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Volume and Hilbert Function of R-Divisors

Mihai Fulger, János Kollár, & Brian Lehmann

1. Introduction

Let X be a proper, normal algebraic variety of dimension n over a field K , and D

an R-divisor on X. The Hilbert function of D is the function

H(X,D) : m �→ h0(mD) := dimK H 0(X,OX(�mD�))
defined for all m ∈ R. If D is an ample Cartier divisor, then H(X,D) agrees
with the usual Hilbert polynomial whenever m � 1 is an integer, but in general
H(X,D) is not a polynomial, not even if D is a Z-divisor and m ∈ Z. The simplest
numerical invariant associated to the Hilbert function is the volume of D, defined
as

vol(D) := lim sup
m→∞

h0(mD)

mn/n! .

If E is an effective R-divisor, then

h0(mD − mE) ≤ h0(mD) ≤ h0(mD + mE) (∗)

for every m > 0; hence,

vol(D − E) ≤ vol(D) ≤ vol(D + E). (∗∗)

Furthermore, if equality holds in (∗) for every m � 1, then equality holds in
(∗∗). The aim of this note is to prove the converse for big divisors, that is, when
vol(D) > 0. Although the volume does not determine the Hilbert function, we
prove that

H(X,D) ≡ H(X,D − E) ⇔ vol(D) = vol(D − E) and

H(X,D) ≡ H(X,D + E) ⇔ vol(D) = vol(D + E).

As a byproduct of the proof, we also obtain a characterization of such divisors
E in terms of the negative part Nσ (D) of the Zariski–Nakayama-decomposition
(also called σ -decomposition) and of the divisorial part of the augmented base
locus Bdiv+ (D); see [Nak04], (4.1) and Definition 5.1 for definitions.

Another interesting consequence is that the answer depends only on the R-
linear equivalence class of D. This is obvious for Z-linear equivalence, but it can
easily happen that D′ ∼R D yet h0(X,mD) �= h0(X,mD′) for every m > 0; see
Example 2.6. In fact, the only relationship between H(X,D) and H(X,D′) that
we know of is vol(D) = vol(D′).

Our main results are the following.

Received April 7, 2015. Revision received August 31, 2015.

371

http://www.lsa.umich.edu/math/outreach/michiganmathematicaljournal


372 M. Fulger, J . Kollár, & B. Lehmann

Theorem A. Let X be a proper, normal algebraic variety over a perfect field, D

a big R-divisor on X, and E an effective R-divisor on X. Then the following are
equivalent.

(i) The equality vol(D − E) = vol(D) holds.
(ii) The negative part Nσ (D) dominates E, that is E ≤ Nσ (D).

(iii) The equality of Hilbert functions h0(mD′ −mE) = h0(mD′) holds for every
D′ ∼R D and all m > 0.

(iv) The equality of Hilbert functions h0(mD − mE) = h0(mD) holds for all
m > 0.

Furthermore, if D is R-Cartier and nef, then these are also equivalent to

(v) The divisor E = 0.

Theorem B. Let X be a proper, normal algebraic variety over a perfect field, D

a big R-divisor on X, and E an effective R-divisor on X. Then the following are
equivalent.

(i) The equality vol(D + E) = vol(D) holds.
(ii) The support of E is contained in Bdiv+ (D).

(iii) The equality h0(mD′ + rE) = h0(mD′) holds for every D′ ∼R D and all
m,r > 0.

(iv) The equality of Hilbert functions h0(mD + mE) = h0(mD) holds for all
m > 0.

Furthermore, if D is R-Cartier and nef, then these are also equivalent to

(v) The vanishing of the intersection number Dn−1 · E = 0.

Special cases of these theorems were first conjectured in connection with the nu-
merical stability criteria for families of canonical models of varieties of general
type [Kol15]. In trying to prove these, we gradually realized that the stated results
hold and the general setting led to shorter proofs.

