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Abstract. In this paper, aspects of generalized continuity and gen-

eralized closedness are explored. The standard material on the no-

tions of ∗g-open, g-open sets and some definitions and results that are
needed are presented first. Then the class of I∗g-closed sets is intro-

duced and its fundamental properties are studied. Also, I∗g-regular,
∗-additive, ∗-multiplicative, I∗g-additive, and I∗g-multiplicative spaces

are introduced and their properties are investigated.

1. Introduction

Ideal topological spaces have been considered since 1930. This topic has
earned its importance via a paper by Vaidyanathaswamy [45]. Jankovic
and Hamlett [19] began the generalization of some important properties in
general topology via topological ideals such as decomposition of continuity,
separation axioms, connectedness, compactness, and resolvability. Several
types of generalized closed sets are investigated in the literature of topo-
logical spaces [39, 28, 27, 26, 42, 40, 44, 18, 2, 4]. Using the concept of
generalized closed sets, several separation axioms [13] are introduced which
are found to be useful in the study of digital topology (digital line) [23].
Dontchev et al. [12, 24] obtained several characterizations of extremally dis-
connectedness in terms of generalized closed sets in ideal topological space.
The purpose of this paper is to show that these diagrams can be obtained
in the setting of generalized topological spaces (GTSs) via ideal topology
introduced by Ravi, Helen, et al. [44, 18].
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An ideal I on a nonempty set X̃ is a nonempty collection of subsets of X̃
which satisfies the following conditions: A ∈ I and B ⊂ A implies B ∈ I,
A ∈ I and B ∈ I imply A∪B ∈ I [29]. Applications to various fields were
further investigated by Jankovic and Hamlett [19], Mukherjee et al. [35],
Arenas et al. [7], Nasef, and Mahmoud [37], etc. Given a topological space

(X, T ) with an ideal I on X, ℘(X̃) is the set of all subsets of X and a set
operator (.)

∗
: ℘(X)→ ℘(X), called a local function [29] of A with respect

to τ and I, is defined as follows: for A ⊆ X,

A∗(I, τ) =
{
x ∈ X̃ | U ∩A /∈ I for everyU ∈ T (x)

}
,

where τ(x) = {U ∈ τ | x ∈ U}. Furthermore, Cl∗(A) = A ∪ A∗(I, T ) de-
fines a
Kuratowski closure operator for the topology T ∗, finer than T . When there
is no chance for confusion, we will simply write A∗ for A∗(I, T ). X̃∗ is of-

ten a proper subset of X̃. By a space, we always mean a topological space(
X̃, T

)
with no separation properties assumed. If A ⊂ X̃, let Cl(A) and

Int(A) denote the closure and interior of A in
(
X̃, T

)
, respectively.

A subset A of an ideal space
(
X̃, T

)
is said to be RI-open (resp. RI-

closed) [46] if A = Int(Cl∗(A)) (resp. A = Cl∗(Int(A)). A point x̃ ∈ X̃
is called a δI-cluster point of A if Int(Cl∗(U)) ∩ A 6= ∅ for each open
set V containing x̃. The family of all δI-cluster points of A is called
the δI-closure of A and is denoted by δClI(A). The set δI-interior of A

is the union of all RI-open sets of X̃ contained in A and it is denoted by
δIntI(A). A is said to be δI-closed if δClI(A) = A [46].

A set operator ()∗S : P (X̃) → P (X̃) is called a semi local function and
Cl∗S [1] of A with respect to T and I are defined as follows:

For A ⊂ X̃,

A∗S(I, T ) =
{
x̃ ∈ X̃ | Ũ ∩A /∈ I for each semi-open Ũ containing x̃

}
and Cl∗S = A ∪A∗S .

This paper is arranged as follows. Section 2 contains some necessary
concepts of general topology and recollections of generalized closed sets
in ideal topological space. In Section 3, we give definitions to present I∗g -
closed sets and G∗I -space. Additionally, we give their characterizations and
explain a number of properties about them. In Section 4, we propose the
relationship with regular I∗g -closed sets, I∗g -open neighborhood, ∗-finitely
additive, ∗-countably additive, and ∗-additive in ideal topological space.
Theoretical applications of I∗g -closed sets are also presented.
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2. Preliminaries

Yüksel introduced the class of g-closed sets [32], a super class of closed
sets in 1970. S. P. Arya and T. Nour [8] defined gs-closed sets in 1990, which
were used for characterizing s-normal spaces. Dontchev [11], Gnanambal
[14], and Palaniappan and Rao [41] introduced gsp-closed sets, gpr-closed
sets, and rg-closed sets, respectively. Kumar [27] introduced a new class of
sets (using a new technique) called g∗-closed sets, which is properly placed
in between the class of closed sets and the class of g-closed sets.

Definition 2.1. A subset A of a topological space (X̃, T ) is said to be

(1) α-open [5] if A ⊂ Int(Cl(Int(A))).
(2) semi-open [30] if A ⊂ Cl(Int(A)).
(3) pre-open [4] if A ⊂ Int(Cl(A)).
(4) generalized closed [32] if Cl(A) ⊆ V , A ⊆ V , and V is open in

(X̃, T ). The complement of a g-closed set is called a g-open set.
(5) semi-generalized closed [9] if sCl(A) ⊆ V , A ⊆ V , and V is semi-

open in (X̃, T ).
(6) generalized semi closed [8] if sCl(A) ⊆ V , A ⊆ V , and V is open

in (X̃, T ).

(7) g∗-closed [27] if Cl(A) ⊆ V , A ⊆ V , and V is g-open in (X̃, T ).

(8) ĝ-closed [27] if Cl(A) ⊆ V , A ⊆ V , and V is semi-open in (X̃, T ).
The complement of a ĝ-closed set is called a ĝ-open set.

(9) ∗g-closed [28] if sCl(A) ⊆ V , A ⊆ V , and V is semi-open in (X̃, T ).
(10) α-generalized closed (briefly αg-closed) [33] if αCl(A) ⊆ V , A ⊆ V ,

and V is α-open in (X̃, T ).

(11) pg-closed [39] if pCl(A) ⊆ V , A ⊆ V , and V is pre-open in (X̃, T ).

(12) sg∗-closed [36] if Cl(A) ⊆ V , A ⊆ V , and V is semi-open in (X̃, T ).

(13) pg∗-closed [36] if Cl(A) ⊆ V , A ⊆ V , and V is pre-open in (X̃, T ).

(14) αg∗-closed [36] if Cl(A) ⊆ V , A ⊆ V , and V is α-open in (X̃, T ).
(15) βg∗-closed [36] if Cl(A) ⊆ V , A ⊆ V , and V is semi-pre-open in

(X̃, T ).

