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ON THE EXPRESSION OF GENERALIZED INVERSES OF

PERTURBED BOUNDED LINEAR OPERATORS

Jiu Ding

Abstract. Let X and Y be two Hilbert spaces or Banach spaces, and let

T :X → Y be a bounded linear operator with closed range. Let T̃ = T + δT with

‖δT ‖‖T †‖ < 1. We give some equivalent conditions for the generalized inverse of T̃

to have the simplest expression T̃ † = (I + T †δT )−1T † = T †(I + δTT †)−1.

1. Introduction. Let X and Y be two Banach spaces, let L(X,Y ) denote the

Banach space of all bounded linear operators T :X → Y with the operator norm

‖T ‖ = sup{‖Tx‖ : ‖x‖ = 1}, and let LC(X,Y ) be the subspace of all T ∈ L(X,Y )

with closed range. For T ∈ LC(X,Y ), if there exist two projections (bounded linear

operators which are idempotents) P of X onto N(T ) along N(T )c and Q of Y onto

R(T ) along R(T )c, where N(T )c or R(T )c is a topological complement of the null

space N(T ) of T inX or the range R(T ) of T in Y , respectively, then the generalized

inverse T † ∈ LC(Y,X) of T with respect to P, Q is uniquely determined by the

four equalities

TT †T = T, T †TT † = T †, T †T = I − P, TT † = Q. (1)

Since the generalized inverse of T also depends on the choice of the projections P

and Q (i.e., the choice of N(T )c and R(T )c as topological complements of N(T ) and

R(T ), respectively), we sometimes write T † as T †
P,Q to emphasize the dependence.

When X, Y are Hilbert spaces, we further require that the projections P, Q be

orthogonal, i.e., N(T )c = N(T )⊥ and R(T )c = R(T )⊥, so that (T †T )∗ = T †T and

(TT †)∗ = TT †. In this special case (1) becomes

TT †T = T, T †TT † = T †, (T †T )∗ = T †T, (TT †)∗ = TT †, (2)

and T †, which depends only on T , always exists and is usually called the Moore-

Penrose inverse of T . See [1] and [7] for more details.

In [5] it was shown that in the Hilbert space case, if T ∈ LC(X,Y ) is one-to-one

with R(δT ) ⊂ R(T ) or onto with N(T ) ⊂ N(δT ), then

T̃ † = (I + T †δT )−1T † = T †(I + δTT †)−1 (3)
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if ‖T †‖‖δT ‖ < 1. It was further shown in [8] that if R(δT ) ⊂ R(T ) and N(T ) ⊂

N(δT ), then (3) is true when ‖T †‖‖δT ‖ < 1. The expression (3) is the simplest

possible for the generalized inverse of the perturbed operator. Moreover (3) implies

that

‖T̃ †‖ ≤
‖T †‖

1− ‖T †‖‖δT ‖
,

‖T̃ † − T †‖

‖T †‖
≤

‖T †‖‖δT ‖

1− ‖T †‖‖δT ‖
,

which gives the best possible estimates for T̃ †. In this paper we give a unified

approach to generalize the above results and prove that in the Hilbert space case

(3) is valid if and only if the perturbed operator T̃ has the same range and null

space as T , and we will also give several equivalent conditions for (3) to be true in

the more general Banach space setting.

The problem of the expression of the generalized inverse of the perturbed oper-

ator has been investigated in recent papers [3, 4, 5, 8]. In the case of Banach spaces

a classical result on the expression of the generalized inverse of the perturbed op-

erator is Theorem 3.9 in [7], and more results have been obtained in [3]. Basically

such results say that for the so-called stable perturbation [3] or more generally the

perturbation such that (I + δTT †)−1T̃ maps N(T ) into R(T ) [7], the expression

(3) is true. Our equivalent conditions to (3) will extend the previous results. In

particular we will show that if ‖T †‖‖δT ‖ < 1, then (3) is true if and only if T̃ is

a stable perturbation of T , and the two sufficient conditions above in [3] and [7]

are actually equivalent. However, in the Hilbert space case, we do not expect the

simple expression (3) under the stable perturbation because of the orthogonality re-

quirement. Some complicated expressions for the stable perturbation and the more

special range preserving or null space preserving perturbation have been obtained

in [4, 8].

