
Modern Logic

Volume 8, Number 1/2 (January 1998–April 2000), pp. 5–27.

THE ORIGINS OF THE DEFINITION OF
ABSTRACT RINGS

LEO CORRY

Contents

1. Introduction 5
2. Postulational Analysis in the USA 6
3. Theory of p-adic Numbers 10
4. Abstract Theory of Fields 13
5. Alfred Loewy and Postulational Analysis in Germany 15
6. Fraenkel’s Axioms for p-adic Systems 15
7. Ideals and Abstract Rings after Fraenkel 24
References 25

1. Introduction

The theory of rings had deep historical roots in several of the main-
stream, classical disciplines of nineteenth-century mathematics, such
as the theory of algebraic number fields, the theory of algebraic func-
tions, the theory of polynomial forms, the theory of quaternions and
hypercomplex numbers, and others1. The unification of all these trends
reached its peak in the works of Emmy Noether (1882-1935) and Wolf-
gang Krull (1899-1970). Using the abstract concept of ring, these two
mathematicians published systematic and comprehensive studies of the
theorems-especially factorization theorems-which are common to all
these domains.

The first attempt to analyze the concept of abstract ring as an
autonomous mathematical entity was published by Abraham Halevy
Fraenkel (1891-1965) in 1914. However, as many historical accounts
justly care to stress, Fraenkel’s work in this direction had a rather

The issues discussed in the present article are treated in greater detail in Chapter
4 of [4]. I thank Volker Peckhaus and an anonymous referee for helpful comments.

1For a recent account of the historical overview of the development of the theory,
see [22]. c© 2000 Modern Logic
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marginal influence on the development of the theory. Fraenkel’s work
was not organically connected to any of the main streams that played
a major role in the development of the theory of rings and it did not
directly contribute to change their courses.

What was, then, the historical framework within which Fraenkel’s
work arose? The present article sketches the answer to this question,
by tracing the roots of Fraenkel’s ideas back to three main sources: the
works of the American school of postulational analysis, Kurt Hensel’s
theory of p-adic numbers, and Ernst Steinitz’s work on abstract fields.
By doing this, the actual historical place of Fraenkel’s work and its ac-
tual significance for the development of the theory will become clearer.
At the same time an additional historical point will be stressed, namely,
that the idea of an abstract ring and that of an ideal — two ideas so
closely connected in the modern conception of algebra — arose in two
separate paths that were only connected in the work of Emmy Noether.

2. Postulational Analysis in the USA

During the first two decades of the twentieth century, several Amer-
ican mathematicians, particularly in the circle associated with Eliakim
Hastings Moore (1862-1932) at the University of Chicago, dedicated
much of their time and efforts to analyze systems of postulates that lie
at the basis of different mathematical disciplines. This activity, which
came to be known as “postulational analysis”2, was triggered by their
attentive study of David Hilbert’s recently published Grundlagen der
Geometrie.

In the fall of 1901 Moore conducted a seminar in Chicago entirely de-
voted to Hilbert’s influential book. Moore discussed with his students
the possibility of revising the proofs of independence between the ax-
ioms of the five groups that Hilbert had introduced in his study of the
foundations of geometry. Moore had read a recent paper by Friedrich
Schur (1856-1932), who had pointed out a logical redundancy not men-
tioned in Hilbert’s book, concerning the axioms of connection and of
order taken together [36]. Moore considered Schur’s criticism to be
essentially correct, but noticed that Schur had not correctly identified
the actual redundancy. Moore proved that Hilbert’s system involved,
in fact, a redundancy between one of the axioms of connection and one
of order [31].

The kind of axiomatic analysis pursued by Schur and Moore was in
appearance very similar to that of Hilbert. However, there are also
some significant differences between them that must be stressed here.

2On the American school of postulational analysis, see [4, pp. 173–183] and [35].
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Hilbert’s work on the foundations of geometry originated in the last
decade of the nineteenth century, as he joined the current efforts devel-
oped by several German and Italian mathematicians to clarify certain
technical aspects pertaining to the study of the basic theorems of pro-
jective geometry. A particularly important issue in this respect was
the elucidation of the actual place of continuity considerations in the
proof of the basic theorems of this discipline. In 1898, Schur had been
able to prove Pappus’s theorem (or Pascal’s theorem for two lines, as
Hilbert called it) without recourse to continuity, and this important
result definitively led Hilbert to concentrate all his efforts on the study
of the foundations of geometry3 . He thus undertook to elucidate in
detail the fine structure of the logical interdependence of the various
fundamental theorems of projective and Euclidean geometry and, more
generally, of the structure of the various kinds of geometries that can
be produced under various sets of assumptions.

The Grundlagen der Geometrie contained the results of Hilbert’s
work in this direction. The axiomatic structure of geometry described
here was based on a long list of axioms, divided into five separate
groups, each of which was meant to isolate and allow a clear under-
standing of the basic building blocks of our immediate spatial intuition.
The Grundlagen was a book about geometry, and the axiomatic analy-
sis conducted in it was conceived as an ancillary, yet very effective, tool
meant to enhance our understanding of this specific mathematical dis-
cipline. Accordingly, in the Grundlagen Hilbert focused mainly on the
interrelations among the various groups of axioms, rather than on the
individual axioms. Thus, when Schur analyzed in his 1901 article the
logical dependence among axioms of separate groups, he was actually
going one small step beyond Hilbert’s own analysis of the structure of
geometry, in a direction and to an extent not formerly contemplated
by Hilbert himself.