Definition 2.2. A function f : (X̃, T ) −→ (Y, σ) is said to be

(1) weakly continuous [31] if for all x̃ ∈ X̃ and for all open sets U in Y
containing f(x), there exists an open set V containing x̃ such that
f(V ) ⊂ Cl(U).

(2) weakly pre-continuous [34] if for all x̃ ∈ X̃ and for all open sets U
in Y containing f(x), there exists a pre-open set V containing x̃
such that f(V ) ⊂ Cl(U).
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(3) weakly semi-continuous [22] if for all x̃ ∈ X̃ and for all open set U
in Y containing f(x), there exists an semi-open set V containing x̃
such that f(V ) ⊂ Cl(U).

(4) weakly pre-I-continuous [16] if for all x̃ ∈ X̃ and for all open set U
in Y containing f(x), there exists a pre-I-open set V containing x̃
such that f(V ) ⊂ Cl(U).

(5) weakly semi-I-continuous [17] if for all x̃ ∈ X̃ and for all open set U
in Y containing f(x), there exists a semi-I-open set V containing
x̃ such that f(V ) ⊂ Cl(U).

Definition 2.3. A subset A of a space (X̃, T , I) is said to be

(1) β-open [15] if A ⊂ Cl(Int(Cl(A))).
(2) semi-I-open [3] if A ⊂ Cl∗(Int(A)).
(3) pre-I-open [6] if A ⊂ Int(Cl∗(A)).

(4) gI-closed [12] if A∗S ⊆ V , A ⊆ V , and V is open in (X̃, T ).

(5) Ig-closed [24] if A∗ ⊆ V , A ⊆ V , and V is open in (X̃, T ).

(6) sgI-closed [25] if A∗S ⊆ V , A ⊆ V , and V is semi open in (X̃, T ).

(7) Is∗g-closed [26] if A∗ ⊆ V , A ⊆ V , and V is semi open in (X̃, T ).

(8) rgI-closed [42] if A∗ ⊆ V , A ⊆ V , and V is open in (X̃, T ).

(9) I − sg-closed [40] if A∗ ⊆ V , A ⊆ V , and V is semi open in (X̃, T ).

(10) I − pg-closed [40] if A∗ ⊆ V , A ⊆ V , and V is pre open in (X̃, T ).

(11) I − αg-closed [40] if A∗ ⊆ V , A ⊆ V , and V is α-open in (X̃, T ).

(12) I − βg-closed [40] if A∗ ⊆ V , A ⊆ V , and V is β-open in (X̃, T ).

(13) ∗gI-closed [44] if A∗ ⊆ V , A ⊆ V , and V is ĝ-open in (X̃, T ).

(14) I∗g-closed [44] if A∗ ⊆ V , A ⊆ V , and V is ĝ-open in (X̃, T ).

(15) g∗SI-closed [18] if As∗ ⊆ V , A ⊆ V , and V is g-open in (X̃, T ).
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Diagram 2.2.1 (Generalized closed sets)
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3. I∗g -Closed Sets

Definition 3.1. A subset F of an ideal space (X̃, T , I) is said to be I∗g-closed if

Cl∗(F ) ⊂ V , F ⊂ V , and V is g-open in X̃.

The complement of I∗g-closed set is said to be I∗g-open. The collection of all

I∗g-closed sets (resp. I∗g-open sets) is denoted by G∗C(X̃) (resp. G∗O(X̃)).

Remark 3.2. Let (X̃, T , I) be an ideal topological space and F a subset of X̃.
Then the following are true.

(1) If I = P (X̃), then Cl∗(F ) = F for all F ⊂ X̃ and hence, every subset

of X̃ is I∗g-closed.

(2) Since F ∗ = ∅ for every F ⊂ X̃, every member of I is I∗g-closed.
(3) Since every open set is g-open, every I∗g-closed set is gI-closed.
(4) I∗g-closed and Is∗g-closed are independent concepts.
(5) I∗g-closed and Ig-closed are independent concepts.
(6) I∗g-closed and sgI-closed are independent concepts.

(7) Every I∗g-closed set is g∗SI-closed set.
(8) Every I∗g-closed set is I∗g-closed set.

The following examples show the converse is not true in general for Remark
3.2.

Example 3.3. Let X̃ = {a, b, c, d} with topology T = {∅, X̃, {a, b}} and ideal
I = {∅, {a}}. Let F = {a, c}. Then F ∗ = F∗ = {c, d}. Thus, F is I∗g-closed and

g∗SI-closed.

Example 3.4. Let X̃ = {a, b, c} with topology T = {∅, X̃, {c}, {a, b}} and ideal

I = {∅, {a}}. Then the I∗g-closed sets are ∅, X̃, {a}, {a, b}, {a, c}. If F = {a},
then F ∗ = {∅}. It is clear that {a} is I∗g-closed but not I∗g-closed.

Example 3.5. Let X̃ = {a, b, c, d} with topology T = {∅, X̃, {a}, {b}, {a, b}} and
ideal I = {∅, {b}{c}, {b, c}}. Then F = {a} is g∗SI-closed but not I∗g-closed.
Then F ∗ = {a, c, d} and F∗ = {a}, where F∗ is contained in the g-open set
U = {a} but F ∗ * U .

Example 3.6. Let X̃ = {a, b, c, d} with topology T = {∅, X̃, {a}, {b}, {a, b}} and
ideal I = {∅}. Then F = {a} is g∗SI-closed and I∗g-closed, since F ∗ = F∗ but
not Ig-closed.

Example 3.7. Let (X̃, T ) be an indiscrete space, x0 ∈ X̃, and I = {∅, {x0}}.
Then F ∗ = X̃ if F 6= {x0}, and F ∗ = ∅ if F = {x0}. For any subset F 6= {x0} is
Ig-closed, gI-closed, sgI-closed, and Is∗g-closed, but not I∗g-closed.

Example 3.8. Let (X̃, T ) be an indiscrete space, p ∈ X̃, and I = {F ⊂ X̃/p /∈
F}. Then F ∗ = X̃ if p ∈ F , and F ∗ = ∅ if p /∈ F . F = {p} is Ig-closed,
gI-closed, sgI-closed, Is∗g-closed, but not I∗g-closed.

Theorem 3.9. If (X̃, T , I) be an ideal topological space and F ⊂ X̃. Then the
following are true.
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(1) F is I∗g-closed,

(2) Cl∗(F ) ⊆ V if F ⊆ V and V is g-open in X̃,
(3) For all x̃ ∈ Cl∗(F ), gCl({x̃}) ∩ F 6= ∅,
(4) Cl∗(F )− F does not contain a g-closed set and
(5) F ∗ − F does not contain a g-closed set.

