sk(K (N ))ε[u] ⊆ J ε
u .

Proof. By equations (23) and (24), the Fourier–Jacobi expansion of an f ∈ Sk(K (N ))ε satisfies the
conditions in Definition 3.4.1 for all choices of indices. The conditions defining J ε

u are thus a subset of
the conditions satisfied by (proj∞u ◦FJ)( f ). �

Corollary 3.4.3. Let u ∈ N be such that proj∞u ◦FJ : Sk(K (N ))ε → Sk(K (N ))ε[u] injects. Then
dim Sk(K (N ))ε ≤ dimJ ε

u .

3.5. Jacobi restriction modulo p. Jacobi restriction can also be run modulo a prime p. As in the ap-
pendix of [Berger and Klosin 2017], for a subset H ⊆ C∞, let Hp = Rp (H ∩Z∞) ⊆ F∞p denote the
reduction of H ∩Z∞ mod p. If H1, H2 ⊆ C∞ are subspaces with integral bases and L : H1→ H2 is a
linear map whose matrix in these bases is integral, then L also has a reduction, L p : H1p→ H2p, with
the defining property that (L(h))p = L p(h p) for h ∈ H1. To give some examples, for paramodular forms
we have (FE(Sk(K (N ))))p = Sk(K (N ))(Fp) and for Jacobi forms (FE(J cusp

k,m ))p = J cusp
k,m (Fp). The good

Hecke operator T (q) : Sk(K (N ))ε(Z)→ Sk(K (N ))ε(Z) has, for k ≥ 2, an integral matrix by (17), and
so induces a map T (q)p : Sk(K (N ))ε(Fp)→ Sk(K (N ))ε(Fp) given by: f|T (q)p = g means there exists
an f ∈ Sk(K (N ))ε(Z) such that Rp (FE( f ))= f and Rp (FE( f |T (q)))= g.

Because spaces of modular forms have integral bases, important information survives the reduction
mod p. For example, dimC Sk(K (N ))ε[u] = dimFp Sk(K (N ))ε[u]p ≤ dimJ ε

u,p. Hence if u ≥ u0, for
some basic u0 making proj∞u0

◦FJ injective, we have dimC Sk(K (N ))ε ≤ dimJ ε
u,p as well. We easily

have J ε
u,p ⊆ J ε

u (Fp) and examples show that the containment can be proper. Noting Lemma 3.4.2, the
hope when we run Jacobi restriction is that all the following spaces have the same dimension:

Sk(K (N ))ε
proj∞u ◦FJ
−→ Sk(K (N ))ε[u]

mod p
−→ Sk(K (N ))ε[u]p ⊆ J ε

u,p ⊆ J ε
u (Fp). (30)

When these spaces do have the same dimension we can, in retrospect, regard the computations as having
been perfomed in any one of them; however it is the space J ε

u (Fp) that is most amenable to computation,
being a finite-dimensional Fp-vector space with a known basis. Especially, we can row reduce and
compute the smallest uε1 for which the projection

projuuε1 : J
ε
u (Fp)→

uε1⊕
j=1

J cusp
k,N j (Fp)

is injective. For u = u0, Table 3 also gives particular values of uε1 with this property for 1 ≤ k ≤ 14,
N ∈ {4, 8, 16}, p = 12347, and various D0. The choice of D0 was 400 for K (4), 800 for K (8) when
k ≤ 10 and 1000 for larger k, and 1600 for K (16) when k ≤ 10 and 2000 for larger k. The caption of
Table 3, however, instead reports that the projection from Sk(K (N ))ε to Sk(K (N ))ε[uε1] is injective. The
injectivity in these cases follows from the proof in Section 3.10 that dim Sk(K (N ))ε = dimJ ε

uε1
(Fp), and

so p and D0 are not reported in Table 3.
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3.6. Extending T (q) to J ε
u (C). Our goal in this section is to lift the map T (q) : Sk(K (N ))ε→ Sk(K (N ))ε

to another map T̂ (q) : J ε
u → J ε

u such that the following diagram commutes:

J ε
u

T̂ (q)
// J ε

u

Sk(K (N ))ε
T (q)

//

proj∞u ◦FJ

OO

Sk(K (N ))ε

proj∞u ◦FJ

OO
(31)

Admittedly, this diagram will only be useful for u large enough to make the vertical map injective. We
proceed in two steps and need to make certain assumptions about the space J ε

u . Because we can compute
with J ε

u it is reasonable to impose needed conditions on J ε
u as long as they can be checked in practice.

First, define a map

T̃ (q) :
u⊕

j=1

J cusp
k,N j →

bu/qc⊕
j=1

J cusp
k,N j ,

u∑
j=1

φ j ξ
N j
7→

bu/qc∑
j=1

(
qk−2φ j/q |Vq +φq j |Wq

)
ξ N j . (32)

This definition reflects the computational fact that the operator T (q) returns shorter Fourier–Jacobi ex-
pansions than it receives. Since the above action agrees with equation (27) we have

proju
bu/qc proj∞u FJ( f |T (q))=

(
proj∞u FJ( f )

)
|T̃ (q).

We introduce the notion of one map being relatively stable with respect to another. Let π : A→π A and
T : A→π A be maps and B⊆ A. We say T is relatively stable on B with respect to π when T (B)⊆π(B).
This is equivalent to saying that T : A→ π A extends to a relative map T : (A, B)→ π(A, B). We will
require that T̃ (q) be relatively stable on J ε

u with respect to proju
bu/qc. When J ε

u has successfully been

computed, we will need to check whether or not T̃ (q) : J ε
u → proju

bu/qc J ε
u ⊆

⊕bu/qc
j=1 J cusp

k,N j . We will also
require that bu/qc ≥ uε1, so that proju

bu/qc injects on J ε
u .

Proposition 3.6.1. Let N , u ∈ N, k ∈ Z, and ε ∈ {−1, 1}. Let q be a prime with q - N. Assume that:

i) T̃ (q) is relatively stable on J ε
u with respect to proju

bu/qc.

ii) The restriction of proju
bu/qc to J ε

u is injective.

