Open Access
Translator Disclaimer
Fall 2000 On the Investigation of a Linear Eigenvalue Problem for Matrices
Galip Oturanç
Missouri J. Math. Sci. 12(3): 170-182 (Fall 2000). DOI: 10.35834/2000/1203170

Abstract

This paper investigates the properties of eigenvalues and eigenvectors of the problem $Jy + \lambda Ry = (1/\lambda ) Cy$, where $J$ is a "tridiagonal'' real symmetric matrix and $R$ and $C$ are positive diagonal matrices. The results obtained are used to solve the corresponding system of differential equations with boundary and initial conditions.

Citation

Download Citation

Galip Oturanç. "On the Investigation of a Linear Eigenvalue Problem for Matrices." Missouri J. Math. Sci. 12 (3) 170 - 182, Fall 2000. https://doi.org/10.35834/2000/1203170

Information

Published: Fall 2000
First available in Project Euclid: 8 October 2019

zbMATH: 1031.15010
MathSciNet: MR1796502
Digital Object Identifier: 10.35834/2000/1203170

Rights: Copyright © 2000 Central Missouri State University, Department of Mathematics and Computer Science

JOURNAL ARTICLE
13 PAGES


SHARE
Vol.12 • No. 3 • Fall 2000
Back to Top