Proof. (1)⇒ (2): If F is I∗g-closed, then F ∗ ⊂ V if F ⊆ V and V is g-open in X̃

and so Cl∗(F ) = F ∪ F ∗ ⊆ V if F ⊆ V and V is g-open in X̃. This proves (2).

(2)⇒ (3): Suppose x̃ ∈ Cl∗(F ). If gCl({x̃})∩F = ∅, then F ⊆ X̃−gCl({x̃}).
By (2), Cl∗(F ) ⊆ X̃ − gCl({x̃}), a contradiction since x̃ ∈ Cl∗(F ).

(3) ⇒ (4): Suppose F ⊆ Cl∗(F ) − F , F is g-closed, and x̃ ∈ F . Since

F ⊆ X̃ − F and F is g-closed, F ⊆ X̃ − F , F is g-closed, and gCl({x̃}) ∩ F = ∅.
Since x̃ ∈ Cl∗(F ), by (3), gCl({x̃}) ∩ F 6= ∅. Therefore, Cl∗(F ) − F does not
contain an g-closed set.

(4)⇒ (5): We know

Cl∗(F )−F = (F∪F ∗)−F = (F∪F ∗)∩F c = (F∩F c)∪(F ∗∩F c) = F ∗∩F c = F ∗−F.

Therefore, F ∗ − F does not contains a g-closed set.

(5)⇒ (1): Let F ⊆ V , where V is g-open set. Therefore, X̃−V ⊆ X̃−F and

is a F ∗ ∩ (X̃ − V ) ⊆ F ∗ ∩ (X̃ −F )=F ∗ −F . Therefore, F ∗ ∩ (X̃ − V ) ⊆ F ∗ −F .

Since F ∗ is always a closed set, F ∗ is a g-closed set and so F ∗ ∩ (X̃ − V ) is

a g-closed set contained in F ∗ − F . Therefore, F ∗ ∩ (X̃ − V ) = ∅ and hence,
F ∗ ⊆ V . Therefore, F is I∗g-closed. �

Theorem 3.10. Every ∗-closed set is I∗g-closed.

Proof. Let F be ∗-closed. Then F ∗ ⊆ F . Let F ⊆ V , where V is g-open. Hence,
F ∗ ⊆ V whenever F ⊆ V and V is g-open. Therefore, F is I∗g-closed. �

Example 3.11. Let X̃ = {a, b, c} with topology T = {∅, X̃, {a}, {b, c}} and ideal

I = {∅, {c}}. Then the I∗g-closed sets are the powerset of X̃ and ∗-closed sets are

{∅, X̃, {a}, {c}, {a, c}, {b, c}}. It clear that {b} is a I∗g-closed set, but it is not
∗-closed.

Definition 3.12. A space is (X̃, T , I) called G∗I -space if every I∗g-closed set in
it is closed.

Theorem 3.13. Let (X̃, T , I) be an ideal space. For every F ∈ I, F is I∗g-closed.

Proof. Let F ⊆ V , where V is a g-open set. Since F ∗ = ∅ for every F ∈ I, then
Cl∗(F ) = F ∪ F ∗ = F ⊆ V . Therefore, by Theorem 3.9, F is I∗g-closed. �

Theorem 3.14. If (X̃, T , I) is any ideal space, then F ∗is always I∗g-closed for

every subset F of X̃.
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Proof. Let F ∗ ⊆ V , where V is g-open. Since (F ∗)∗ ⊆ F ∗, we have (F ∗)∗ ⊆ V if
F ∗ ⊂ V and V is g-open. Hence, F ∗ is I∗g-closed. �

Theorem 3.15. Let (X̃, T , I) be an ideal space. Then every I∗g-closed, g-open
set is a ∗-closed set.

Proof. We have F is I∗g-closed and g-open. Then F ∗ ⊆ F whenever F ⊆ F and
F is g-open. Hence, F is ∗-closed. �

Corollary 3.16. If (X̃, T , I) is a TI ideal space and F is an I∗g-closed set, then
F is ∗-closed.

Corollary 3.17. If (X̃, T , I) is an ideal space and F is an I∗g-closed set, then
the following are equivalent.

(1) F is a ∗-closed set.
(2) Cl∗(F )− F is a g-closed set.
(3) F ∗ − F is a g-closed set.

Proof. (1)⇒ (2): If F is ∗-closed, then F ∗ ⊆ F and so Cl∗(F )−F = (F ∪F ∗)−
F = ∅. Hence, Cl∗(F )− F is g-closed set.

(2)⇒ (3): Since Cl∗(F )− F = F ∗ − F , we have F ∗ − F is a g-closed set.

(3) ⇒ (1): If F ∗ − F is a g-closed set, since F is I∗g-closed set, by Theorem
3.9, F ∗ − F = ∅ and so F is ∗-closed. �

Theorem 3.18. If (X̃, T , I) is an ideal space, then every g-closed set is a I∗g-
closed set, but not conversely.

Proof. Let F be a g-closed set. Then Cl(F ) ⊆ V if F ⊆ V and V is g-open. We
have Cl∗(F ) ⊆ Cl(F ) ⊆ V if F ⊆ V and V is g-open. Hence, F is I∗g-closed. �

Example 3.19. Let X̃ = {a, b, c} with topology T = {∅, X̃, {a}, {a, c}} and ideal

I = {∅, {a}}. Then the I∗g-closed sets are ∅, X̃, {a}, {b}, {a, b}, {b, c} and the g-

closed sets are ∅, X̃, {b}, {b, c}. It is clear that {a} is a I∗g-closed set, but it is not

g-closed in (X̃, T ).

Example 3.20. Let X̃ = {a, b, c} with topology T = {∅, X̃, {a}, {a, c}} and ideal
I = {∅, {b}, {c}, {b, c}}. Clearly, the set {c} is I∗g-closed, but it is not g-closed in

(X̃, T ).

Lemma 3.21. [10] Let (X̃, T , I) be an ideal space and F ⊆ X̃. If F ⊆ F ∗, then
F ∗ = Cl(F ∗) = Cl(F ) = Cl∗(F ).

Theorem 3.22. If (X̃, T , I) is any topological ideal space, F is ∗-dense in itself

and an I∗g-closed subset of X̃, then F is g∗-closed.

Proof. Suppose F is ∗-dense in itself and an I∗g-closed subset of X̃. Let F ⊆ V ,
where V is g-open. Then by Theorem 3.9 (2), Cl∗(F ) ⊆ V if F ⊆ V and V is
g-open. Since F is ∗-dense in itself, by Lemma 3.21, Cl(F ) = Cl∗(F ). Therefore,
Cl(F ) ⊆ V if F ⊆ V and V is g-open. Hence, F is g∗-closed. �
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Corollary 3.23. If (X̃, T , I) is an ideal topological space where I = {∅}, then
F is I∗g-closed if and only if F is g-closed.