Then T̂ (q) :J ε
u →J ε

u is well-defined by: f|T̂ (q)= g means f|T̃ (q)= proju
bu/qc g. Under these hypotheses,

diagram (31) commutes.

Proof. Assume that f ∈ J ε
u . Because T̃ (q) is relatively stable there exists a g ∈ J ε

u such that f|T̃ (q)=
proju

bu/qc g. Because proju
bu/qc is injective, this g is unique, and thus T̂ (q) is well-defined. The linearity

of T̂ (q) follows from the equation f|T̃ (q)= proju
bu/qc g and the uniqueness of g.

In order to show the commutativity of the diagram we must check(
proj∞u (FJ( f ))

)
|T̂ (q)= (proj∞u ◦FJ)( f |T (q)),

or, by definition of T̂ (q), we must show that(
proj∞u (FJ( f ))

)
|T̃ (q)= proju

bu/qc
(
(proj∞u ◦FJ)( f |T (q))

)
.
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Thus we must check that
(∑u

j=1 φ j ξ
N j
)
|T̃ (q) = proj∞

bu/qc( f |T (q)). By equation (27) the right-hand
side is

∑bu/qc
j=1

(
qk−2φ j/q |Vq +φq j |Wq

)
ξ N j , which is the definition of the left-hand side. �

3.7. Extending T(q) p to J ε
u (F p). Our goal in this section is to lift the map T (q)p : Sk(K (N ))ε(Fp)→

Sk(K (N ))ε(Fp) to a map T (q) : J ε
u (Fp)→ J ε

u (Fp) such that the following diagram commutes:

J ε
u (Fp)

T (q)
// J ε

u (Fp)

Sk(K (N ))ε(Fp)
T (q)p

//

proj∞u,p ◦FJp

OO

Sk(K (N ))ε(Fp) .

proj∞u,p ◦FJp

OO
(33)

Recall the definition (32) of the map T̃ (q). By equations (25) and (26), the action of Vq and Wq is
integral for k ≥ 2; so we may consider the reduction of the map T̃ (q) mod p:

T̃ (q)p :

u⊕
j=1

J cusp
k,N j (Fp)→

bu/qc⊕
j=1

J cusp
k,N j (Fp),

and restrict T̃ (q)p to J ε
u (Fp) ⊆

⊕u
j=1 J cusp

k,N j (Fp) to obtain T̃ (q)p : J ε
u (Fp)→

⊕bu/qc
j=1 J cusp

k,N j (Fp). As
in the previous section, it is reasonable to impose needed conditions on J ε

u (Fp) that are easy to check.
We will require that T̃ (q)p be relatively stable on J ε

u (Fp) with respect to proju
bu/qc,p. This condition

is achieved whenever Sk(K (N ))ε[u]p actually equals J ε
u (Fp), which is what the whole set-up aims to

prove, so there is no harm in requiring relative stability. If relative stability fails, we should increase u
and try again. We will also require that proju

bu/qc,p be injective on J ε
u (Fp). This second condition is

achieved when bu/qc ≥ uε1, which may be costly.

Proposition 3.7.1. Let N , u, k ∈ N with k ≥ 2, and ε ∈ {−1, 1}. Let p and q be primes with q - N.
Assume that:

i) T̃ (q)p is relatively stable on J ε
u (Fp) with respect to proju

bu/qc,p.

ii) The restriction of proju
bu/qc,p to J ε

u (Fp) is injective.

Then T (q) : J ε
u (Fp)→ J ε

u (Fp) is well-defined by: f|T (q) = g means f|T̃ (q)p = proju
bu/qc,p g. Under

these hypotheses, diagram (33) commutes.

Proof. We show that T (q) is well-defined and Fp-linear. Take f ∈ J ε
u (Fp). Since T̃ (q)p is relatively

stable on J ε
u (Fp) with respect to proju

bu/qc,p, there exists a g ∈ J ε
u (Fp) such that f|T̃ (q)p = proju

bu/qc,p g.
If there were another such g′, then g′= g because proju

bu/qc,p is injective on J ε
u (Fp). This shows that T (q)

is well-defined. Linearity follows from f|T̃ (q)p = proju
bu/qc,p g and the uniqueness of g.

In order to show the commutativity of the diagram, take f ∈ Sk(K (N ))ε(Fp). We must show(
proj∞u,p(FJp(f))

)
|T (q)= (proj∞u,p ◦FJp)(f|T (q)p),

which, by definition of T (q), means(
proj∞u,p(FJp(f))

)
|T̃ (q)p = proju

bu/qc,p
(
(proj∞u,p ◦FJp)(f|T (q)p)

)
,
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or equivalently, (
proj∞u,p(FJp(f))

)
|T̃ (q)p = proju

bu/qc,p FJp(f|T (q)p). (34)

There is an f ∈ Sk(K (N ))ε(Z) such that f= FJ( f )p, so that (34) would follow by reduction from(
proj∞u (FJ( f ))

)
|T̃ (q)= proju

bu/qc FJ( f |T (q)). (35)

Writing FJ( f )=
∑
∞

j=1 φ j ξ
N j , we verify (35) from the definition of T̃ (q) and equation (27),( u∑

j=1

φ j ξ
N j
)
|T̃ (q)=

bu/qc∑
j=1

(
qk−2φ j/q |Vq +φq j |Wq

)
ξ N j
=

bu/qc∑
j=1

φ j ( f |T (q)) ξ N j . �

3.8. Bootstrapping and lower bounds. We now explain the technique of bootstrapping, a combina-
tion of Jacobi restriction and Hecke spreading, which computes lower bounds for dim Sk(K (N ))ε =
dim Sk(K (N ))ε(Fp). As motivation, we first discuss Borcherds products. The theory of Borcherds
products and the theory of Hecke operators bear little relation. A Borcherds product, for example, seems
to only be a Hecke eigenform when forced to be by dimensional reasons. In general, if a Borcherds
product is written as a linear combination of Hecke eigenforms it seems that the Borcherds product is
often supported on every eigenspace with the same Atkin–Lehner signs as the Borcherds product. Thus
repeated applications of T (q) on a Borcherds product are likely to span the entire Atkin–Lehner space
of paramodular forms that the Borcherds product belongs to. Over Q, many iterations of T (q) on a
Borcherds product are much too expensive, but over Fp many iterations of T (q) on J ε

u (Fp) are feasible.
Let S ⊆ Sk(K (N ))ε(Fp). Define

Bp(S; T (q))= SpanFp

{
(proj∞u,p ◦FJp(f))|T (q)i ∈ J ε

u (Fp) : i ∈ Z≥0, f ∈ S
}
.