The theorems are proved in Section 2, but the necessary technical background
results involving R-divisors, the Zariski–Nakayama-decomposition and the aug-
mented base locus on singular varieties are left to Sections 3 through 5. Much of
the relevant literature works with smooth projective varieties over C, but many of
these proofs apply in more general settings. We went through them, and we state
clearly which parts work for normal varieties in any characteristic. We also estab-
lish several results that show how to reduce similar types of questions to smooth
and projective varieties. These should be useful in similar contexts.

2. Proofs of the Theorems

Proposition 2.1. Let X be a normal proper variety over an algebraically closed
field, and D a big R-divisor. Suppose that D = P +N with vol(P ) = vol(D) and
N effective. Then N ≤ Nσ (D).

The proof is a modification of [FL13, Prop. 5.3].
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Proof of Proposition 2.1. By Corollary 3.4 we may find a projective birational
model X′ and R-Cartier R-divisors D′ and P ′ on X′ such that for any positive
real m, the pushforward of OX′(mD′) and OX′(mP ′) are respectively OX(mD)

and OX(mP), and the difference D′ − P ′ is effective. Note that D′ and P ′ still
satisfy the hypotheses of the theorem. If we prove the statement on X′, then we
can conclude the statement on X by pushing forward and applying Lemma 4.2.
So without loss of generality we may assume that P and D, and hence N , are
R-Cartier R-divisors and that X is projective.

If π : Y → X is a generically finite proper morphism from a normal projective
variety Y , then

π∗Nσ (π∗D) = (degπ) · Nσ (D)

by Lemma 4.12(ii). Furthermore,

vol(π∗D) = (degπ) · vol(D)

by Theorem 3.5(ii), the homogeneity of vol, and [Kür06, Prop. 2.9(1)] (the proof
there does not use the assumption that the characteristic is zero). Therefore, after
passing to a nonsingular alteration (cf. [dJ96]), it is enough to consider the case
where X is nonsingular and projective.

By assumption the volume of P does not change if we add a small multi-
ple of N . Thus, by [Cut13b, Thm. 5.6] (see also [BFJ09, Thm. A] and [LM09,
Cor. C]),

〈P n−1〉 · N = 0,

where 〈P n−1〉 is the positive intersection product defined in [Cut13b], inspired
by [BFJ09] and classical work of Matsusaka ([Mat72, p. 1031]; see also [LM75,
p. 515]).

As in the proof of [BFJ09, Thm. 4.9], it follows that for any ample R-Cartier
R-divisor A on X and any small ε > 0, we have

Supp(N) ⊆ Supp(Nσ (P − εA)).

(Otherwise, from P = ε
2A+( ε

2A+Pσ (P −εA))+Nσ (P −εA) we get P ≥Ni

ε
2A

for some component Ni of N , i.e., P − ε
2A is numerically equivalent to an effec-

tive R-divisor that does not contain Ni in its support. Using [BFJ09, Rem. 4.5],

we see that εn−1

2n−1 An−1 · Ni ≤ 〈P n−1〉|Ni
≤ 〈P n−1〉 · Ni ≤ 〈P n−1〉 · N , but the LHS

is only zero when N = 0.)
In particular, Lemma 4.13 shows that Nσ (P − εA + N) = Nσ (P − εA) + N .

Letting ε tend to 0 and using the continuity of σ as in Lemma 4.1(iv), we see that
Nσ (D) = Nσ (P ) + N . �

We reduce our main theorems to the case where the base field is algebraically
closed.

Remark 2.2. Let K be a field, and L/K a separable field extension. Base change
to L is denoted by the subscript L. If XK is a proper, normal algebraic variety
over K , then XL is a disjoint union of proper, normal algebraic varieties over L.
If EK ⊂ XK is a prime divisor, then EL ⊂ XL is a sum of prime divisors, each
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appearing with coefficient 1. Thus, if DK is an R-divisor on XK , then �DK�L =
�DL�. Thus,

(OXK
(DK))L = OXL

(DL) and h0(DK) = h0(DL). (2.1)

Similarly, if DK is a Z-divisor, then |DK |L = |DL|, and hence the base locus
commutes with separable field extensions. Using the characterization given in
Lemma 4.1(i) and Lemma 5.3, this implies that

Nσ (DL) = (Nσ (DK))L and Bdiv+ (DL) = (Bdiv+ (DK))L. (2.2)

(If XK is geometrically normal but L/K is not separable, then it can happen that
�DK�L �= �DL�. However, (2.2) still holds.)