Proof. Since I = {∅}, F ∗ = Cl(F ) ⊇ F . Therefore, F is ∗-dense in itself. Since
F is I∗g-closed, by Theorem 3.22, F is g-closed. Conversely, by Theorem 3.18,
every g-closed set is I∗g-closed. �

Corollary 3.24. If (X̃, T , I) is an ideal topological space, where I is codense

and F is a semi-open, I∗g-closed subset of X̃, then F is g-closed.

Proof. Since I = {∅}, F ∗ = Cl(F ) ⊇ F . Therefore, F is ∗-dense in itself. Since
F is I∗g-closed, by Theorem 3.22, F is g-closed. Conversely, by Theorem 3.18,
every g-closed set is I∗g-closed set. �

g∗-closed //

&&

∗g-closed //

&&

g-closed

&&
∗-closed // I∗g -closed //

xx

I∗g-closed // Ig-closed

g∗sI-closed
Diagram 3.1.1 (Relation between generalized closed sets)

Theorem 3.25. Let (X̃, T , I) be an ideal space and F ⊆ X̃. Then F is I∗g-
closed if and only if F = S−N , where S is ∗-closed and N contains no nonempty
g-closed set.

Proof. If F is I∗g-closed, then by Theorem 3.9 (5), N = F ∗ − F contains no
nonempty g-closed set. If S = Cl∗(F ), then S is ∗-closed and

S −N = (F ∪ F ∗)− (F ∗ − F ) = (F ∪ F ∗) ∩ (F ∗ ∩ F c)c = (F ∪ F ∗) ∩ ((F ∗)c ∪ F )

= (F ∪ F ∗) ∩ (F ∪ (F ∗)c) = F ∪ (F ∗ ∩ (F ∗)c) = F.

Conversely, suppose F = S−N , where S is ∗-closed and N contains no nonempty
g-closed set. Let V be an g-open set such that F ⊆ V . Then S −N ⊆ V which
implies that S ∩ (X̃ − V ) ⊆ N . Now F ⊆ S and since S∗ ⊆ S, F ∗ ⊆ S∗ and

so F ∗ ∩ (X̃ − V ) ⊆ S∗ ∩ (X̃ − V ) ⊆ S ∩ (X̃ − V ) ⊆ N . By hypothesis, since

F ∗ ∩ (X̃ − V ) is g-closed, F ∗ ∩ (X̃ − V ) = ∅ and so F ∗ ⊆ V . Hence, F is
I∗g-closed. �

Theorem 3.26. Let (X̃, T , I) be an ideal space and F ⊆ X̃. If F ⊆ D ⊆ F ∗,
then F ∗ = D∗ and D is ∗-dense in itself.

Proof. Since F ⊆ D, then F ∗ ⊆ D∗ and since D ⊆ F ∗, then D∗ ⊆ (F ∗)∗ ⊆ F ∗.
Therefore, F ∗ = D∗ and D ⊆ F ∗ ⊆ D∗. This completes the proof. �

Theorem 3.27. Let (X̃, T , I) be an ideal space and F ⊆ X̃. If F and D are

subsets of X̃ such that F ⊆ D ⊆ Cl∗(F ) and F is I∗g-closed, then D is I∗g-closed.
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Proof. Since F is I∗g-closed, then by Theorem 3.9 (5), Cl∗(F ) − F contains no
nonempty g-closed set. We have Cl∗(D)−D ⊆ Cl∗(F )− F and so Cl∗(D)−D
contains no nonempty g-closed set. Hence, D is I∗g-closed. �

Corollary 3.28. Let (X̃, T , I) be an ideal space. If F and B are subsets of X̃
such that F ⊆ B ⊆ F ∗ and F is I∗g-closed, then F and B are g∗-closed sets.

Proof. Let F and B be subsets of X̃ such that F ⊆ B ⊆ F ∗. This implies that
F ⊆ B ⊆ F ∗ ⊆ Cl∗(F ) and F is I∗g-closed. By Theorem 3.27, B is I∗g-closed.
Since F ⊆ B ⊆ F ∗, F ∗ = B∗ and so F and B are ∗-dense in itself. By Theorem
3.22, F and B are g∗-closed. �

Theorem 3.29. Let (X̃, T , I) be an ideal space and F ⊆ X̃. Then F is I∗g-open
if and only if S ⊆ Int∗(F ), whenever S is g-closed and S ⊆ F .

Proof. Suppose F is I∗g-open. If S is g-closed and S ⊆ F , then X̃−F ⊆ X̃−S and

so, Cl∗(X̃ −F ) ⊆ X̃ −S by Theorem 3.9 (2). Therefore, S ⊆ X̃ −Cl∗(X̃ −F ) =
Int∗(F ). Hence, S ⊆ Int∗(F ). Conversely, suppose the condition holds. Let V

be a g-open set such that X̃−F ⊆ V . Then X̃−V ⊆ F and so X̃−V ⊆ Int∗(F ).

Therefore, Cl∗(X̃ − F ) ⊆ V . By Theorem 3.9 (2), X̃ − F is I∗g-closed. Hence, F
is I∗g-open. �

Corollary 3.30. Let (X̃, T , I) be an ideal space and F ⊆ X̃. If F is I∗g-open,
then F ⊆ Int∗(F ) whenever S is closed and S ⊆ F .

Theorem 3.31. Let (X̃, T , I) be an ideal space and F ⊆ X̃. If F is I∗g-open
and Int∗(F ) ⊆ D ⊆ F , then D is I∗g-open.

Proof. Since F is I∗g-open, X̃−F is I∗g-closed. By Theorem 3.9 (4), Cl∗(X̃−F )−
(X̃ − F ) contains no nonempty g-closed set. Since Int∗(F ) ⊆ Int∗(D), we have

Cl∗(X̃−D) ⊆ Cl∗(X̃−F ) and so Cl∗(X̃−D)−(X̃−D) ⊆ Cl∗(X̃−F )−(X̃−F ).
Hence, D is I∗g-open. �

Theorem 3.32. Let (X̃, T , I) be any ideal topological space and F ⊆ X̃. Then
the following are true.

(1) F is I∗g-closed.

(2) F ∪ (X̃ − F ∗) is I∗g-closed.
(3) F − F ∗ is I∗g-closed.