Moore’s article of 1902 departed from the original spirit of Hilbert’s
axiomatic analysis in an even more significant, though still subtle,
sense. When analyzing in the Grundlagen the systems of axioms that
define geometry (paying special attention to their independence, more
than to any other property, at this stage) Hilbert was implicitly be-
stowing upon them the status of objects with inherent mathematical
interest. Still, this interest remained secondary to his main current
concern, namely, the logical structure of the theorems of geometry. For

3For the events around the publication of Schur’s proof and its effect on Hilbert,
see [39, pp. 114-122].
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Moore, the system of postulates as such became the main subject of in-
terest, independently of the mathematical issue that gave rise to them
in the first place. Moore asked how these systems can be formulated in
the most convenient and succinct way from the deductive point of view,
without caring very much whether these axioms actually convey any
intuitive, geometrical meaning. His questions could equally be applied
to a system of postulates defining Euclidean geometry, groups or fields,
or, in fact, to any arbitrarily defined system. No doubt, the point of
view and the techniques introduced by Hilbert in the Grundlagen could
in principle have been applied in this more general context as well, but
Hilbert’s actual motivations never did contemplate the realization of
that possibility. Neither he nor his students in Göttingen published
any work in that direction. For Hilbert, axiomatic analysis was never a
starting point, but always a very late stage in the development of any
scientific discipline. From the beginning he was convinced of the impor-
tance of applying it not only to geometry, but also to other elaborate,
“concrete”, mathematical and physical theories such as arithmetic or
mechanics4 . Thus, Moore’s perspective implied a slight shift away from
Hilbert’s initial interest in geometry and the other “concrete” entities
of classical, nineteenth century mathematics, and towards the study
of a new kind of autonomous mathematical domain: the analysis of
systems of postulates.

This new perspective was followed and intensively developed over
the next years by Moore himself and by other mathematicians in the
USA. In 1902, Edward Huntington (1847-1952) published an analysis
of two different sets of postulates defining abstract groups [20]. The
first one he took from a classical article published in 1893 by Hein-
rich Weber (1842-1913) [42]. The second system had been proposed
by William Burnside (1852-1927) in his classical book on finite groups
[3]. As Huntington explicitly remarked, all the then existing systems of
postulates defining groups contained many redundancies; his analysis
was meant to clear these redundancies away. Moreover, Huntington
proposed two new, presumably irredundant, systems defining the same
concept. Moore soon published a new article in which he further dis-
cussed the four systems of Huntington [32].

This was only the beginning of a new trend. Moore’s first doc-
toral student, Leonard Eugene Dickson (1874-1954), published his own
contributions to the analysis of the postulates defining fields, linear
associative algebras, and groups [7, 8, 9]. Oswald Veblen (1880-1960)
was foremost among Moore’s students to pursue this trend of research

4For more details on this , see [5]



THE ORIGINS OF THE DEFINITION OF ABSTRACT RINGS 9

wholeheartedly. His dissertation discussed a new system of axioms for
geometry, using as basic notions point and order, rather than point and
line as was traditional [40]. Veblen was joined in the same direction
by another distinguished doctoral student of E.H. Moore, Robert Lee
Moore (1882-1974).

Works on postulational analysis continued to appear in the leading
American journals, mostly in the Transactions of the American Math-
ematical Society but also in the Bulletin of the American Mathematical
Society. According to the statistics of E.T. Bell [2, p. 6], 8.46% of the
mathematical papers written in the USA between 1888 and 1938 were
devoted to postulational analysis. In the index to the first ten vol-
umes of the Transactions (1900-1909), works on postulational analysis
appear under the classificatory heading of “Logical Analysis of Mathe-
matical Disciplines.” The disciplines whose systems of postulates were
analyzed include “real and complex algebra”, groups, fields, algebra of
logic, and geometry (especially projective geometry). The same head-
ing appears in the index to the next ten volumes of the Transactions,
but the number of works included under it is considerably lower. In
those years (1910-1919) the main issues of research were the postulate
systems for Boolean algebra and for geometry (which included projec-
tive geometry and “analysis situs”). This change of emphasis in the
disciplines investigated indicates that standard postulate systems for
algebraic disciplines had been adopted meanwhile in the algebraic do-
mains investigated in the first decade of the century as part of this
trend.

The analysis of these systems is similar in all the articles on postu-
lational analysis. All postulate systems are required to comply with
the guidelines established by Hilbert in the Grundlagen. These re-
quirements are explicitly stated again in each new paper. Thus, it is
required that the postulates be independent and consistent. If there
exists more than one possible system for a given mathematical branch,
equivalence among different systems should then be proven. Some arti-
cles also introduced new concepts and ideas into postulational analysis,
that appeared neither in the Grundlagen nor in previous works of the
same kind. Some of these ideas were to become significant for future
developments of foundational research, while others led nowhere. To
the first kind belongs the concept of “categoricity”, first introduced by
Veblen in 1904. Veblen called a system of postulates categorical if the
addition of some new axiom necessarily renders the system redundant;
otherwise he called the system disjunctive. An additional requirement
which was absent from the Grundlagen and was first introduced in this
trend — but which contrary to categoricity was not to remain central
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to the study of postulational systems — is that the postulates be “sim-
ple.” This requirement, however, was seen as somewhat problematic
from the outset, since “the idea of a simple statement is a very elusive
one which has not been satisfactorily defined, much less attained” [21,
p. 290].