If Theorems A and B hold for proper, normal varieties over an algebraically
closed field, then they clearly also hold for proper, normal, equidimensional
schemes over an algebraically closed field. Thus, by the preceding considerations,
they hold for proper, normal varieties over any perfect field.

Proof of Theorem A. By Remark 2.2 we may work over an algebraically closed
field. The implications (ii) → (iii) → (iv) → (i) are immediate, whereas (i) → (ii)
is Proposition 2.1. Any nef R-Cartier R-divisor D is movable, that is, Nσ (D) = 0.
Then the equivalence between (ii) and (v) is clear. �

Remark 2.3. The work of [KL15] hints to an approach to Theorem A using the
theory of Okounkov bodies.

Remark 2.4. Related cases of Theorem A include:

(i) If D is an R-Cartier R-divisor, then in (iii) we may set D′ to be any R-Cartier
R-divisor numerically equivalent to D.

(ii) If X is nonsingular and projective over an algebraically closed field, if D is
big and movable, and E is pseudoeffective (i.e., its numerical class is in the
closure of the effective cone), then vol(D−E) = vol(D) if and only if E = 0.

The first statement is a consequence of Lemma 4.1(iv). For the second, by [FL13,
Prop. 5.3] we get

Pσ (D − E) + (Nσ (D − E) + E) ≡ D = Pσ (D) ≡ Pσ (D − E).

Consequently, Nσ (D − E) + E ≡ 0. Since the pseudoeffective cone is pointed
(e.g., by [CHMS13, Lemma 2.4]), it follows that E = 0.

Proof of Theorem B. As in Theorem A, we may work over an algebraically closed
field. The implications (iii) → (iv) → (i) are immediate. Part (ii) of Theorem A
and Lemma 4.13 prove (i) → (iii).

Assume that Supp(E) ⊆ Bdiv+ (D). Let A be ample in codimension 1 (cf. Defini-
tion 4.7). By Lemma 5.3 and Lemma 5.2 we have Supp(E) ⊆ Supp(Nσ (D−εA))

for arbitrarily small ε > 0. By Lemma 4.13, we see that vol(D + E − εA) =
vol(D − εA) for sufficiently small ε > 0. If D, E, and A are R-Cartier, we can
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conclude vol(D + E) = vol(D) by the continuity of volumes for R-Cartier R-
divisors. To show that vol(D+E) = vol(D) in general, we reduce to the R-Cartier
case by applying Theorem 3.5(ii) and Corollary 3.4. Hence, (ii) → (i).

Let F be an irreducible component of E and assume that F �⊂ Supp(Nσ (D −
εA)). Then by Lemma 4.9 there exists m > 0 such that

mD + F =
(

1

2
mεA + F

)
+

(
1

2
mεA + mPσ (D − εA)

)
+ mNσ (D − εA)

is R-linearly equivalent to an effective divisor that does not contain F in its sup-
port. In particular, h0(mD′ + rE) ≥ h0(mD′ +F) > h0(mD′) for some D′ ∼R D

and some r > 0, for example, r = 1
multF (E)

. Therefore, (iii) → (ii).
Suppose now that D is a big and nef R-Cartier R-divisor. Let π : Y → X be

a proper birational morphism with Y projective. By Lemma 3.3 there exists an
effective π -exceptional divisor F on Y such that vol(D + E) = vol(π∗D + E +
F), where E is a divisor with π∗E = E. We can make choices such that E and F

are R-Cartier R-divisors. Of course, vol(D) = vol(π∗D).
If vol(D + E) = vol(D), then vol(π∗D + E + F) = vol(π∗D). By [Cut13b,

Thm. 5.6] we get 〈π∗Dn−1〉 · (E + F) = 0. Since D is nef, we have (π∗D)n−1 =
〈(π∗D)n−1〉 from [Cut13b, Prop. 4.11]. By the projection formula, Dn−1 ·E = 0.