Proof. (1) ⇒ (2): Suppose F is I∗g-closed. If V is any g-open set such that

F ∪ (X̃ − F ∗) ⊆ V , then X̃ − V ⊆ X̃ − (F ∪ (X̃ − F ∗)) = X̃ ∩ (F ∪ (F ∗)c)c =
F ∗ ∩ F c = F ∗ − F . Since F is I∗g-closed, by Theorem 3.9 (5), it follows that

X̃ − V = ∅ and so X̃ = V . Therefore, F ∪ (X̃ − F ∗) ⊆ V which implies that

F ∪ (X̃−F ∗) ⊆ X̃ and so (F ∪ (X̃−F ∗))∗ ⊆ X̃∗ ⊆ X̃ = V . Hence, F ∪ (X̃−F ∗)
is I∗g-closed.

(2) ⇒ (1): Suppose F ∪ (X̃ − F ∗) is I∗g-closed. If S is any g-closed set such

that S ⊆ F ∗−F , then S ⊆ F ∗ and S ⊆ X̃\F which implies that X̃−F ∗ ⊆ X̃−S
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and F ⊆ X̃ − S. Therefore, F ∪ (X̃ − F ∗) ⊆ F ∪ (X̃ − S) = X̃ − S and X̃ − S is

g-open. Since (F ∪ (X̃ − F ∗))∗ ⊆ X̃ − S, we have F ∗ ∪ (X̃ − F ∗)∗ ⊆ X̃ − S and

so F ∗ ⊆ X̃ − S which implies that S ⊆ X̃ − F ∗. Since S ⊆ F ∗, it follows that
S = ∅. Hence, F is I∗g-closed.

(2)⇒ (3): Since

X̃−(F ∗−F ) = X̃∩(F ∗∩F c)c = X̃∩((F ∗)c∪F ) = (X̃∩(F ∗)c)∪(X̃∩F ) = F∪(X̃−F ∗),

the equivalence is clear. �

Theorem 3.33. Let (X̃, T , I) be an ideal topological space. Then every subset

of X̃ is I∗g-closed if and only if every g-open set is ∗-closed.

Proof. Suppose every subset of X̃ is I∗g-closed. If V ⊆ X̃ is g-open, then V
is I∗g-closed and so V ∗ ⊆ V . Hence, V is ∗-closed. Conversely, suppose that

every g-open set is ∗-closed. If V is g-open set such that F ⊆ V ⊆ X̃, then
F ∗ ⊆ V ∗ ⊆ V and so F is I∗g-closed. �

Lemma 3.34 ([10], Theorem 6). Let (X̃, T , I) be an ideal space. If I is com-
pletely codense, then T ∗ ⊆ T α.

Theorem 3.35. Let (X̃, T , I) be an ideal topological space where I is completely
dense. Then the following are equivalent.

(1) X̃ is normal.
(2) For any disjoint closed sets F and D, there exist disjoint I∗g-open sets V

and U such that F ⊆ V and D ⊆ U .
(3) For any closed set F and open set U containing F , there exists an I∗g-

open set V such that F ⊆ V ⊆ Cl∗(V ) ⊆ U .

Proof. (1)⇒ (2): The proof follows from the fact that every open set is I∗g-open.

(2)⇒ (3): Suppose F is closed and U is an open set containing F . Since F and

X̃−U are disjoint closed sets, there exist disjoint I∗g-open sets V and ω such that

F ⊆ V and X̃−U ⊆ ω. Since X̃−U is g-closed and ω is I∗g-open, X̃−U ⊆ Int∗(ω)

and so X̃ − Int∗(ω) ⊆ U . Again, V ∩ ω = ∅ which implies that V ∩ Int∗(ω) = ∅
and so, V ⊆ X̃ − Int∗(ω) which implies that Cl∗(V ) ⊆ X̃ − Int∗(ω) ⊆ U . V is
the required I∗g-open sets with F ⊆ V ⊆ Cl∗(V ) ⊆ U .

(2) ⇒ (3): Let F and D be two disjoint closed subsets of X̃. By hypothesis,

there exists an I∗g-open set V such that F ⊆ V ⊆ Cl∗(V ) ⊆ X̃ − D. Since
V is I∗g-open, F ⊆ Int∗(V ). Since I is completely codense, by Lemma 3.34,

T ∗ ⊆ T α and so, Int∗(V ) and X̃ − Cl∗(V ) ∈ T α. Hence, F ⊆ Int∗(V ) ⊆
Int(Cl(Int(Int∗(V )))) = A and D ⊆ X̃−Cl∗(V ) ⊆ Int(Cl(Int(X̃−Cl∗(V )))) =
B, which proves (1). �

If I = N , it is not difficult to see I∗g-closed sets coincide with g∗p-closed sets
and so we have the following corollary.
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Corollary 3.36. Let (X̃, T , I) be an ideal space where I = N . Then the following
are equivalent.

(1) X̃ is normal.
(2) For any disjoint closed sets F and D, there exist disjoint g∗p-open sets

V and U such that F ⊆ V and D ⊆ U .
(3) For any closed set F and open set U containing F , there exists a g∗p-open

set V such that F ⊆ V ⊆ Cl∗(V ) ⊆ U .

A subset F of an ideal topological space (X̃, T , I) is said to be I-compact [38]
if for every T -open cover {ωα : α ∈ ∆} of F , there exists a finite subset ∆o of ∆

such that (X̃ − ∪{ωα : α ∈ ∆o}) ∈ I.

Corollary 3.37. Let (X̃, T , I) be an ideal space. If F is an I∗g-closed subset of

X̃, then F is I-compact.

Proof. The proof follows from the fact that every I∗g-closed is Ig-closed. �

4. Regular I∗g -Closed Sets

In this section, I∗g-regular spaces are introduced and characterized.

Definition 4.1. An ideal space (X̃, T , I) is said to be an I∗g-regular space if for
each pair consisting of a point x̃ and closed set D not containing x̃, there exist
disjoint I∗g-open sets V and U such that x ∈ V and D ⊂ U .

Definition 4.2. Let F be a subset of (X̃, T , I) and x̃ ∈ X̃. The subset F of X̃
is called an I∗g-open neighborhood of x̃ if there exists a I∗g-open set V containing
x̃ such that V ⊂ F .

Theorem 4.3. Let (X̃, T , I) be an ideal topological space where I is completely
dense. Then the following are equivalent.

(1) X̃ is I∗g-regular.

(2) For every closed set D not containing x ∈ X̃, there exist disjoint I∗g-open
sets V and U such that x ∈ V and D ⊂ U .

(3) For every open set U containing x ∈ X̃, there exists an I∗g-open set V of

X̃ such that x ∈ V ⊂ Cl∗(V ) ⊂ U .
(4) For every closed set F , the intersection of all the I∗g-closed neighborhoods

of F is F .
(5) For every set F and an open set D such that F ∩D 6= ∅, there exists an
I∗g-open set F such that F ∩ F 6= ∅ and Cl∗(F ) ⊂ D.