Lemma 3.8.1. Let u be large enough so that proj∞u,p ◦FJp injects on Sk(K (N ))ε(Fp). Assume the
hypotheses of Proposition 3.7.1. Then

dim Bp(S; T (q))≤ dim Sk(K (N ))ε(Fp).

Proof. By the commutative diagram (33), the subspace Bp(S; T (q)) ⊆ J ε
u (Fp) is the injective image

under proj∞u,p ◦FJp of the span of f|T (q)ip ∈ Sk(K (N ))ε(Fp) for i ∈ Z≥0, and f ∈ S. �

3.9. Specific upper bounds: Jacobi restriction. We use the technique of Jacobi restriction to compute
upper bounds for dim Sk(K (N ))ε . Jacobi restriction over Q requires a lot of memory. It is better, when
sufficient, to run Jacobi restriction modulo p. Table 3 gives u0 large enough to make projection onto the
first u0 Jacobi coefficients injective. Using the containments in (30), Table 4 reports the resulting upper
bound dim Sk(K (N ))ε = dim Sk(K (N ))ε[u0] ≤ dimJ ε

u0
(Fp) given as output by the Jacobi restriction

program, using the same determinant bounds D0 and prime p as in Section 3.5. In Table 4 we have further
refined these upper bounds to apply to the spaces of nonlifts, which is a direct adjustment because the
dimensions of the lift spaces are known by [Eichler and Zagier 1985]. Because dim Sk(K (4)) is known
and the upper bounds for the three subspaces of Sk(K (4)) add up to the known total dimension, the
dimensions of the subspaces of Sk(K (4)) listed in Table 4 are the actual dimensions without further
argument. We will prove that the upper bounds of the dimensions of the nonlift subspaces of Sk(K (8))
and Sk(K (16)) as listed in Table 4 are in fact the true dimensions in all cases. This illustrates the power
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K (1) K (2) K (4) K (8) K (16)
k lifts nonlifts lifts nonlifts lifts nonlifts lifts nonlifts lifts nonlifts

+ − + − + − + − + −

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0
6 0 0 0 0 0 0 0 0 0 1 0 0 3 1 0
7 0 0 0 0 0 0 1 0 0 2 0 0 5 0 2
8 0 0 0 1 0 0 1 0 0 3 0 0 6 5 0
9 0 0 0 0 0 0 1 0 0 3 0 1 7 1 8

10 1 0 0 1 0 0 2 0 0 4 2 0 9 13 2
11 0 0 0 1 0 0 2 0 1 5 1 3 10 4 19
12 1 0 0 2 0 0 3 1 0 6 5 1 12 27 6
13 0 0 0 0 0 0 2 0 1 5 2 6 12 10 34
14 1 0 0 2 0 0 3 2 0 7 9 3 14 46 14

Table 4. Dimensions of cusp forms of weight k. The signs+ and− refer to the paramod-
ular Atkin–Lehner sign, which is the same as the Fricke sign in these cases.

of Jacobi restriction. The proof involves constructing enough paramodular forms to show these numbers
are also lower bounds.

3.10. Specific lower bounds: Borcherds products and bootstrapping. In the previous section we com-
puted the upper bounds for dim Sk(K (N )) given in Table 4. This section will compute matching lower
bounds, mainly by constructing Gritsenko lifts and Borcherds products, but also via Hecke operators,
and oldform theory. The theory of Borcherds products [Borcherds 1998; Gritsenko and Nikulin 1998]
creates meromorphic paramodular forms, transforming by a character χ of K (N ), in Mmero

k (K (N ))ε (χ)
from weakly holomorphic Jacobi forms ψ ∈ J wh

0,N of weight zero and index N whose Fourier coefficients
are integral on singular indices. We will only use Borcherds products that turn out to be holomorphic and
cuspidal with trivial character. There is an algorithm [Poor et al. 2018] to find all Borcherds products in a
given space Sk(K (N )), so we simply post the constructions of the Borcherds products that we use here on
the website [Yuen 2018]. Given an appropriate ψ ∈ J wh

0,N , we write Borch(ψ)∈Mmero
k (K (N ))ε (χ) for the

associated Borcherds product. If we write the Fourier expansion of ψ as ψ(τ, z)=
∑

n,r∈Z c(n, r)qnζ r ,
then Borch(ψ) is defined by analytic continuation of the following infinite product for �=

[
τ
z

z
ω

]
∈H2:

Borch(ψ)(�)= q Aζ BξC
∏

(m,n,r)≥0

(1− qnζ rξm N )c(nm,r).

The product is taken over m, n, r ∈Z such that m≥ 0, and if m= 0 then n≥ 0, and if m= n= 0 then r < 0.
Set N = {1, 2, 3, . . .}. The exponents A, B, C are given by 24A =

∑
r∈Z c(0, r), 2B =

∑
r∈N rc(0, r),
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and 2C =
∑

r∈N r2c(0, r). Borcherds products always come with a Fricke sign. The sign ε is given by
ε = (−1)do where do =

∑
n∈N σ0(n)c(−n, 0), and σ0(n) is the number of positive divisors of n.

