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ANOTHER PROOF OF THE CHANGE OF VARIABLE FORMULA

FOR d-DIMENSIONAL INTEGRALS

Jiu Ding

The Volume 105, Number 7 issue of The American Mathematical Monthly

published a new proof of the change of the variable formula for d-dimensional
integrals

∫

Rd

f(x) dλ(x) = | det(A)|

∫

Rd

f(Ax) dλ(x) (1)

with an invertible matrix A, based on group theoretical arguments [1]. In this note
we provide another proof of (1) to illustrate an application of elementary measure
theory and the singular value decomposition.

We use the same notation as in [1]. The measure λ ◦A−1, which is defined by
(λ◦A−1)(B) = λ(A−1(B)) for all Borel sets B, is equivalent to (i.e., absolutely con-
tinuous with respect to each other) the Lebesgue measure λ for any A ∈ GL(d,R).

Proposition 1.

∫

Rd

f(Ax) dλ(x) =

∫

Rd

f(x) d(λ ◦A−1)(x). (2)

Proof. Let f = 1B, where 1B is the characteristic function of B. Then

∫

Rd

1B(Ax) dλ(x) = λ(A−1(B)) =

∫

Rd

1B(x) d(λ ◦A−1)(x),

i.e., (2) is true for all characteristic functions, which implies that (2) is satisfied by
all simple functions. Since f is the limit of a sequence of simple functions [3], using
a limiting process we see that (2) is valid for all integrable functions f .

Proposition 2. If A ∈ GL(d,R) is orthogonal, then (λ ◦ A−1)(B) = λ(B) for
all Borel sets B.

Proof. Every orthogonal matrix is a product of several rotations and reflections
which do not change the Lebesgue measure of a Borel set.
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Proposition 3. If A ∈ GL(d,R) is diagonal, then (1) is true.

Proof. Let A = diag(a1, . . . , ad). Then it is obvious that

(λ ◦A−1)(B) =

∣

∣

∣

∣

d
∏

i=1

ai

∣

∣

∣

∣

−1

λ(B) = | det(A)|−1λ(B).

Hence, (1) follows from Proposition 1.

Now, by the singular value decomposition theorem [2], A = UTDV , where U

and V are orthogonal matrices and D is an invertible diagonal matrix. Thus, using
the above propositions,

∫

Rd

f(Ax) dλ(x) =

∫

Rd

(f ◦ UT ◦D)(V x) dλ(x) =

∫

Rd

(f ◦ UT )(Dx) dλ(x)

= | det(D)|−1

∫

Rd

f(UTx) dλ(x) = | det(A)|−1

∫

Rd

f(x) dλ(x).

Therefore, (1) is proved.
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