(6) For every non empty set F and closed set D such that F ∩D = ∅, there
exist disjoint I∗g-open sets S and M such that F ∩ S 6= ∅ and D ⊂M .

Proof. (1) and (2) are equivalent by definition.

(2) ⇒ (3): Let U be an open set such that x̃ ∈ U . Then X̃ − U is a closed
set not containing x̃. Therefore, there exist disjoint I∗g-open sets V and ω such

that x̃ ∈ V and X̃ − U ⊂ ω. Now X̃ − U ⊂ ω implies X̃ − U ⊂ Int∗(ω) and so

X̃ − Int∗(ω) ⊂ U . Again, V ∩ ω = ∅ implies that V ∩ Int∗(ω) = ∅ and hence,

Cl∗(V ) ⊂ X̃ − Int∗(ω). Therefore, x̃ ∈ V ⊂ Cl∗(V ) ⊂ U . This proves (3).
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(3)⇒ (4): Let F be a closed set and x̃ ∈ X̃ −F . By (3), there exists an I∗g-open

set V such that x̃ ∈ V ⊂ Cl∗(V ) ⊂ X̃ − F . Thus, F ⊂ X̃ − Cl∗(V ) ⊂ X̃ − V .

Consequently, X̃ − V is an I∗g-closed neighborhood of F and x̃ /∈ X̃ − V . This
proves (4).

(4) ⇒ (5): Let F ∩D 6= ∅, where D is open in X̃. Let x̃ ∈ F ∩D. Then X̃ −D
is closed and x̃ /∈ X̃ − D. Then by (4), there exists an I∗g-closed neighborhood

U of X̃ −D such that x̃ /∈ U . Let X̃ −D ⊂ V ⊂ U , where V is I∗g-open. Then

F = X̃ −U is I∗g-open such that x̃ ∈ F and F ∩F 6= ∅. Also, X̃ − V is I∗g-closed

and Cl∗(F ) = Cl∗(X̃ − U) ⊂ Cl∗(X̃ − V ) ⊂ D. This proves (5).
(5) ⇒ (6): Suppose F ∩ D 6= ∅, where F is nonempty and D is closed. Then

X̃ −D is open and F ∩ (X̃ −D) 6= ∅. By (5), there exists an I∗g-open set S such

that F ∩ S 6= ∅ and S ⊂ Cl∗(S) ⊂ X̃ −D. Let M = X̃ − Cl∗(S). Then D ⊂M .

S and M are I∗g-open sets such that M = X̃ −Cl∗(S) ⊂ X̃ −S. This proves (6).
(6)⇒ (1): This is true and completes the proof. �

Definition 4.4. An ideal space (X̃, T , I) is said to be

(1) ∗-finitely additive if

[⋃n
i=1 Fi

]∗
=
⋃n
i=1(Fi)

∗ for every positive integer

n.

(2) ∗-countably additive if

[⋃n
i=1 Fi

]∗
=
⋃∞
i=1(Fi)

∗.

(3) ∗-additive if

[⋃
α∈Ω Fα

]∗
=
⋃
α∈Ω(Fα)∗ for all indexing sets Ω, where Fi

s are subsets of X̃. Similarly, we define ∗-finitely multiplicative, count-
ably multiplicative ideal spaces by taking intersections in the place of
unions.

(4) I∗g-finitely additive (resp. I∗g-countable additive, I∗g-additive) if finite
union (resp.
countable union, arbitrary union) of I∗g-closed sets is I∗g-closed.

Similarly we define I∗g-finitely multiplicative (resp. I∗g-countably multiplicative,
I∗g-multiplicative) if finite intersection (resp. countable intersection, arbitrary in-
tersection) of I∗g-closed sets is I∗g-closed.

Remark 4.5. An ideal space (X̃, T , I) is said to be

(1) a ∗-finitely additive space (respectively, I∗g-countable additive space, ad-
ditive space) if it is I∗g-finitely additive (respectively, countably additive,
additive), but not conversely.

(2) a ∗-additive space if it is ∗-countably additive and a ∗-countable additive
space if it is ∗-finitely additive, but not conversely.

(3) a I∗g-additive space if it is I∗g-countably additive and a I∗g-countably ad-
ditive space if it is I∗g-additive, but not conversely.

Example 4.6. Let X̃ = R, I = {∅}, and T a cofinite topology.

Then T =

{
∅, X̃, F/F c is finite

}
. The closed sets are ∅, X̃, and all the finite

subsets. F ∗ = F if F is finite and X̃ if F is infinite.
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For every positive integer n, if Fn = {−n,−n+ 1, . . . , 0, . . . , n− 1, n}, then F ∗n =
Fn for all n. Also, (UFn)∗ = (Z)∗ = R and U(Fn)∗ = Z. Let F and B be the
set of all nonnegative and nonpositive integers, respectively.
Then F ∗ = R = B∗, F ∗ ∩ B∗ = R, and (F ∩ B)∗ = {0∗} = {0}. Therefore, this
space is

(1) not ∗-finitely multiplicative, and hence, not ∗-countably multiplicative,
and not ∗-multiplicative.

(2) ∗-finitely additive but not countably ∗-additive, and not ∗-additive.
(3) I∗g-multiplicative, I∗g-finitely multiplicative and I∗g-countably multiplica-

tive.
(4) I∗g-finitely additive, but not I∗g-countably additive and not I∗g-additive.

Remark 4.7. In an ideal topological space (X̃, T , I) which is ∗-finitely additive,
we have the following results:

(1) Cl∗(φ) = φ,

(2) Cl∗(X̃) = X̃,

(3) F ⊂ F a
∗
(I),

(4) F a
∗
⊂ Cl∗(F ),

(5) Cl∗(F ∪D) = Cl∗(F ) ∪ Cl∗(D),
(6) Cl∗(Cl∗(F )) = Cl∗(F )

for all subsets F , D, and X̃.
Therefore, Cl∗() satisfies Kuratowski closure axioms (Jankovic & Hamlett [19])
and hence, it defines a topology T ∗ whose closure operation is given by Cl∗(F ) =
F ∪ F ∗. Note that T ⊂ T ∗. Cl∗(F ) and int∗(F ) denote the closure and interior

of F in (X̃, T ∗).

Theorem 4.8. A subset of a ∗-finitely additive ideal space (X̃, T , I) is I∗g-open

if and only if F ⊆ Int∗(F ), when F ⊆ F and F is a g-closed subset of X̃.

Proof. Let F be I∗g-open and F be a g-closed subset of X̃ contained in F . Then

X̃−F is a g-open set containing X̃−F which implies X̃−Int∗(F ) = Cl∗(X̃−F ) ⊂
X̃−F . Conversely, let F ⊂ Int∗(F ) whenever F ⊆ F and F is a g-closed subset of

X̃. Let V be g-open and X̃−F ⊂ V . Then X̃−V ⊂ Int∗(F ) = X̃−Cl∗(X̃−F ).