The accumulated experience of research on postulational analysis
brought about an increased understanding of the essence of postula-
tional systems as an object of intrinsic mathematical interest. In the
long run, it had a great influence on the development of mathematical
logic in the USA, since it led to the creation of model theory, by helping
incorporate into a broader and more organic picture concepts that had
emerged, incipiently and isolated, in separate mathematical contexts.
This is particularly the case with early work on the algebra of logic, to
whose systems of postulates Huntington dedicated considerable atten-
tion5. Associated with the same train of ideas are the early works of
Richard Dedekind on lattices, which arise in the context of his number-
theoretical investigations6. This context is the same where the earliest
roots of the definition of rings can be found, as will be mentioned in
what follows.

But as a more direct by-product of its activity, postulational analy-
sis also provided a collection of standard axiomatic systems that were
to become universally adopted in each of the disciplines considered.
In this way, by affording standards for axiomatic definitions of vari-
ous mathematical branches, it provided the natural framework within
which abstract, structural research on those issues was later to pro-
ceed. This was indeed the case, as will be seen below, for Fraenkel’s
definition of abstract rings.

3. Theory of p-adic Numbers

The second main source of ideas from which Fraenkel’s definition of
rings arose is found in the work of Kurt Hensel (1861-1941) on p-adic
numbers. Hensel published his results on this topic in an article of
1899, and in two textbooks published in 1908 and 1913 [16, 17, 18]. In
this section we discuss them briefly.

In a classical article on algebraic functions, published in 1882, Richard
Dedekind (1831-1916) and Heinrich Weber had applied to this field
ideas originally developed in the framework of algebraic number the-
ory [6]. In developing his own theory of p-adic numbers, Hensel also
combined ideas from these two closely connected disciplines but he

5See [1].
6See [30].



THE ORIGINS OF THE DEFINITION OF ABSTRACT RINGS 11

went in a direction contrary to that followed by Dedekind and Weber:
he took ideas developed by Karl Weierstrass (1815-1897) in his lectures
on the representation of complex functions as infinite power series, and
applied them to study fields of algebraic numbers. In particular, Hensel
focused on the fact that, in the surroundings of a given point a, ev-
ery algebraic or rational complex function can be represented as an
infinite series of integer and rational powers of linear factors (z − a).
Hensel thought that many of the limitations encountered in the study
of specific domains of numbers were due to the fact that numbers had
traditionally been represented in a unique way, namely, using the deci-
mal representation. Any function, on the other hand, can be variously
represented as a power series by choosing different points around which
to develop it. If functions could only be represented only either around
zero, or around an infinitely distant point — claimed Hensel — then
one would find in the theory of functions the same limitations thereto-
fore encountered in the study of fields of algebraic numbers. Thus
Hensel intended to enlarge the scope of the existing theory, by provid-
ing various alternative representations of algebraic numbers, through
suitable “changes of basis.”

A rational g-adic number was defined by Hensel as a series

A = ar + ar+1g
r+1 + ar+2g

r+2 + · · · ,

where r is any integer and g is a positive integer, and where the ai’s
are rational numbers whose denominator (after eliminating common
factors with the numerator) has no common factors with g. If the ai’s
are restricted to be only positive integers between 0 and g− 1, then A
is called a reduced g-adic number. It can be shown that, for any given
g, every rational number can be uniquely represented as a reduced g-
adic number. This was the starting point for Hensel’s theory, since
it afforded — as he wished — the possibility to represent a rational
number in several different ways by taking different bases.

Hensel showed how the usual arithmetical operations can be defined
on these numbers. Nevertheless, a division exists only if one takes a
prime number p as basis, instead of an arbitrary rational g. In his 1908
textbook, Hensel began by considering that case. He noticed that the
product of two p-adic numbers is zero if and only if one of the factors
is zero. By contrast, this is not the case if one chooses a non-prime
basis g. Since Hensel saw his theory as an extension of previous works
on algebraic numbers, it was totally unnatural for him to consider a
system containing zero-divisors. In his 1913 textbook, however, he
changed this perspective and opened with the more general definition,
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using a general basis g. Only in later sections of that book did he
introduce the prime basis p, as a particular case.

There is a second, significant change of perspective between Hensel’s
two books that must be noticed here. One of the main issues which
Hensel had in mind when devising his theory was that of unique fac-
torization in algebraic fields. In the last third of the nineteenth cen-
tury this theory had totally been transformed by the contributions of
Dedekind and Leopold Kronecker (1823-1891). Though the works of
these two mathematicians have much in common, they also essentially
differ in their basic approach; it is usual to characterize Dedekind’s
approach as more “conceptually oriented” and Kronecker’s as more
“algorithmic”7. As it happened, it was Dedekind’s “conceptual” ap-
proach to the issue that became dominant over the following decades.
Among the main reasons for this dominance, one must count the fact
that Hilbert essentially followed Dedekind’s approach in his influential
report on the state of the art in the discipline, the famous Zahlbericht
[19].

Hensel had studied with Kronecker in Berlin, but he obviously was
acquainted with Dedekind’s work as well, and in particular with his
theory of ideals. Still, this latter concept is totally absent from Hensel’s
treatment in his first textbook, and so are all other concepts that later
came to constitute the main core of “modern” algebra, such as groups
and fields. This situation changed slightly in Hensels book of 1913,
in which one notices several changes of emphasis and overall approach
manifest in the exposition of the theory. In particular, unlike the 1908
textbook, this one introduces from the beginning, albeit in a somewhat
ad-hoc fashion, many of the new concepts that were then being adopted
as part of the new standard approach to the theory of algebraic fields.
Rings, for instance, are defined in the closing section of the first chapter
of Hensel’s 1913 textbook. The term is reportedly taken from Hilbert,
who had used it in the Zahlbericht, and it denotes a field of numbers
(not an abstract one) in which division is not always warranted. Some
basic facts about rings are also proven, and the procedure for building a
field of quotients out of two rings is also discussed. These rings defined
in Hensel’s textbook are, in fact, integral domains, namely, domains in
which non-zero elements cannot have zero product.