Here are our methods for obtaining lower bounds on dim Sk(K (N ))ε . Fix k, N , and ε=±1. We search
for Borcherds products in Sk(K (N ))ε . If we find enough to span a space whose dimension equals that
of the upper bound, then we are done. If not, we employ the method of bootstrapping from Section 3.8.
We check the hypotheses of Proposition 3.7.1: that T̃ (3)p is relatively stable on J ε

u0
(Fp) with respect

to proju0
bu0/3c, and that u0 ≥ 3uε1 so that proju0

bu0/3c is injective on J ε
u0
(Fp). There are three places in

Table 3 where u0 < 3uε1, but these occur for K (4) and weight k ∈ {7, 11, 12} where the dimension
is already known. Still using the u0 from Table 3, we compute a matrix representation for T (3) on
a fixed basis for J ε

u0
(Fp). We find a set S̃ ⊆ Sk(K (N ))ε of Borcherds products and take f ∈ S̃; see

[Yuen 2018] for the Borcherds products found. It is feasible to expand a Borcherds product f out far
enough to determine (proj∞u0

FJ( f ))p in this basis. Define S = (FJ(S̃))p ⊆ Sk(K (N ))ε(Fp). Once we
get the coordinates of (proj∞u0

FJ( f ))p in this basis, it is linear algebra to compute the bootstrapped
subspace on S. Then u0 ≥ 3uε1 and Lemma 3.8.1 imply that dim Bp(S; T (3))≤ dim Sk(K (N ))ε(Fp). It
turns out that the dimension of each bootstrapped subspace Bp(S; T (3)) gives the same lower bound as
the upper bound dimJ ε

u0
(Fp) in every case in Table 4 except in the single case S14(K (8))−. Thus we

know dimC Sk(K (N ))ε = dimC Sk(K (N ))ε[u0] = dimFp Sk(K (N ))ε[u0]p = dimFp J ε
u0
(Fp) in all cases

in Table 4 except S14(K (8))−. There are no Borcherds products in S14(K (8))−. We now explain the
additional argument needed for this exceptional case.

We know that dim S14(K (8))− ≤ 3. We found all the eigenforms in each of S14(K (N ))± for N ∈
{1, 2, 4, 8, 16} except S14(K (8))−. We show there is an eigenform in S14(K (16))− of T (3)-eigenvalue
311λ3 = −1580472 which is not a T1,0-eigenform. The eigenspace of S14(K (16))− with this T (3)-
eigenvalue is one-dimensional. Lemma 3.10.1 implies that there exists a newform fnew ∈ S14(K (2 j )) for
some j ∈ {0, 1, 2, 3} with the same T (3)-eigenvalue. Looking at T (3)-eigenvalues for the lifts, we see that
fnew must be a nonlift. There are no nonlifts in S14(K (N )) for N ∈ {1, 2} and there are two nonlift eigen-
forms in S14(K (4)). But the T (3)-eigenvalue −1580472 does not show as an eigenvalue in S14(K (8))+

or in S14(K (4)). We conclude that fnew must be in S14(K (8))−. Together with the two oldforms in
S14(K (8))− coming from the two newforms in S14(K (4)), we conclude that dim S14(K (8))− ≥ 2+1= 3.

Lemma 3.10.1. Let N be a positive integer and p be a prime dividing N. Let W ⊂ Sk(K (N )) be a non-
zero eigenspace for a Hecke operator T at some good place q - N. Assume that the operators T0,1(p),
T1,0(p) and the Atkin–Lehner αp are not simultaneously diagonalizable on W . Then there exists a new-
eigenform fnew ∈ Sk(K (M)) for some M |N with vp(M) < vp(N ) and with the same T -eigenvalue as the
elements of W .

Proof. Since Hecke operators at good places commute, we can find a basis f1, . . . , fn of W consisting of
eigenforms for almost all good Hecke operators, including the place q. By Theorem 2.6 i) of [Schmidt
2018], the adelization 8i of fi generates an irreducible, cuspidal, automorphic representation πi ∼=⊗

s πi,s of PGSp(4,AQ), for each i . The automorphic form 8i corresponds to a sum of pure tensors∑
j

(⊗
swi,s, j

)
, where wi,s, j is in the space of πi,s . After averaging, we may assume that wi,s, j is a

paramodular vector of level vs(N ), for each prime number s. In particular, each wi,q, j is a spherical
vector in πi,q , and hence an eigenvector for the local operator Tq corresponding to T , with the same
eigenvalue as T on W .
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We claim that there exists an i ∈ {1, . . . , n} such that the conductor exponent a(πi,p) is less than
vp(N ). Clearly, we must have a(πi,p) ≤ vp(N ) for each i , since a(πi,p) is the smallest possible level
of any paramodular vector in πi,p by Corollary 7.5.5 of [Roberts and Schmidt 2007]. Assume that we
would have a(πi,p) = vp(N ) for all i . Then each wi,p, j would be a local newform in πi,p, which is
unique up to scalars by Theorem 7.5.4 of the same reference. In particular, T0,1(p), T1,0(p) and αp

would be simultaneously diagonalizable on W , contradicting our hypothesis. This proves our claim that
there exists an i0 ∈ {1, . . . , n} such that a(πi0,p) < vp(N ).

Let 8new be the automorphic form corresponding to the global holomorphic, paramodular newform
in πi0 . De-adelizing 8new, we obtain a Siegel modular form fnew with the desired properties. �

We have now proven that Table 4 gives true dimensions and not just upper bounds. Once we know that
the dimension of Sk(K (N ))ε agrees with our upper bound, we have J ε

u0
(Fp)= Sk(K (N ))ε[u0]p and can

use the improved uε1 in Table 3 for which the projection proju0
uε1
: J ε

u0
(Fp)→ J ε

uε1
(Fp) injects. It follows

that proj∞uε1 : Sk(K (N ))ε → Sk(K (N ))ε[uε1] injects. With these improved uε1, we run Jacobi restriction
over Q to u = 3uε1 Jacobi coefficients and break Sk(K (N ))ε into T (3)-eigenspaces by verifying the
hypotheses of Proposition 3.6.1 and using T̂ (3). We stress that we postpone running Jacobi restriction
over Q until we have the improved uε1 from Table 3 available for Sk(K (N ))ε . We are eventually forced to
run Jacobi restriction over Q however, in order to compute Hecke eigenspaces. Once we have Sk(K (N ))ε

broken into one-dimensional eigenspaces, we can revert, if we wish, to using T (q) to compute further
good rational eigenvalues inside J ε

quε1
(Fp). The point here is that, for T (q) f = λq f , good eigenvalues

have simple archimedean bounds |λq | ≤ (1+ q)(1+ q2) (see [Freitag 1983], page 269, Hilfsatz 4.8),
and qk−3λq is integral for k ≥ 2. In the next section, however, we are more interested in computing
eigenvalues at the bad primes, as a step toward identifying the local representations.