Conversely, if Dn−1 · E = π∗Dn−1 · (E + F) = 0, then [Luo90] shows that
h0(π∗D + E + F) = h0(π∗D) (the analogous equality also holds for multiples).
The proof there is carried out with Z-coefficients and over base fields of charac-
teristic zero, but extends to R-coefficients over arbitrary algebraically closed base
fields. We conclude by pushing forward to X. �

Remark 2.5. As in Theorem A, if D is an R-Cartier R-divisor, then in (iii) we
may set D′ to be any R-Cartier R-divisor numerically equivalent to D. In fact,
even in the R-Weil case, we may replace D′ ∼R D with D′ − D being a numeri-
cally trivial R-Cartier R-divisor (cf. Lemma 4.1(iv)).

As mentioned in the Introduction, if D′ ∼R D, then there is no clear connection
between the Hilbert functions H(X,D) and H(X,D′) other than that vol(D) =
vol(D′) (cf. Theorem 3.5(iv)):

Example 2.6. Let S → P1 be a minimal ruled surface with a negative section
E ⊂ S and a positive section C ⊂ S that is disjoint from E. Let F1, . . . ,F4 be
distinct fibers. Then

C ∼R C + (F1 − F2) + √
2(F3 − F4).

Note that �mC +m(F1 −F2)+m
√

2(F3 −F4)� has negative intersection with E

for all real m > 0. This implies that

h0(S,OS

(
mC + m(F1 − F2) + m

√
2(F3 − F4)

))
< h0(S,OS(mC))

for every m > 0.
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3. Weil Divisors

Let X be a normal variety over a field. The basics of the theory of Weil R-divisors
can be found in [Sch10]. An R-divisor (also called Weil R-divisor or R-Weil
R-divisor) is an R-linear combination of prime divisors. D is effective, denoted
D ≥ 0, if it is a nonnegative combination of prime divisors on X. If D ≥ E, that
is, D − E ≥ 0, then we say that D dominates E. For an R-divisor D, the rule

U �→ H 0(U,D) := {f ∈ K(X)∗|(div(f ) + D)|U ≥ 0} ∪ {0}
defines a coherent sheaf OX(D) on X. This coincides with the classical notation
when D is a Z-divisor. Note that OX(D) = OX(�D�). If D ≥ 0, then OX(−D)

is an ideal sheaf in OX . If M is a Cartier Z-divisor, then OX(D + M) � OX(D) ·
OX(M) � OX(D) ⊗OX(M) for any R-divisor D.

If D and D′ are R-divisors such that D′ − D = div(f ) for some f ∈ K(X),
then we say that D and D′ are linearly equivalent and denote this relation
by D ∼ D′ or D ∼Z D′. Denote by |D| the complete linear series {D′|D′ ≥
0,D′ ∼Z D}. It coincides with |�D�| + {D}, where {D} denotes the frac-
tional part of D. If mD ∼ mD′ for some m ∈ Z∗, then we write D ∼Q D′. If
D′ − D = ∑r

i=1 ai div(fi) for some r ∈ N∗, ai ∈ R, and fi ∈ K(X), then we
write D ∼R D′. Denote by |D|Q and |D|R the set of effective R-divisors D′
that are Q-linearly and respectively R-linearly equivalent to D. If D ∼ D′, then
H 0(X,D) � H 0(X,D′), and if D ∼Q D′, then H 0(X,mD) � H 0(X,mD′) for
sufficiently divisible m. However, no obvious connection seems to exist between
H 0(X,D) and H 0(X,D′) if D ∼R D′.

An R-divisor H is ample if H = ∑
i ai(Hi + div(fi)), where ai ∈ R+, fi ∈

K(X), and where Hi are effective ample Cartier Z-divisors. Note that an ample
R-divisor is always R-Cartier and that this definition coincides with the classical
one in [Laz04, §2].

Two R-Cartier R-divisors are numerically equivalent if they have the same
intersection against every proper curve in X.