The slight differences between Hensel’s two books reflect overall, ba-
sic changes that were affecting algebra and number-theory at that time.
However, it seems unlikely that Hensel would have adopted them as
part of the presentation of his theory were it not for the fact that in

7See [10].
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writing his second textbook he received considerable assistance from
his young student Fraenkel — an assistance that Hensel explicitly ac-
knowledged in the introduction. Fraenkel was then involved in a study
of Hensel’s system of p-adic numbers, along the lines of the American
school of postulational analysis. This study, which he published in
1912 and which will be discussed below, led him to see the theory from
a rather abstract perspective that was alien to Hensel’s much more
classical view. Thus, Fraenkel’s participation in the book markedly
influenced the approach followed in it, and brought the theory to a
closer relation with the new trends in algebraic research and somewhat
away from the original framework within which Hensel had originally
conceived it.

4. Abstract Theory of Fields

A major milestone on the way to the rise of the structural approach
to algebra was the publication in 1910 of Ernst Steinitz’s work on
the theory of abstract fields: Algebraische Theorie der Körper. In
this work, Steinitz (1871-1928) presented an exhaustive account of the
results of the theory to that date and, at the same time, opened new
avenues for research on any abstractly formulated algebraic concept.
Fraenkel’s definition of abstract rings provides a classical example of
the works that were published under the direct influence of Steinitz’s
theory.

Steinitz’s article articulated a new program of research which he fully
applied for the first time to a specific subject-matter (abstract fields),
but which could also be extended, and in fact was later adopted, for
algebra at large. Steinitz opened his article by explicitly stating his
methodological outlook: he announced what might be called today a
“structural research program”, albeit only for a particular algebraic do-
main, i.e., for the study of fields. His subject matter would be abstract
fields as they were defined by Weber in his article of 1893. However,
his research would diverge from Weber’s in an important sense. In
Steinitz’s own words:

Whereas Weber’s aim was a general treatment of Galois
theory, independent of the numerical meaning of the el-
ements, for us it is the concept of field which represents
the focus of interest... The aim of the present work is
to advance an overview of all the possible types of fields
and to establish the basic elements of their interrela-
tions. [38, p. 5]
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Steinitz also explained in detail the steps to be followed in order to
attain this aim. First, it is necessary to consider the simplest possible
fields. Then, one must study the methods through which from a given
field, new ones can be obtained by extension. One must then find out
which properties are preserved when passing from the simpler fields to
their extensions.

Incidentally, the main direct source of inspiration for Steinitz’s in-
terest in the study of abstract fields was Hensel’s work on the theory
of numbers. In the introduction to his 1910 article Steinitz wrote:

I was led into this general research especially by Hensel’s
Theory of Algebraic Numbers, whose starting point is the
field of p-adic numbers, a field which counts neither as
the field of functions nor as the field of numbers in the
usual sense of the word. [ibid.]

This testimony stresses the significant fact that, in spite of the existence
of abstract formulations of the concept, the only fields considered by
algebraists before Steinitz were particular fields of numbers or fields of
functions. These were studied as part of the theories from which they
arose, rather than as new mathematical entities worthy of independent
research. Steinitz was certainly well-acquainted with Dedekind’s and
Hilbert’s works, but he did not learn from them that there is a special
mathematical interest in the abstract treatments of fields; this he learnt
only form Hensel’s work. Steinitz was a personal friend of Hensel, and
the two had close professional contacts. Steinitz had the opportunity
to discuss at length Hensel’s theory of p-adic numbers directly with its
creator, and this work confronted him with a completely new instance
of field, one which was neither the typical field of numbers nor the
typical field of functions.

In particular, a central concept, whose importance Steinitz claimed
to have realized while studying Hensel’s theory, was the characteristic
of a field. In his 1893 definition of an abstract field, for instance, Weber
had not envisaged the possibility of considering fields of characteristic
other than zero. Steinitz showed that any given field contains a “prime
field”, which, according to the characteristic of the original field, is
isomorphic either to the field of rational numbers or to the quotient field
of the integers modulo p (p prime). Then, after thoroughly studying
the properties of these prime fields, Steinitz proceeded to classify all
possible extensions of a given field and to analyze which properties
are transferred from any field to its various possible extensions. Since
every field contains a prime field, by studying prime fields, and the
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way properties are passed over to extensions, Steinitz would attain a
full picture of the structure of all possible fields.

5. Alfred Loewy and Postulational Analysis in Germany

A last source of influence on Fraenkel that must be mentioned in
relation to his work on rings is found in the works of his uncle, the
Jewish mathematician Alfred Loewy (1873-1935). Loewy exerted a
decisive influence in shaping Fraenkels early academic career. For one,
it was Loewy who induced Fraenkel to travel to Marburg to study under
Hensel. Moreover, Fraenkel derived his early interest in the study of
axiomatic systems from his uncle. Very much as he helped Hensel
in writing the 1913 textbook, Fraenkel also assisted his uncle in the
preparation of the latter’s book on the foundations of arithmetic, at
the time when he was involved in his own study of the postulates for
p-adic numbers. Loewy’s Lehrbuch der Algebra, published in 1915, did
not reach a wide audience, but it was among the first to introduce
in Germany the methodology, the terminology and the achievements
of postulational analysis as practiced in the USA. Loewy — who had
published several articles in the Transactions during the first decade of
the century — was well-acquainted with the aims and methods of this
trend.