2. Preliminary Results. Let X, Y be Banach spaces and T ∈ LC(X,Y ).

We assume that T † exists with the corresponding topological decompositions X =

N(T )⊕N(T )c and Y = R(T )⊕R(T )c. Let T̃ = T + δT . Throughout the paper we

assume that the perturbation δT is small enough such that ‖T †‖‖δT ‖ < 1. Then,

by the Neumann Lemma [6], both (I + T †δT )−1and (I + δTT †)−1 exist and

(I + T †δT )−1T † = T †(I + δTT †)−1. (4)
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In this paper we always denote

U ≡ (I + T †δT )−1(I − T †T ), V ≡ (I − TT †)(I + δTT †)−1.

The following three lemmas are not only useful in the next section, but also give

general properties of U and V .

Lemma 2.1.

(i) U is the projection of X onto (I+T †δT )−1N(T ) along N(T )c. In particular, if

X, Y are Hilbert spaces, then U is the projection of X onto (I+T †δT )−1N(T )

along N(T )⊥.

(ii) V is the projection of Y onto R(T )c along (I + δTT †)R(T ). In particular,

if X, Y are Hilbert spaces, then V is the projection of Y onto R(T )⊥ along

(I + δTT †)R(T ).

Proof. (i) By (1), (I−T †T )(I+T †δT ) = I−T †T . So (I−T †T )(I+T †δT )−1 =

I − T †T . It follows that

U2 = (I + T †δT )−1(I − T †T )(I + T †δT )−1(I − T †T )

= (I + T †δT )−1(I − T †T ) = U.

Thus, U is the projection of X onto R(U) = (I + T †δT )−1R(I − T †T ) = (I +

T †δT )−1N(T ) along N(U) = N(I − T †T ) = N(T )c.

(ii) Since (I + δTT †)(I − TT †) = I − TT †, we have (I + δTT †)−1(I − TT †) =

I−TT †. So V 2 = V . It is obvious that R(V ) = R(T )c andN(V ) = (I+δTT †)R(T ).

Remark 2.1. Even in the case of Hilbert spaces, U or V may not be orthogonal

projections.

Lemma 2.2.

(i) N(T̃ ) ⊂ R(U) = (I + T †δT )−1N(T ).

(ii) R(T̃ ) ⊃ N(V ) = (I + δTT †)R(T ).

Proof. Since

U = (I + T †δT )−1[I + T †δT − T †δT − T †T ] = I − (I + T †δT )−1T †T̃ , (5)
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T̃ x = 0 implies x = Ux ∈ R(U). Hence, (i) is true. (ii) is from the fact that

V = [I + δTT † − δTT † − TT †](I + δTT †)−1 = I − T̃ T †(I + δTT †)−1. (6)

Lemma 2.3. T̃U = V T̃ . Hence,

(i) R(T̃U) = R(V T̃ ) ⊂ R(V ) = R(T )c and

(ii) N(V T̃ ) = N(T̃U) ⊃ N(U) = N(T )c.

Proof. By (4), (5), and (6), we have

T̃U = T̃ [I − (I + T †δT )−1T †T̃ ] = T̃ [I − T †(I + δTT †)−1T̃ ]

= [I − T̃ T †(I + δTT †)−1]T̃ = V T̃ .

(i) and (ii) follow immediately.

Remark 2.2. The projection U was first studied in [2] in the Hilbert space case

and was also investigated in [3] when X, Y are Banach spaces.

In the next section we will show that when X and Y are Banach spaces, (3) is

satisfied if and only if either N(T̃ ) ⊃ R(U) or R(T̃ ) ⊂ N(V ).

3. Main Results. Now we give some equivalent conditions to the expression

(3) for the generalized inverse of T̃ . We first present the result for Hilbert spaces.

Theorem 3.1. Let X, Y be Hilbert spaces. A necessary and sufficient condition

for (3) to be true is that R(T̃ ) = R(T ) and N(T̃ ) = N(T ).

Proof. Suppose that R(T̃ ) = R(T ) and N(T̃ ) = N(T ). Then, since R(δT ) ⊂

R(T ) and N(δT ) ⊃ N(T ),

T̃ = T (I + T †δT ) = (I + δTT †)T. (7)

Let A denote either one of the two expressions in (4). Then

T̃A = T (I + T †δT )(I + T †δT )−1T † = TT †,

AT̃ = T †(I + δTT †)−1(I + δTT †)T = T †T,

T̃AT̃ = TT †T (I + T †δT ) = T (I + T †δT ) = T̃ ,

AT̃A = (I + T †δT )−1T †TT † = (I + T †δT )−1T † = A.
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Hence, T̃ † = A by (2), i.e., (3) holds.