Therefore, Cl∗(X̃−F ) ⊂ V which proves X̃−F is I∗g-closed. So F is I∗g-open. �

Theorem 4.9. For each (X̃, T , I), {x} is g-closed or {x}c is I∗g-closed in X̃.

Proof. If {x} is not g-closed, then {x}c is not g-open. Therefore, the only g-

open sets containing {x}c are X̃ and ({x}c)∗ ⊆ X̃. This proves that {x}c is
I∗gclosed. �

Theorem 4.10. In an ideal space (X̃, T , I) which is ∗-finitely additive, if V is
semi open and F is I∗g-open, then F ∩ V is I∗g-open.

Proof. Let X̃ − (V ∩ F ) ⊂ A and A be g-open.

Then (X̃−F )∪(X̃−V ) ⊂ A and this implies X̃−F ⊂ A and X̃−V ⊂ A. (X̃−F )

is I∗g-closed and A is g-open implies Cl∗(X̃−F ) ⊂ A and Cl∗(X̃−V ) ⊂ sCl(X̃−
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V ) = X̃ − V ⊂ A. Therefore, Cl∗[X̃ − (F ∩ V )] = Cl∗
[
(X̃ − F ) ∪ (X̃ − V )

]
=

Cl∗(X̃ − F ) ∪ Cl∗(X̃ − V ) ⊂ A.
Since the ideal space is ∗-finitely additive, this implies F ∩ V is I∗g-open. �

Theorem 4.11. If D is a subset of a ∗-finitely additive space (X̃, T , I) such that

F ⊂ D ⊂ Cl∗(F ) and F is I∗g-closed, then D is also I∗g-closed in X̃.

Proof. Let V be g-open and D ⊂ V . Then F ⊂ V implies Cl∗(F ) ⊂ V . There-
fore, Cl∗(D) ⊂ Cl∗(Cl∗(F )) ⊂ Cl∗(F ) ⊂ V which proves D is I∗g-closed. �

Theorem 4.12. If F and D are I∗g-closed sets in an ideal space (X̃, T , I), then
F ∪D is also an I∗g-closed set.

Proof. Let V be a I∗g-open subset of (X̃, T , I) containing F ∪D. Then F ⊂ V
and D ⊂ V . Since F and D are I∗g-closed, F ∗ ⊂ V and D∗ ⊂ V . By Remark 4.7,
(F ∪D)∗ = F ∗ ∪D∗. Thus, F ∪D ⊂ V which implies F ∪D is I∗g-closed. �

Definition 4.13. [18] A topological space (X̃, T ) is said to be a g-multiplicative

space if arbitrary intersections of g-closed sets in X̃ are g-closed.

Remark 4.14. [18]

(1) In g-multiplicative spaces, gCl(F ) is the intersection of all g-closed sets

in X̃ containing F and is also g-closed.
(2) Any indiscrete topological space (X̃, T ) is g-multiplicative.

(3) If X̃ = {a, b, c} and T = {X̃, ∅, {a}}, then {a, c} and {a, b} are g-closed,

but {a} is not g-closed and hence, (X̃, T ) is not g-multiplicative.

Theorem 4.15. Let (X̃, T , I) be a g-multiplicative ideal space and let F be I∗g-
closed. Then F is T ∗-closed and ⇐⇒ F ∗ − F is closed.

Proof. Necessity: F is T ∗-closed and =⇒ F ∗ ⊂ F =⇒ F ∗ − F = ∅ is closed.
Sufficiency: Let F ∗ − F be closed. Then it is g-closed. By (5) of Theorem 3.9,
F ∗ − F = ∅ which implies F ∗ ⊂ F . �

Theorem 4.16. Let (X̃, T , I) be a g-multiplicative ideal space and F ⊂ X̃. If

F is I∗g-closed, then F ∪ (X̃ − F ∗) is I∗g-closed.

Proof. Let V be g-open and F ∪ (X̃ − F ∗) ⊂ V .

Then X̃ − V ⊂ X̃ −
[
F ∪ (X̃ − F ∗)

]
= F ∗ − F . Since F is I∗g-closed, F ∗ − F

contains no nonempty g-closed set. Therefore, X̃ − V = ∅ which implies X̃ = V .
Thus, X̃ is the only g-open set containing F ∪(X̃−F ∗) which proves F ∪(X̃−F ∗)
is I∗g-closed. �

Theorem 4.17. Let F be a subset of a g-multiplicative ideal space (X̃, T , I). If
F is I∗g-closed, then F ∗ − F is I∗g-open.

Proof. Since X̃ − (F ∗ − F ) = F ∪ (X̃ − F ∗), the proof follows from Theorem
4.15. �
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Theorem 4.18. Let ( ˜̃X, T , I) be an ideal space. If every g-open set is T ∗-closed,

then every subset of X̃ is I∗g-closed.

Proof. Let F ⊂ V and V be a g-open set in X̃. Then Cl∗(F ) ⊂ Cl∗(V ) = V
which proves F is I∗g-closed. �

Theorem 4.19 ([12] Theorem 3.20). Let (X̃, T , I) be an ideal space and F ⊂
Ỹ ⊂ X̃, where Ỹ is α-open in X̃. Then F ∗(IỸ , T \Ỹ ) = F ∗(I, T ) ∩ Ỹ .

Theorem 4.20. Let (X̃, T , I) be an ideal space and F ⊂ Y ⊂ X̃. If F is I∗g-

closed in (Y, T /Y, IY ), Y is α-open and tau∗-closed in X̃. Then F is I∗g-closed

in X̃.

Proof. Let F ⊂ U and U be g-open in X̃. Then F ∗(IY , T \Y ) = F ∗(I, T )∩Y ⊂
U ∩Y . Then Y ⊂ U ∪ (X̃−F ∗(I, T )). Since Y is T ∗-closed, Y ∗ ⊂ Y . Therefore,

F ∗ ⊂ Y ∗ ⊂ Y ⊂ U∪(X̃−F ∗(T , I)). This implies F ∗ ⊂ U and hence, Cl∗(F ) ⊂ U .

So F is I∗g-closed in X̃. �

Definition 4.21. {Fα/α ∈ Ω} is said to be a locally finite (resp. locally count-

able) family of sets in (X̃, T , I) if for every x̃ ∈ X̃, there exists an open set U in

X̃ containing x̃ that intersects only a finite (resp. countable) number of members
Fα1 , . . . , Fαn (resp. Fαi , i = 1, . . .∞) of {Fα/α ∈ Ω}.