3.11. Nonlift newforms. From Table 4, we can count how many of each dimension of nonlifts are old-
forms from lower levels using the global theory of newforms in [Roberts and Schmidt 2006]. Table 5
breaks Sk(K (16))± into the dimension of newforms and oldforms.

By computing the eigenvalue λ3 for all the nonlift eigenforms, we are able to distinguish the newforms

K (16)+ K (16)−
k new old new old
6 1 0 0 0
7 0 0 2 0
8 5 0 0 0
9 0 1 7 1

10 11 2 0 2
11 1 3 14 5
12 20 7 1 5
13 3 7 25 9
14 32 14 4 10

Table 5. Breakdown into new and old nonlift eigenforms for Sk(K (16))±.



PARAMODULAR FORMS OF LEVEL 16 AND SUPERCUSPIDAL REPRESENTATIONS 315

K (4) K (8)
k + − + −

9 −2760

10
−18360
−3672

11 −13464 −24(781± 128
√

55)

−88488 −14760
12 −229032

−504(−65± 64
√

6)

13
−154440 −685224 −271944

α13,8 (degree 4)

−1422360 −1176984 −1580472

14
−319896 199368

216(1231± 8
√

1129)
α14,8 (degree 3)

Table 6. Eigenvalues 3k−3λ3 of nonlift newforms. Here α13,8 represents the four roots of
1510593265442253312000− 28599118413428736x − 271045699200x2

+ 463392x3
+

x4 and α14,8 represents the three roots of 70155550286581248− 1194997748544x +
186408x2

+ x3.

from the oldforms. See Table 6 for the eigenvalues of nonlift newforms for Sk(K (4)) and Sk(K (8)) for
k ≤ 14. Note that there are no nonlifts for Sk(K (N )) for N ∈ {1, 2} and k ≤ 14. The eigenvalues of the
nonlift newforms for Sk(K (16)) with k ≤ 14 are in Table 7 along with other eigenvalues. We were able
to easily distinguish the newforms because it turns out that these newforms have different λ3 eigenvalues
than the oldforms of the same level.

3.12. Computing T0,1 and T1,0. The global Hecke operators at the bad primes have their origin in the
local theory [Roberts and Schmidt 2006]. The global operators T0,1(p) and T1,0(p) at a bad prime p
were defined and studied in [PSY 2018], where eigenvalues were computed that required information
from Fourier expansions at multiple zero-dimensional cusps. From Proposition 5.2 of [PSY 2018], the
two bad Hecke operators T0,1(2) and T1,0(2) may be written on Sk(K (16)) as

T0,1 F =
∑

x,y,z∈{0,1}

F |

[
1 0 x y
0 1 y z/16
0 0 2 0
0 0 0 2

]
+

∑
x,z∈{0,1}

F |

[
2 0 0 0
x 1 0 z/16
0 0 1 –x
0 0 0 2

]
+

∑
x,y∈{0,1}

F |

[ 1 –16y x 0
0 2 0 0
0 0 2 0
0 0 16y 1

]

+ F |

[
2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

]
+ F |

[
1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

][
8 16 7 –3

–3 –8 1 –5/16
0 0 1 –3/8
0 0 2 –1

]
,
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T1,0 F =
∑

x,y∈{0,1}
z∈{0,1,2,3}

F |

[
2 0 0 2y
x 1 y –xy+z/16
0 0 2 –2x
0 0 0 4

]
+

∑
x,y∈{0,1}

F |

[ 1 –16y 0 0
–x/2 1+8xy y/2 1/32

0 0 1+8xy x/2
0 0 16y 1

]

+

∑
y∈{0,1}

F |

[ 2 –32y 0 0
0 4 0 0
0 0 2 0
0 0 16y 1

]
+ F |

[
1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

][
8 32 14 –3

–3 –16 2 –5/16
0 0 2 –3/8
0 0 4 –1

]
+ F |

[
1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

][
8 32 22 –3

–3 –16 –1 –5/16
0 0 2 –3/8
0 0 4 –1

]
.

The zero-dimensional cusps of K (16) are given by the disjoint union

GSp(4,Q)+ = K (16)GP2,0(Q) ∪ K (16)C0(2)GP2,0(Q) ∪ K (16)C0(4)GP2,0(Q)

(see [Poor and Yuen 2013], Theorem 1.3), where

C0(m)=

[
1 0 0 0
0 1 0 0
0 m 1 0
m 0 0 1

]
; GP2,0(R)=

[
∗ 0 ∗ ∗
∗ ∗ ∗ ∗

∗ 0 ∗ ∗
0 0 0 ∗

]
∩GSp(4, R).

The difficulty in computing T0,1 F and T1,0 F is that although most of the coset representatives defining
T0,1 and T1,0 lie in the first cusp, a few lie in the second. As in [PSY 2018], we overcome this difficulty
by using the technique of restriction to a modular curve to compute the restrictions F(sτ + s ′) and
(T0,1 F)(sτ + s ′) for some serviceable choice of s, s ′. The point is that it is straightforward to com-
pute (F |u)(sτ + s ′) when u ∈ GP2,0(Q), but a trick is required to compute (F |C0(2)u)(sτ + s ′) for
the last coset representative in T0,1. The strategy of Section 4.2 in [PSY 2018] is to access the cusp
K (N )C0(m)GP2,0(Q) by finding σ =

[
α
γ
β
δ

]
∈ SL(2,Z) and a positive definite s0 ∈

[
Z

Z

Z
1
N Z

]
such that[

α I
γ s−1

0

βs0
δ I

]
∈ K (N )C0(m)W0 for some W0 ∈ GP2,0(Q). Setting

W1 =
[ A1

0
B1
D1

]
= u−1W0 and sτ + s ′ =W1〈s0τ 〉 = (A1s0τ + B1)D−1

1 ,

it formally follows that

(F |kC0(m)u) (sτ + s ′)= det(A1 D1)
−k/2 det(D1)

k (g|2kσ)(τ ),

for g(τ ) = F(s0τ). For ` with `s−1
0 ∈

[
Z NZ

NZ NZ

]
, we have g ∈ S2k (00(`)), and we have reduced the

problem of specializing F at the C0(m)-cusp to transforming an elliptic modular form.
By choosing `= 16 and σ, s0, W0, s, s ′ as