The combination of Fraenkel’s interest in postulational analysis (de-
rived from Loewy’s influence), the influence of Steinitz’s work, and the
direct contact with Hensel and his theory of p-adic numbers, all these
provide the raw materials from which his early works on abstract ring
theory were derived.

6. Fraenkel’s Axioms for p-adic Systems

Several months after his arrival in Marburg in 1912, Abraham Fraenkel
wrote the first article which brought him some recognition: an ax-
iomatic foundation for Hensel’s system of p-adic numbers [11]. Fol-
lowing the conception behind Hilbert’s Grundlagen der Geometrie and
behind those works of the American postulationalists which were in-
tended to provide minimal systems of independent postulates for the
known, concrete mathematical entities — such as the real and natural
numbers, the continuum, etc. — Fraenkel took another known entity
which had not been considered thus far — the system of p-adic num-
bers — and provided a suitable system of independent postulates for
it. The influence of this article on the further development of the ideas
initially introduced by Hensel was rather marginal. Later in his life,
Fraenkel himself claimed that the importance then accorded to this
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work was far greater than it actually deserved [15, p. 111]. But on the
other hand, it was this axiomatic study of Hensel’s systems of g-adic
numbers that led directly to Fraenkel’s definition of abstract rings.

Fraenkel’s 1912 system of postulates was meant to characterize a
“concrete” mathematical entity, rather than any abstract concept. In
order to account for all the basic properties of that entity it was nec-
essary to introduce three separate sub-systems of postulates. The first
of them defines the order-type (Ordnungstypus) of the p-adic numbers.
The second sub-system establishes that, from the point of view of the
arithmetic defined on them, the p-adic numbers constitute a field. The
third system of postulates is needed for rendering the system of p-adic
numbers a categorical one.

Consider a system S of abstract elements, each of which is contained
in one out of a collection of pairwise disjoint classes Ci. An order-type
is defined on this system by means of two binary relations: for any
two elements of the system a,b one can say either that a is “smaller”
than b (denoted a < b) or that a is “lower” than b (denoted a � b).
These two relations are defined through the postulate systems Γ and
Λ respectively.

The system Λ, of seven independent axioms, postulates that the
collection of classes Ci is totally ordered, and that it contains a single
smallest class C∞. Moreover, every class C in the collection (except
for C∞) has an immediate predecessor, denoted by /C, and also an
immediate successor, C/. Further, the following generalized principle
of induction is introduced:

Γγ . If a system S of classes defined as above satisfies
the following two conditions:

I : It contains an additional class beyond C∞,
II: If it contains the class C then it also contains the

classes /C and C/,
then the system in question contains all the classes of
S.

Fraenkel also indicated how this postulate enables the definition of the
operations of addition and product on S.

Fraenkel summarized the discussion on the system Γ by claiming
that, if one takes “>” as the basic order relation, the system defines
an order of the type ∗ω + ω + 1, which is equivalent to the order-type
of the rational integers, with an additional element placed at the end.
This justifies denoting the classes with indexes Ci, and asserting that
Ci > Cj, whenever i > j with respect to the usual order of the rational
integers.
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The second binary relation, “�”, defines an internal order within
each of the classes of S, based on the nine independent postulates of
the system Λ. This system establishes that each class C is totally
ordered by �, while the class C∞ contains a single element. Further,
within each class C there exists a special subset N , which is countably
infinite and everywhere dense in C with respect to �, and each of
whose elements (except probably the lowest one) has an immediate
predecessor belonging to C − N . A further postulate establishes that
each class C is continuous in the sense of Dedekind (i.e., using cuts).
Finally, the system postulates the existence of both a (unique) lowest
and a (unique) highest element in each class of the system (except for
C∞).

Thus the relation “<” orders the classes of S with respect to each
other, while the relation “�” orders the elements within each given
class. In order to complete the definition of the order-type of S it
is also necessary to consider two elements α and β belonging to two
different classes Cm and Cn. In such case one says that α < β if and
only if Cm < Cn. If α and β belong to the same class C, one says that
α is equivalent to β (α ∼ β); this is clearly an equivalence relation.

Among several examples of systems satisfying the above two collec-
tions of postulates, Fraenkel discussed in some detail the domain of
(reduced) rational p-adic numbers, with p a fixed prime integer. Con-
sider the system of expressions

∞∑
n

ai p
i (ai = 0, 1, . . . , p− 1) .

Call the index of the first non-zero coefficient of an expression its “or-
der”; then, each class Ci is formed by all the numbers having the same
order i. Two numbers belonging to the same class are considered as
equivalent, since they behave similarly with respect to division by p.
Given two non-equivalent numbers α, β one says that α < β, whenever
the order of the former is lower (in the usual sense) than that of the
latter. Clearly the classes Ci are ordered according to their respective
indexes. C∞ contains only the zero element, whose order is ∞. Like-
wise, C0 is the class of the units, whose order is zero. Within a given
class Ci, two numbers are ordered as follows. Given any two elements,

α =
∞∑
n

ai p
i and β =

∞∑
n

bi p
i

then α � β if an = bn, an+1 = bn+1, . . . , an+m = bn+m, but an+m+1 <
bn+m+1 (in the usual sense).
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The set N stipulated by the system Λ is the infinite set of those
p-adic numbers whose expression breaks off after a finite number of
factors. This set is clearly an ordered subset of the natural numbers,
and it is therefore countable. Moreover, given a number in that set,
anp

n + an+1p
n+1 + . . . + arp

r, then its immediate predecessor (with
respect to �) is

anp
n+an+1p

n+1+. . .+ar−1p
r−1+(ar−1)pr+(p−1)pr+1+(p−1)pr+2+. . .

which is in itself not a member of N . Also, the lowest element of the
class Cn is pn, while the highest is (p−1)pn +(p−1)pn+1 + . . . Fraenkel
thus concluded that each class of equivalent p-adic numbers constitutes
a perfect, nowhere dense set with an initial and final element, which
therefore has the power of the continuum.