Now suppose that (3) gives the expression of T̃ †. Then, by (5),

T̃ †T̃ = (I + T †δT )−1T †T̃ = I − U. (8)

From Lemma 2.1 (i), I − U is a projection of X onto N(T )⊥. Since T̃ †T̃ is the

orthogonal projection of X onto N(T̃ )⊥ along N(T̃ ), we must have N(T̃ ) = N(T ).

On the other hand, from (6),

T̃ T̃ † = T̃ T †(I + δTT †)−1 = I − V. (9)

By Lemma 2.1 (ii), I−V is a projection of Y onto R(T ). Since T̃ T̃ † is the orthogonal

projection of Y onto R(T̃ ) along R(T̃ )⊥, R(T̃ ) = R(T ).

In the remainder of this section we assume that X, Y are Banach spaces

without mentioning it explicitly.

Proposition 3.1. R(U) = N(T̃ ) if and only if T̃U = 0, if and only if V T̃ = 0,

and if and only if N(V ) = R(T̃ ).

Proof. By Lemma 2.2 (i), R(U) = N(T̃ ) if and only if R(U) ⊂ N(T̃ ) if and

only if T̃U = 0. By Lemma 2.2 (ii), N(V ) = R(T̃ ) if and only if N(V ) ⊃ R(T̃ )

if and only if V T̃ = 0. Since T̃U = V T̃ from Lemma 2.3, T̃U = 0 if and only if

V T̃ = 0.

Now we are able to give several equivalent conditions to (3).

Theorem 3.2. Let X, Y be Banach spaces, let T ∈ LC(X,Y ), and let T̃ =

T + δT . If ‖T †‖‖δT ‖ < 1, then the following are equivalent:

(i) T̃ † = (I + T †δT )−1T † = T †(I + δTT †)−1.

(ii) R(U) = N(T̃ ), i.e., (I + T †δT )−1N(T ) = N(T̃ ).

(iii) T̃U = 0.

(iv) T̃ (I + T †δT )−1 maps N(T ) to 0.

(v) N(V ) = R(T̃ ), i.e.,(I + δTT †)R(T ) = R(T̃ ).

(vi) V T̃ = 0.

(vii) (I + δTT †)−1T̃ maps N(T ) into R(T ).

Moreover in any case T̃ † is with respect to the topological decompositions

X = N(T̃ )⊕N(T )c, Y = R(T̃ )⊕R(T )c. (10)
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Proof. Because of Proposition 3.1, it is enough to prove the equivalence of (i)

and (ii). Suppose that (ii) is true. Let A be the expressions in (4). Then, as shown

in (8) and (9), AT̃ = I − U and so AT̃ is the projection of X onto N(U) = N(T )c

along R(U) = (I +T †δT )−1N(T ) by Lemma 2.1 (i), and T̃A = I −V and so T̃A is

the projection of Y onto N(V ) = (I + δTT †)R(T ) along R(V ) = R(T )c by Lemma

2.1 (ii). From the assumption that R(U) = N(T̃ ), we see that AT̃ is the projection

of X onto N(T̃ )c = N(T )c along N(T̃ ). Since T †TT † = T †,

UA = (I + T †δT )−1(I − T †T )T †(I + δTT †)−1 = 0,

from which it follows that

AT̃A = (I − U)A = A− UA = A. (11)

On the other hand, T̃U = 0 since R(U) = N(T̃ ), so

T̃AT̃ = T̃ (I − U) = T̃ − T̃U = T̃ . (12)

Lastly, since R(T̃A) ⊃ R(T̃ ) because of (12), R(T̃A) = R(T̃ ) since R(T̃A) ⊂ R(T̃ ).

Hence, T̃A is the projection of Y onto R(T̃ ) along R(T̃ )c = R(T )c. Therefore,

T̃ † = A, i.e., (i) is satisfied.

Now suppose that (i) is true. Then T̃ †T̃ = I − U , which, by Lemma 2.1 (i),

is the projection of X onto N(T )c along R(U). Since T̃ †T̃ is the projection of X

onto N(T̃ )c along N(T̃ ), we have (ii).