σ =
[ 3

8
1
3

]
, s0 =

[ 4
1

1
1/2

]
, W0 =

[ –8 8 –1 6
1/2 0 –2 –33/16
0 0 0 1/8
0 0 2 2

]
, s =

[
58 –41/2

–41/2 29/4

]
, s ′ =

[
41/2 –29/4

–29/4 81/32

]
,

we get that (
F |k

[
1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

][
8 16 7 –3

–3 –8 1 –5/16
0 0 1 –3/8
0 0 2 –1

])
(sτ + s ′)=

( 1
4

)−k/2
(1)k(g|2kσ)(τ ),

where g(τ )= F(s0τ)∈ S2k(00(16)). We therefore need to be able to work with cusp forms in S2k(00(16)),
namely we need to compute a basis of S2k(00(16)) and the action of σ on this basis. We show how to
do this in Lemma 3.12.1.
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To be able to compute the restrictions F(sτ + s ′) and (T1,0 F)(sτ + s ′), for F ∈ Sk(K (16)) and some
choice of s, s ′, we follow the instructions of Section 4.4 in [PSY 2018]. For T1,0, the delicate issue is
simultaneously computing (F |C0(2)u)(sτ+s ′) for the last two coset representatives in T1,0. By choosing
`= 16 and σ, s0, s, s ′, τ0, W0 as

σ =
[ 3

8
1
3

]
, s0 =

[ 10
3

3
1

]
, τ0 = 1/2,

s =
[

9441370 –2347216
–2347216 4668325/8

]
, s ′ =

[
3152523 –3134991/4

–3134991/4 12470225/64

]
, W0 =

[ –24 8 –65 0
–1055/2 176 –1739 –14897/16

0 0 –44 –1055/8
0 0 2 6

]
,

we get the following, for g(τ )= F(s0τ) ∈ S2k (00(16)),(
F |k

[
1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

][
8 32 14 –3

–3 –16 2 –5/16
0 0 2 –3/8
0 0 4 –1

])
(sτ + s ′)=

( 1
4

)−k/2
(1)k(g|2kσ)(τ ),(

F |k

[
1 0 0 0
0 1 0 0
0 2 1 0
2 0 0 1

][
8 32 22 –3

–3 –16 –1 –5/16
0 0 2 –3/8
0 0 4 –1

])
(sτ + s ′)=

( 1
4

)−k/2
(1)k(g|2kσ)(τ + τ0).

The last thing we need before using this choice to compute T0,1 F is a knowledge of how forms in
Mk(00(16)) transform by σ =

[
3 1
8 3

]
. We discuss the ring generators of M(00(16))=

⊕
∞

k=0 Mk(00(16)).
Let

E2(τ )= 1− 24
∞∑

n=1

σ(n)qn
= 1− 24q − 72q2

− 96q3
− 168q4

− 144q5
− · · ·

be the nearly modular weight two Eisenstein series transforming, for all
[

a b
c d

]
∈ SL(2,Z), by(

E2|2
[

a b
c d

])
(τ )= E2(τ )−

3
π2

(
2π ic

cτ + d

)
. (36)

For d > 1, we define E−2,d ∈ M2(00(d)) by E−2,d(τ )=
1

1−d (E2(τ )− d E2(dτ)). We define five elements
in M2(00(16)) by

a(τ )= 1
2 E−2,2(τ )− 3E−2,4(τ )+

7
2 E−2,8(τ )= 1− 24q2

+ 24q4
− 96q6

+ 24q8
− 144q10

+ · · ·

b(τ )=− 1
48 E−2,2(τ )+

7
48 E−2,8(τ )−

5
8 E−2,16(τ )+

1
2ϑ

[ 2 0 0 0
0 2 0 0
0 0 8 0
0 0 0 8

]
(τ )= q − 4q3

+ 6q5
− 8q7

+ 13q9
· · ·

c(τ )=− 1
6 E−2,2(τ )+

7
6 E−2,8(τ )= 1+ 8q2

+ 24q4
+ 32q6

+ 24q8
+ 48q10

+ · · ·

d(τ )= 1
16 E−2,2(τ )−

1
16 E−2,4(τ )= q + 4q3

+ 6q5
+ 8q7

+ 13q9
+ · · ·

e(τ )= 1
4 E−2,4(τ )−

7
4 E−2,8(τ )+

5
2 E−2,16(τ )= 1− 8q4

+ 24q8
− 328q12

+ · · · .

The theta series ϑ[Q] of an even m-by-m quadratic form, used above to define basis element b, is
defined by ϑ[Q](τ )=

∑
n∈Zm e

( 1
2 Q[n]τ

)
. If `Q−1 is also even then ϑ[Q] ∈ Mm/2(00(`), χ) for some

character χ . The character is trivial when det(Q) is a square and 4 | m, see [Freitag 1983], page 203.
Using Satz 0.3 of [Freitag 1983], we also have, for even m,

ϑ[Q]|F` = `m/4 det(Q)−1/2(−i)m/2ϑ[`Q−1
], for F` = 1

√
`

[
0 −1
` 0

]
. (37)
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A D4-subgroup of the normalizer of 00(16) in SL(2,Q), modulo 〈±I, 00(16)〉, acts on Mk(00(16)). This
representation of D4 on M2(00(16)) is 5-dimensional and decomposes into a 2-dimensional irreducible
representation and three 1-dimensional representations. The basis of M2(00(16)) defined above was
selected to decompose this representation into its irreducible components.

Lemma 3.12.1. The graded ring M(00(16)) consists of homogeneous polynomials in the five elements
a, b, c, d , e ∈ M2(00(16)), subject to the six relations

2e2
= c2
+ ac, 32d2

= c2
− ac, c2

= a2
+ 64b2, cd = 2be− ad, ce = ae+ 32bd, de = bc.