So much for the order-type of the system S. Fraenkel defined now two
operations by postulating a system Π of twelve independent axioms.
The first nine of them involve the standard requirements for fields:
Fraenkel took them from Dickson’s definition of field, with some slight
changes [7]. Given the aims of postulational analysis as practiced by
Dickson, this system is neither the earliest, nor the most illuminating,
nor the clearest one for fields; it is just the most logically-non-redundant
one.

The last three axioms of the system Π refer to properties involving
both the two operations and the above defined order-properties of S.
Thus, axiom Π10 may be formulated as follows:

Let ε be a unity with respect to multiplication, and
assume ε belongs to the class Cn. If kε denotes the
sum ε + ε + . . . + ε (k times), then, in the sequence
2ε, 3ε, 4ε, . . ., there exits a first multiple of ε, pε, such
that pε belongs to Cn−1. p is called the ground number
(Grundzahl) of the system, and it can be proven to be
unique, since in fact ε can be proven to be the only unity
of the system S.

Axiom Π11 expresses a similar property:

Let α be any non-zero element of S and let ε be another
element of S, belonging to the class Cn, and satisfying
the property that no number of the series ε, 2ε, 3ε, . . . , (p−
1)ε belongs to Cn−1. Then from β < ε it follows that
α.β < α.ε.

Finally axiom Π12 states that if α and β are any two elements of S
such that β < α, then α + β ∼ α.



THE ORIGINS OF THE DEFINITION OF ABSTRACT RINGS 19

Fraenkel derived some immediate consequences of these axioms. Thus,
for any non-zero element α of S,

pα = α+α+. . .+α = α.ε+α.ε+. . .+α.ε = α.(ε+ε+. . .+ε) = α.pε

but pε < ε, hence by Π11: pα < α.
Now let m be the smallest integer for which mα < α. Suppose p

is not a multiple of m, i.e., p = mr + n, with 0 < n < m. In that
case nα & α > mα. Hence, by Π12, (n + m)α = nα + mα & α,
(n + 2m)α & α, . . . , (n + rm)α = pα & α, which contradicts the above
result. It follows that m is necessarily a divisor of p.

Notice that in the systems Γ and Λ there is no mention whatsoever of
the ground number p. This is also the case for the first nine axioms of
the system Π. The ground number appears for the first time in axiom
Π10. Thus it is only at this point that a difference can be established
between systems with prime ground number p, or p-adic systems, and
those with composite ground number g, or g-adic systems. In other
words, it is only by means of the last three axioms of system Π that
one can establish the difference between systems containing divisors of
zero and systems which do not contain such divisors. An important
basic result based on that differentiation is the following:

If α is a non-null element of a p-adic system, then pα <
α. In particular, pα is the first element of the sequence of
multiples 2α, 3α, . . . which is smaller than α. In a g-adic
system, if mα is the first multiple of the sequence which
is smaller than α, then α is a divisor of g (probably g
itself).

Fraenkel thus considered that the differences between the p-adic and the
g-adic systems could be reduced to this result. This result, moreover,
makes manifest the much simpler structure of the former systems when
compared to the latter, but at the same time it suggests that there is
room for separate research of g-adic systems. Fraenkel’s definition of
abstract rings arises when this line of research is effectively pursued.

It is thus interesting to notice how the subtle differences in approach
between Hensel and Fraenkel opened a new line of research. Hensel’s
research had been directly motivated by number-theoretic concerns;
therefore, the mere existence of zero-divisors in g-adic systems was a
limitation that discouraged research of such systems. Fraenkel’s pos-
tulational analysis of Hensel’s system, on the other hand, suggested to
him the convenience of pursuing what for his teacher was a limitation.

The model followed by Fraenkel in his exploration of g-adic systems
was the one put forward by Steinitz in his research of abstract fields.
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This became the main issue of his doctoral dissertation which appeared
in print in 1914; it introduced for the first time the axiomatic definition
of a ring and discussed systematically the basic properties of this math-
ematical entity. In his 1912 paper, Fraenkel had taken a “concrete”
mathematical entity — the system of p-adic numbers — and sought
to characterize it in minimal axiomatic terms. The system of numbers
was here the focus of interest, while the axioms were just the means to
improve his understanding of the former. In this sense, Fraenkel had
pursued a task very close to Hilbert’s own axiomatic concerns, although
in a domain originally not envisaged by the latter. The opening pages
of Fraenkel’s 1914 paper would seem to bring him closer to postula-
tional works of the kind that were published in the USA during the
early years of the century. The definition of an “abstract” concept by
a system of postulates appears on first sight as the main concern of his
paper; the study of the postulates themselves, rather than that of the
entity which they define, would seem to attract all of the attention. But
in fact, after introducing the system of postulates that define abstract
rings, and after applying to this system the standard techniques of pos-
tulational analysis, Fraenkel immediately proceeded to study the rings
themselves, following the model put forward by Steinitz in his study of
abstract fields. In Steinitz’s own work, it must be added, there was no
“postulational analysis” of the axiom system defining fields.