Remark 3.1. That (ii) implies (i) is also from Theorem 3.9 in [7] and Proposi-

tion 3.2 of [3].

Remark 3.2. (vii) is the sufficient condition used in [7] to guarantee (i), and

the equivalence of (ii) and (vii) was also proved in [3].

In [3] it was shown that if T̃ is a stable perturbation of T , i.e.,

R(T̃ ) ∩R(T )c = {0}, (13)

then (3) is true. The next theorem indicates that it is also necessary.

Theorem 3.3. Under the same assumption as in Theorem 3.2, (3) is valid if

and only if

(i) T̃ is a stable perturbation of T , or
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(ii) X = N(T̃ ) +N(T )c.

Proof. Suppose that (3) is true, then (i) and (ii) follow from (1). If (i) is

assumed, i.e., (13) is satisfied, then, since R(T̃U) ⊂ R(T̃ ), from Lemma 2.3 (i),

R(T̃U) ⊂ R(T̃ ) ∩R(T )c = {0},

i.e., T̃U = 0. Hence, by Theorem 3.2, (3) is true. Now suppose that (ii) is true.

Then, since N(V T̃ ) ⊃ N(T̃ ), by Lemma 2.3 (ii),

N(V T̃ ) ⊃ N(T̃ ) +N(T )c = X,

i.e., V T̃ = 0. So we have (3) by Theorem 3.2.

Remark 3.3. Therefore (10) is also a necessary and sufficient condition to the

expression (3).

To end this section we present some sufficient conditions for (3) to be true, in

which the sufficiency of (i) (iii) and (iv) was also proved in [3].

Proposition 3.2. Any of the following implies (3).

(i) dimN(T̃ ) = dimN(T ) < ∞.

(ii) dimR(T̃ ) = dimR(T ) < ∞.

(iii) N(T̃ ) = N(T ).

(iv) R(T̃ ) = R(T ).

Proof. We need the fact that both (I + T †δT )−1 and (I + δTT †) are isomor-

phisms. Since N(T̃ ) ⊂ R(U) = (I + T †δT )−1N(T ) by Lemma 2.2 (i), (i) implies

that N(T̃ ) = R(U), so (3) holds by Theorem 3.2 (ii). Similarly using Lemma 2.2

(ii), we see that (ii) implies that R(T̃ ) = N(V ) which implies (3) by Theorem 3.2

(v). Lastly the sufficiency of (iii) and (iv) are obvious from Theorem 3.3.

Corollary 3.1. If X and Y are finite dimensional normed spaces, then (3) is

true if and only if Rank T̃ = Rank T .

Acknowledgement. Research was supported in part by a China Bridge fellow-

ship via NSF of China and CBI of the University of Connecticut.



VOLUME 15, NUMBER 1, WINTER 2003 47

References

1. S. L. Campbell and C. D. Meyer, Jr., Generalized Inverses of Linear Transfor-

mations, Pitman, New York, 1979.

2. G. Chen, M. Wei, and Y. Xue, “Perturbation Analysis of the Least Squares
Solution in Hilbert Spaces,” Linear Alg. Appl., 244 (1996), 69–81.

3. G. Chen and Y. Xue, “Perturbation Analysis for the Operator Equation Tx = b

in Banach Spaces,” J. Math. Anal. Appl., 212 (1997), 107–125.

4. G. Chen and Y. Xue, “The Expression of the Generalized Inverse of the Per-
turbed Operator Under Type I Perturbation in Hilbert Spaces,” Linear Alg.

Appl., 285 (1998), 1–6.

5. J. Ding and L. Huang, “On the Perturbation of the Least Squares Solutions in
Hilbert Spaces,” Linear Alg. Appl., 212/213 (1994), 487–500.

6. T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New
York, 1984.

7. M. Z. Nashed, “Perturbations and Approximations for Generalized Inverses
and Linear Operator Equations,” Generalized Inverses and Applications, M.
Z. Nashed (editor), Academic Press, New York, 325–396, 1976.

8. Y. Wei and J. Ding, “Representations for Moore-Penrose Inverses in Hilbert
Spaces,” Applied Math. Letters (to appear).

Jiu Ding
Department of Mathematics
The University of Southern Mississippi
Hattiesburg, MS 39406-5045
email: Jiu.Ding@usm.edu