Every element in Mk(00(16)) can be uniquely written as

Pk(a, b)+Ck−2(a, b)c+ Dk−2(a, b)d + Ek−2(a, b)e,

where Pk is a homogeneous polynomial of degree k/2 and the Ck−2, Dk−2, Ek−2 are homogeneous of
degree (k− 2)/2. The Fricke involution F =

[
0 −1/4
4 0

]
and the translation A =

[
1 1/2
0 1

]
normalize 00(16)

and generate a subgroup isomorphic to the dihedral group D4, with T = AF =
[

2 −1/4
4 0

]
of order four, and

σ = T 3 F =
[

3 1
8 3

]
of order two. For the representation ρ : D4→ GL(5,C) defined by (a, b, c, d, e)|2g =

(a, b, c, d, e)ρ(g), we have

ρ(A)=

 1 0 0 0 0
0 –1 0 0 0
0 0 1 0 0
0 0 0 –1 0
0 0 0 0 1

, ρ(F)=
 1 0 0 0 0

0 –1 0 0 0
0 0 –1 0 0
0 0 0 0 –4
0 0 0 –1/4 0

, ρ(T )=
 1 0 0 0 0

0 1 0 0 0
0 0 –1 0 0
0 0 0 0 4
0 0 0 –1/4 0

, ρ(σ )=
 1 0 0 0 0

0 –1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 –1

.
Proof. The transformation under A is obvious and the transformation under F may be worked out
using (36) and (37). A helpful intermediate step is (E−2,d |F)(τ ) = −

16
d E−2,d

( 16
d τ
)
. The normalizer in

SL(2,Q) of 00(16), modulo 〈±I, 00(16)〉, contains a dihedral group of order 8: 〈A, F〉 = 〈T, σ 〉. The
index of 00(16) in SL(2,Z) is 24, so, by the Valence Inequality, to prove equality in Mk(00(16)) it
suffices to check the equality of the first 2k+ 1 Fourier coefficients. In this way we verify the six given
relations and the images of ρ.

Every modular form in Mk(00(16)) that can be written as a polynomial in a, b, c, d, e, may be written
in the form Pk(a, b)+Ck−2(a, b)c+ Dk−2(a, b)d + Ek−2(a, b)e, by appying the given relations in the
order given. We will show that no nontrivial relation of the given form can be zero. First, by applying T 2,
we would have both Pk(a, b)+Ck−2(a, b)c= 0 and Dk−2(a, b)d+Ek−2(a, b)e= 0. Second, applying T
to the first we obtain Pk(a, b)−Ck−2(a, b)c= 0 and hence Pk(a, b)=Ck−2(a, b)= 0. The modular forms
a and b have the same weight, and so are algebraically independent because b/a is nonconstant. Hence
the polynomials Pk and Ck−2 are also trivial. Third, applying T to the second we obtain Dk−2(a, b)(4e)−
Ek−2(a, b)(d/4) = 0 as well. Over the field of meromorphic functions, we thus have Ek−2(a, b) =
±4Dk−2(a, b) and this is also an equality among holomorphic functions. From 0 = Dk−2(a, b)d +
Ek−2(a, b)e= Dk−2(a, b)(d±4e), we conclude that Dk−2 and Ek−2 are zero as polynomials. The dimen-
sion of C[a, b, c, d, e]∩Mk(00(16)) is then

( k
2+1

)
+3
( k−2

2 +1
)
=2k+1. By the Riemann–Roch theorem,

dim Mk(00(16))= 2k+ 1 for even k ≥ 0, and thus M(00(16))= C[a, b, c, d, e] as graded rings. �

We have all the ingredients to apply the techniques of Section 4.2 and 4.4 of [PSY 2018] to compute
the eigenvalues λ0,1 and λ1,0. We successfully computed the eigenvalues λ0,1 and λ1,0 of the nonlift
newforms in Sk(K (16))± for k ≤ 14. The results are in Table 7. By applying the knowledge of these
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k AL 3k−3 λ3 λ0,1 λ1,0 type

6 + −96 −5 0 X

7 − −600 −2 −4 XIa
− −144 −3 0 I, IIa, or X

8 + −1992 0 −4 VII, VIIIa or IXa
+ 912 −3 0 X
+ −168 −2 −4 XIa
+ −864± 112

√
33 1/8(−7∓

√
33) 0 X

9 − −8136 2 −4 XIa
− 5856 −5 0 I, IIa, or X
− −2280 0 −4 sc(16)
− −1920 1/4 0 I, IIa, or X
− 1464 −2 −4 XIa
− ±480

√
33 1/4(−3∓

√
33) 0 I, IIa, or X

10 + −12888 2 −4 XIa
+ 5928 −2 −4 XIa
+ −3768 0 −4 VII, VIIIa or IXa
+ −1080 0 −4 VII, VIIIa or IXa
+ 7248± 240

√
505 1/8(−19±

√
505) 0 X

+ α10,16 (degree 5) t10 0 X

11 + −66096 −29/8 0 X
− 8040 0 −4 sc(16)
− 24(−1245± 32

√
21) 2 −4 XIa

− 120(111± 8
√

69) −2 −4 XIa
− −73584 9/2 0 I, IIa, or X
− 18768 1 0 I, IIa, or X
− 35568 −3/4 0 I, IIa, or X
− 48(425± 2

√
3961) 1/32(−107±

√
3961) 0 I, IIa, or X

− α11,16 (degree 4) t11 0 I, IIa, or X

Table 7. Eigenvalues λ3, λ0,1 and λ1,0 of nonlift newforms in Sk(K (16))±. The alge-
braic numbers α10,16, α11,16 and the corresponding eigenvalues t10, t11 are given below.
(Table continues on the next page.)