Fraenkel’s definition is somewhat more cumbersome and less general
than the one used nowadays for rings; the differences between the two
may in most cases be traced back to their roots in Fraenkel’s work
on g-adic systems. Fraenkel defined rings as systems R on which two
abstract operations are postulated: addition and multiplication. The
first operation is assumed to satisfy the axioms of a group, and the
second one is assumed to be associative and distributive with respect
to the addition. Further, R is assumed to contain at least an identity
relative to the second operation. Under these assumptions it is possible
that R contains divisors of zero; an element which is not a divisor of
zero is called a regular element of the ring. Fraenkel added two axioms
which do not appear in the standard, modern definition of rings. These
are:

R8: Every regular element must be invertible with respect to mul-
tiplication in the ring.

R9: For any two elements a, b of the ring there exists a regular ele-
ment αa,b such that a.b = αa,b.b.a and a second regular element
βa,b such that a.b = b.a.βa,b.
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Notice that axiom R8 implies that the set of regular elements of the
ring constitutes a field. Obviously, then, even the immediate case of the
“ring of integers” is not covered by Fraenkel’s definition. In fact, axiom
R8 describes a situation typical of the system of g-adic numbers, in
which the units constitute a group regarding multiplication. Moreover,
a unity in a g-adic system is not divisible by g, and therefore it cannot
be a zero-divisor.

Fraenkel’s 1914 paper deals mainly with the factorization properties
of divisors of zero and with additive decompositions of the elements
of the abstract rings in terms of some elementary divisors of zero. A
ring is called separable (zerlegbar) if whenever three elements a, b, c
are given, such that c divides ab, then it is always possible to write c
as a product c = c1c2, where c1 divides a and c2 divides b. Fraenkel
observed that an exact analog of this condition holds for the ratio-
nal integers, but it does not always hold for integers in an arbitrary
field of algebraic numbers. This divergence had constituted the point
of departure for Dedekind’s theory of ideals in 1871. Dedekind had
attempted to overcome the failure of unique factorization in certain
domains of algebraic integers by imbedding the theory of integers in a
more general one. Fraenkel, on the contrary, restricted his treatment
of factorization problems to separable rings. One should notice that
in Fraenkel’s treatment of factorization in abstract rings there is not
even a clue to the connections between rings, on the one hand, and
concepts such as ideals or modules, on the other hand. From the point
of view of “modern algebra”, modules and ideals are intimately linked,
and in fact, both are subordinate to abstract rings. This was neither
the case in Dedekind’s conception in the late nineteenth century, nor in
Fraenkel’s pioneering work on abstract rings, as late as 1914. Also, in
Hilbert’s Zahlbericht, ideals appear only in the more restricted context
of rings of algebraic integers. It was only after 1920, with the work of
Wolfgang Krull and Emmy Noether, that the theory of ideals became
organically integrated into the theory of abstract rings.

Rather than providing a framework for studying decomposition of
ideals, Fraenkel introduced a special kind of decomposition property,
which was not subsequently developed in later research on rings, but
which is a direct extension of Steinitz’s line of thought into the domain
of rings. Given two elements a, c of R, if a divides c and c divides a, then
they are called equivalent (unwesentlich verschieden oder äquivalent);
otherwise they are called essentially different (wesentlich verschieden).
A zero-divisor is called a prime divisor, whenever it contains no proper
divisor, except for regular elements. A ring is called simple (einfach)
if all of its prime divisors are equivalent to each other. With this
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terminology, Fraenkel proved a main decomposition theorem for rings
which may be formulated as follows:

If a separable ring R contains n essentially different
prime divisors p1, p2, . . . , pn, then there exist exactly n
uniquely-determined, simple rings R1, R2, . . . , Rn, satis-
fying the following conditions:

I: The simple rings R1, . . . , Rn contain only elements
of R.

II: The intersection of any two of the above n simple
rings contains only the zero element.

III: The product of two elements of the ring, belong-
ing to two different rings Ri, is always zero.

IV: Every element of R may be written in a unique
way as a sum of n elements of R, each belonging to
one of the n rings Ri.

This theorem implies the possibility of reducing any separable ring
into simple rings. Thus, simple rings play in Fraenkel’s theory of rings
a rôle similar to that played by prime fields in Steinitz’s theory. Of
course there are important differences between the two concepts (e.g.,
fields contain only one prime sub-field), but there is also a basic func-
tional similarity between them, namely, both play the rôle of building
stones of their respective theories. In fact, as in the case of prime fields
in Steinitz’s theory, a full structural knowledge of separable rings is
attained by establishing the properties of simple rings, and by inquir-
ing how these properties are transmitted through the different kinds of
extensions. In this article Fraenkel did not pursue this point further,
but he did so in his next two published works [13, 14].

For Fraenkel, the central achievement of his dissertation had been
the proof that the algebraic properties of any separable ring may be
reduced to the consideration of a finite or an infinite number of “sim-
pler rings”, i.e., rings that in essence contain only one prime divisor
of zero. In his following works he undertook the task of extending,
in the framework of abstract rings, the whole range of questions that
Steinitz had worked out for fields. In particular, Fraenkel addressed
the task of characterizing all the possible algebraic and transcenden-
tal extensions of a given ring. Although Steinitz had dealt with this
question for arbitrary fields, Fraenkel — in order to avoid unnecessary
complications — considered here only finite and infinite rings of “fi-
nite degree” (i.e., separable rings containing only a finite number of
essentially different zero-divisors). The study of these rings, Fraenkel
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thought, was necessary in order to cover “all the arithmetical and al-
gebraic applications of the theory”. In fact, he had two specific such
applications in mind: the formulation of a Galois theory for separable
rings and the determination of all possible types of finite rings.