Theorem 4.22. Let (X̃, T , I) be an ideal space which is ∗-finitely additive, and

let {Fα/α ∈ Ω} be a locally finite family of sets in (X̃, T , I). Then
[⋃

α∈Ω Fα
]∗

=⋃
α∈Ω(Fα)∗.

Proof. Fα ⊂
⋃
Fα implies F ∗α ⊂ (

⋃
Fα)∗. Therefore,

[⋃
α∈Ω Fα

]∗ ⊇ ⋃α∈Ω(Fα)∗.
On the other hand, if x ∈

⋃
α∈Ω(Fα)∗, then there exists an open set V con-

taining x that intersects only a finite number of members Fα1 , . . . , Fαn . Let
U be a semi-open set containing x. Then V ∩ U is a semi-open set containing

x, which implies (V ∩ U) ∩
⋃
α∈Ω(Fα) /∈ I. That is,

[
(V ∩ U) ∩

⋃
α6=αi

(Fα)
]
∪[

(V ∩ U) ∩
⋃n
i=1(Fα)

]
/∈ I. This implies {∅} ∪

(
(V ∩ U) ∩

⋃n
i=1(Fα)

)
/∈ I and

this implies U ∩
[⋃n

i=1(Fα)
]
/∈ I. Therefore, x ∈

(⋃n
i=1(Fα)

)∗
=
⋃n
i=1(Fα)∗ ⊆⋃

α∈Ω(Fα)∗.

Therefore,
(⋃

α∈Ω Fα
)∗ ⊆ ⋃α∈Ω(Fα)∗. From 1 and 2, the result follows:(⋃

α∈Ω

Fα

)∗
=
⋃
α∈Ω

(Fα)∗.

�

Theorem 4.23. Let the ideal space (X̃, T , I) be ∗-finitely additive and let

{Fα/α ∈ Ω} be a locally finite family of sets in (X̃, T , I). If each Fα is I∗g-closed,

then
⋃
α∈Ω Fα is I∗g-closed in X̃.

Proof. Let
⋃
α∈Ω Fα ⊂ V and V be g-open in X̃. Then Fα ⊆ V for all α ∈

ω implies Cl∗(Fα) ⊆ V for all α ∈ ω. By Theorem 4.22, Cl∗(
⋃
α∈Ω Fα) =
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⋃
α∈Ω Cl

∗(Fα) ⊆ V .
Therefore,

⋃
α∈Ω Fα is I∗g-closed. �

Theorem 4.24. Let the ideal space (X̃, T , I) be ∗-countably additive and let

{Fα/α ∈ Ω} be a locally finite family of sets in (X̃, T , I). If each Fα is I∗g-closed,

then
⋃
α∈Ω Fα is I∗g-closed in X̃.

Proof. The proof is similar to the proof of Theorem 4.23. �

5. Conclusion and Future Scope

We developed the theory of ideal topology by constructing some new classes of
operators and sets in order to study some characterizations and basic properties
of these classes of operators and sets.

Our studies may lead to further research along the following lines.

(a) The introduction of I∗g-compact and I∗g-connected functions may be
studied. Some characterizations and basic properties of these classes
of functions can be investigated. We could develop relations between
these classes and the classes of I∗g-continuous functions.

(b) Give a deeper analysis of decomposition of continuing via idealization
and investigate properties of I∗g-closed sets and strong I∗g-closed sets.

(c) Develop a new strong continuous functions via I∗g-closed sets called con-
tra I∗g-continuous functions and strongly contra-e-I-continuous func-
tions. Also, explore weaker notions of sets and functions and weakly
I∗g-continuous functions.

(d) Study the relationships between the new notions of maximal I∗g-closed
sets, I∗g -compact spaces and I∗g -connected spaces via ideal topological
spaces.
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[28] M. K. R. S. V. Kumar, On ǧ-closed sets in topological spaces, Bull. Allah Mathe-

matics Soc., 18 (2003), 99–112.

[29] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
[30] N. Levine, Semi-open sets and semi-continuity in topological spaces, American

Mathematical Monthly, 70 (1963), 36–41.
[31] N. Levine, A decomposition of continuity in topological spaces, American Mathe-

matical Monthly, 68 (1961), 44–46.
[32] N. Levine, Generalized closed sets in topology, Rendiconti del Circolo Matematica

di Palermo Series 2, 19 (1970), 89–96.
[33] H. Maki, R. Devi, and K. Balachandran, Associated topologies of generalized α-

closed sets and α-generalized closed sets, Memoirs of the Faculty of Science Kochi
University Series A Mathematics, 15 (1994), 51–63.

190 MISSOURI J. OF MATH. SCI., VOL. 31, NO. 2



I∗g-CLOSED SETS VIA IDEAL TOPOLOGICAL SPACES

[34] A. S. Mashhour, M. E. El-Monsef, and S. N. El-Deeb, On precontinuous and weak

precontinuous functions, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
[35] M. N. Mukherjee, R. Bishwambhar, and R. Sen, On extension of topological spaces

in terms of ideals, Topology and its Appl., 154 (2007), 3167–3172.
[36] M. Murugalingam, A study of semi generalized topology, Ph.D. Thesis, Manonma-

niam Sundaranar University Tirunelveli Tamil Nadu India, 2005.

[37] A. A. Nasef and R. A. Mahmoud, Some applications via fuzzy ideals, Chaos, Solitons
and Fractals, 13 (2002), 825–831.

[38] R. L. Newcomb, Topologies which are compact modulo an ideal, Ph.D. Dissertation.

University of California - Santa Barbara, 1967.
[39] T. Noiri, H. Maki, and J. Umehara, Generalized preclosed functions, Indian Journal

of Pure and Applied Mathematics, 19 (1998), 13–20.

[40] T. Noiri and V. Popa, Between ∗-closed and I-g-closed sets in ideal topological
spaces, Rendiconti del Circolo Matematico di Palermo, 59 (2010), 251–260.

[41] N. Palaniappan and K. C. Rao, Regular generalized closed sets, Kyungpook Math-

ematics Journal, 33 (1993), 211–219.
[42] N. R. Paul, Rgi-closed sets in ideal topological spaces, International Journal of Com-

puter Applications, 69.4 (2013), 23–27.
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[46] S. Yüksel, A. Açikgöz, and T. Noiri, On α-I-continuous functions, Turk. J. Math.,

29 (2005), 39–51.

Department of Mathematics, Al-Balqa Applied University, Salt 19117, Jor-

dan
Email address: wadeialomeri@bau.edu.jo and wadeimoon1@hotmail.com

Department of Mathematics, Al-Balqa Applied University, Salt 19117, Jor-
dan

Email address: mohammedabusaleem2005@yahoo.com

MISSOURI J. OF MATH. SCI., FALL 2019 191