Symbolic constants in Table 7, for k = 10, 11: minimal polynomial of α∗ and eigenvalues

α10,16 : −392100597530099712+ 36717761396736000x − 1936322592768x2
− 384208896x3

+ 12000x4
+ x5

t10 = (200684470423235227287552+ 94255611784369274880α+ 2115778851231744α2
− 1410266234784α3

− 54792385α4)/410907531887271468859392

α11,16 : 332724999250575360− 1154234880x2
+ x4

t11 = (858199620022272+ 28477875456α− 1490544α2
− 53α3)/21539386294272
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k AL 3k−3 λ3 λ0,1 λ1,0 type
12 + −12456 0 −4 VII, VIIIa or IXa
+ 72(819± 64

√
85) 0 −4 VII, VIIIa or IXa

+ 72(−521± 128
√

5) 2 −4 XIa
+ 72(831± 8

√
85) −2 −4 XIa

+ α12,16,a (degree 5) t12,a 0 X
+ α12,16,b (degree 8) t12,b 0 X
− −185616 −21/8 0 I, IIa, or X

13 + −183168 −33/8 0 X
+ −144(3879± 41

√
609) (−53±

√
609)/32 0 X

− −220968 2 −4 XIa
− 72(−333± 80

√
609) 2 −4 XIa

− α13,16,a (degree 3) −2 −4 XIa
− α13,16,b (degree 3) 0 −4 sc(16)
− 0 3/2 0 I, IIa, or X
− 725184 −1 0 I, IIa, or X
− α13,16,c (degree 6) t13,c 0 I, IIa, or X
− α13,16,d (degree 4) t13,d 0 I, IIa, or X
− α13,16,e (degree 4) t13,e 0 I, IIa, or X

14 + 517320 2 −4 XIa
+ 527688 −2 −4 XIa
+ 216(−597± 16

√
51) 2 −4 XIa

+ 24(40387± 320
√

25561) −2 −4 XIa
+ −499608 0 −4 VII, VIIIa or IXa
+ 216(2927± 56

√
3889) 0 −4 VII, VIIIa or IXa

+ 24(20759± 88
√

8689) 0 −4 VII, VIIIa or IXa
+ α14,16,a (degree 8) t14,a 0 X
+ α14,16,b (degree 13) t14,b 0 X
− −2434968 0 −4 sc(16)
− −927072 −17/8 0 I, IIa, or X
− −432(1935± 23

√
2377) (−97±

√
2377)/32 0 I, IIa, or X

(For the minimal polynomials of the algebraic numbers α∗ and the corresponding eigenvalues see [Yuen 2018].)

Table 7, continued.

eigenvalues to Table A.14 of [Roberts and Schmidt 2007], we also identify the possibilities for the
corresponding local representations at p = 2 of the underlying automorphic representations. Further
information on the entries of these tables may be found at [Yuen 2018].

3.13. Supercuspidal forms found. From Table 7, we see that we found supercuspidal forms in weights
9, 11, 13, 14. The website [Yuen 2018] gives formulas for these supercuspidal forms. For the odd weights
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k = 9, 11, 13, the supercuspidal form is given as a linear combination of Gritsenko lifts and repeated
T (3) images of one or more Borcherds products. For the even weight k = 14, the supercuspidal form is
given as a linear combination of the repeated T (3) images of one Borcherds product. We also give the
formula for the weight 14 supercuspidal form here to provide a bridge to the database [Yuen 2018] and
to aid any future reproduction of our results. Let 1 be the cusp form in S12(SL2(Z)) normalized to have
leading term q. Theta blocks are the invention of Gritsenko, Skoruppa, and Zagier, and the special case
we use here may be defined, for d j ∈ N, by

TBk(d1, d2, . . . , d`)(τ, z)= η(τ)2k−` ∏̀
j=1
ϑ(τ, d j z),

where η is the Dedekind eta function and ϑ(τ, z)=
∑

n∈Z(−1)nq(n+1/2)2/2ζ n+1/2 is the odd Jacobi theta
function. A basis B of J cusp

12,16 is given in Table 8 in terms of W2 and W3 images of theta blocks.

TB12(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4)|W2

TB12(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3)|W2

TB12(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 8)|W3

TB12(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 7)|W3

TB12(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 4, 4, 5)|W3

TB12(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 4, 4, 4)|W3

TB12(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 7)|W3

TB12(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5)|W3

TB12(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4)|W3

TB12(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3)|W3

TB12(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5)|W3

TB12(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3)|W3

Table 8. A basis B of J cusp
12,16.

Define the weight-zero weakly holomorphic form ψ14 ∈ J wh
0,16(Z) by

φ14 =TB14(1, 1, 1, 1, 1, 1, 2, 2, 3, 3); ψ14 =
φ14|V2

φ14
+

b14 ·B
1

,

where the vector b14 is given by

b14 =
1

279268001096663167080660

· (−11558656024082817198192,−10565981369327462562477,−2926740930944006282896,
9167023003084404792024, 9262973271453152666448, 5762211536895867593392,

2926740930944006282896,−575926067281640631444, 1918503995959964699328,
−130078664330368905144, 158496997375774748880, 351635276272205084768)

We have Borch(ψ14) ∈ S14(K (16))−. It happens that {T (3) j Borch(ψ14) : j = 0, . . . , 13} is a basis of
the space Sk(K (16))−. We state on the next page the linear combination vector c14 that defines

f14 =
13∑
j=0
(c14) j T (3) j Borch(ψ14) :
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c14 =
1

37257382163850423563364831824348829583722116066312192000

(348244157297312234246199487916636630974135243741593600,
−1231050015269758711257977743259890444383052096717455360,

187575581022673913933924997781716862311512255710101504,
1254983988315996708233967338189308356957980874856464384,
−127479078662190852657737678925516146197487958292955136,
−487551611392210229695802512682383026882652711541538816,
−51410212284561459894870136498517909876263689224454144,

63753512896343172186681831912205804800646176286703616,
20452299868556686652499034505713458565710475824857088,
1123239782891661890888908622454818983032675662143488,
−429183614695895171861584434488686219409693487083520,
−86511023193385793107563673002312890272960212707520,
−6355772893990016890233522775734788662836903493392,
−171792506910670443678820376588540424234035840667)

The relevant definitions for other weights are at the website [Yuen 2018].
We stopped at k = 14 because we found a supercuspidal paramodular form in an even weight space

of the lowest possible level. Also, weight k = 14 for K (16) is on the edge of tractability for the method
of Jacobi restriction.
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