In his 1916 article — which was an elaboration of the Habilitation-
sschrift he had submitted to the University of Marburg while still mo-
bilized at the war — Fraenkel did not bother anymore to produce a
minimal system of independent postulates defining a ring. This time
it was more important to provide a workable definition, rather than a
logically irredundant one. Thus, the postulates advanced here are very
similar to those accepted nowadays, although Fraenkel still demanded
commutativity for the product. He also added an axiom according to
which R must contain at least one regular element, and establishing
that if a is a regular element, and b is any element of R, then there ex-
ists at least one element x in R, such that ax = b. Fraenkel explained,
that postulating the existence of at least one regular element excluded
the case of the trivial ring having only zero elements, as well as of other,
non-trivial systems, e.g., the system of all classes of congruence mod-
ulo gm, which are divisible by g. As in his earlier version, the ring of
integers is not covered by Fraenkel’s 1916 definition. In fact, Fraenkel
did not even mention the integers in the framework of his theory. On
the other hand, this last postulate implies the existence of a neutral
element for the product.

This time, Fraenkel formulated more clearly the relations between
the various algebraic concepts involved in his theory: the elements of
a ring constitute a group with regard to addition, while the regular
elements constitute a group with regard to the product. If a ring, as
defined by Fraenkel here, contains no zero-divisors, then it is obviously
a field. Thus, all the results valid for fields are also valid for rings,
except for those depending on the existence of division. Also those
results on fields are not valid for rings, which depend on the fact that
the product of two factors in a field is zero if and only if one of the
factors is zero. Loewy had mentioned in his book the other side of the
same coin, namely that in the system of integers, though not in itself
a field, the product of any two integers is zero, if and only if one of
them is zero [28, p. 26]. Fraenkel was clearly not envisaging the system
of integer numbers when he devised his theory of rings. This partially
explains why he did not elaborate upon the connection between the
theory of rings and the theory of ideals.

The main problem addressed in Fraenkel’s publications of 1916 and
1921 is that of the extensions of rings. Fraenkel translated all the con-
cepts that Steinitz had introduced for fields, taking all the precautions
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necessary for rings. He defined prime rings — similar way to Steinitz’s
prime fields — and classified all possible kinds of such rings. In order
to classify the different kinds of extensions, it is necessary to consider
the systems R(x) of rational functions in a single variable x, with coef-
ficients in a ring R. Fraenkel studied those systems, stating that they
are, in fact, rings. He then deduced several properties of R(x) that
depend on those of R. Typical is the theorem stating that:

If the ring R is simple, then R(x) is also a simple ring,
and the only prime zero-divisor of R(x) is equivalent in
R(x) to p, the only prime zero-divisor of R. [13, p. 16]

Likewise, Fraenkel defined an Euclidean algorithm for R(x), which was
to be the main tool for studying the ring-extension of a given ring. But
also in this context there is a noteworthy gap between the problems
addressed by Fraenkel and those that were later to become the main
problems of the abstract theory of rings. In fact, the main achieve-
ment of Emmy Noether’s early work on rings was her unified approach
to problems of factorization in algebraic number theory and in the the-
ory of polynomials. Her main source in algebraic number theory was
the work of Dedekind, whereas in the theory of polynomials it was
Hilberts work, as well as those of Emanuel Lasker (1868-1941) and of
Francis Sowerby Macaulay (1862-1937). Lasker proved that any ideal
of polynomials may be decomposed into “primary” ideals [27] and, later
on, Macaulay proved that this decomposition is essentially unique [29].
He also provided an algorithm for actually performing the decomposi-
tion. The kind of problem they dealt with was not even mentioned by
Fraenkel.

7. Ideals and Abstract Rings after Fraenkel

The task of realizing the potentialities involved in the idea of ring
as a natural framework for dealing with the existing theories of fac-
torization, both in the framework of algebraic number theory and the
theory of polynomials, was first undertaken separately by Masazo Sono,
Wolfgang Krull and Emmy Noether.

Masazo Sono published several results on rings and ideals of rings,
p roving that the theorems on unique factorization of ideals — such as
had been proved by Dedekind for ideals of algebraic integers — do not
always hold in more general rings [37]. Wolfgang Krull presented a sys-
tematic account of the results of the theory of ideals in the framework
of the theory of abstract rings [23, 24, 25]. Krull explicitly mentioned
Fraenkel’s earlier work, and stressed the fact that the latter’s defini-
tion of ring allowed no more than rings that behave essentially like Zm.



THE ORIGINS OF THE DEFINITION OF ABSTRACT RINGS 25

According to Krull, the limitations inherent in Fraenkel’s work were
a consequence of not having included ideals in the treatment. Krull
also published a very influential monograph containing a systematic
exposition of the abstract theory of ideals [26]. This monograph was
published after van der Waerden’s Moderne Algebra (1930) [41], which
also dedicated some chapters to the study of ideals in abstract rings.
However, the main inspiration for Krull’s work was not provided by
van der Waerden, but by Steinitz and Emmy Noether. Krull applied
the “structural program” of Steinitz to the theory of ideals, which had,
on the one hand, a long history going back to Kummer’s work and,
on the other hand, a recently established re-formulation: the abstract
one. This abstract formulation was a contribution of Emmy Noether.

When Noether published in 1921 her first important paper on fac-
torization of ideals in abstract rings [33], the concept was still totally
unfamiliar to most contemporary mathematicians. Throughout her
paper, the most elementary properties of rings are proved as the need
arises. In her second major paper on rings [34], she was able to re-
consider the whole issue from a much clearer and mature perspective,
in which the central rôle of chain conditions in factorization theorems
was rendered plain and clear8.These issues, that were instrumental in
opening the way for the flourishing of modern algebra, did not appear
in Fraenkel’s work on rings. The latter simply provided one component
of the conceptual setting necessary for the standard formulation of the
former.
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