We review some of the basic theory of R-divisors. Over C, many of the results
in this section appear in [Nak04, §II] or [Fuj09].

Lemma 3.1. Let X be a normal variety, and D an effective R-Cartier R-divisor.
Then D is a positive R-linear combination

∑
i aiDi of effective Cartier divisors.

Proof. The argument in [Fuj09, Lem. 0.14] is characteristic free. �

Lemma 3.2. Let π : Y → X be a proper birational morphism of normal varieties,
and D an R-Cartier R-divisor on X. Then π∗OY (π∗D + E) = OX(D) for any
effective π -exceptional R-divisor E.

Proof. The argument is similar to [Nak04, Lemma 2.11]. Let U ⊂ X be open,
and f ∈ K(X)∗. By the projection formula [Ful84, Prop. 2.3.(c)], if divY (f ) +
π∗D + E ≥ 0 over π−1U , then divX(f ) + D ≥ 0 over U . By Lemma 3.1 we see
that if divX(f ) + D ≥ 0 on U , then divY (f ) + π∗D ≥ 0 on π−1U . In particular,
divY (f ) + π∗D + E ≥ 0 on π−1U . �
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The following lemma can be used to reduce many questions involving the sheaves
OX(D) to normal projective varieties.

Lemma 3.3. Let π : Y → X be a proper birational morphism of normal varieties,
and Di a finite collection of R-divisors on X. Then there are R-divisors DY

i on Y

such that π∗DY
i = Di for every i and

π∗OY

(
F + π∗M +

∑
i

miD
Y
i

)
= OX

(
M +

∑
i

miDi

)

for every mi ∈ R+, effective π -exceptional R-divisor F on Y , and R-Cartier R-
divisor M on X.

Proof. We may assume that either Di or −Di is a prime divisor for each i.
If the statement is true for F = 0, then it is true for every F ≥ 0, so we as-

sume that F = 0 throughout. Note that the question is local on X—if we prove
the statement locally, then we can take coefficientwise maximums to glue the DY

i

from different open subsets—so we may also assume that X is affine. Let E be
an effective Weil divisor whose support is the divisorial component of the excep-
tional locus of π . For D an R-divisor on X and for D an R-divisor on Y with
π∗D = D, we have OX(D) = ⋃

r≥0 π∗OY (D + rE). Then by coherence there
exists rD such that

π∗OY (D + rE) = OX(D) for all r ≥ rD. (3.1)

Let φ be a regular function on X such that L := divX(φ) ≥ Di for all i. Let Di

be R-divisors on Y such that π∗Di = Di . For any r ≥ 0, we have Di + rE ≤
E′

i + π∗L for some effective π -exceptional R-divisor E′
i . By Lemma 3.2 any

global section of OY (
∑

i miDi + rE) for any r ≥ 0 is also a global section of
OX((

∑
i mi)L). Thus, the poles along E of rational functions that are sections

of
∑

i miDi + rE are bounded below by −(
∑

i mi)π
∗L. This implies that there

exists r > 0 such that H 0(Y,
∑

i mi(Di + (r + t)E)) is independent of t ≥ 0
for each mi ≥ 0. In particular, it is equal to H 0(OX(

∑
i miDi)) by (3.1). Since

X is affine, this implies π∗OY (
∑

i mi(Di + rE)) = OX(
∑

i miDi). Set DY
i :=

Di + rE.
We now show that if M is an R-Cartier R-divisor on X, then π∗M +∑
i miD

Y
i ≥ 0 if and only if M + ∑

i miDi ≥ 0. Up to replacing M by M +
divX(f ), this completes the proof. One implication is clear by the projection for-
mula. Assume now that M + ∑

i miDi ≥ 0. If M is a Q-Cartier Q-divisor, then
uM is a Cartier divisor for some positive integer u, and by the projection for-
mula,

π∗OY

(
π∗(uM) +

∑
i

(umi)D
Y
i

)
= OX(uM) ⊗ π∗OY

(∑
i

(umi)D
Y
i

)

= OX

(
u

(
M +

∑
i

miDi

))
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for all mi ∈R+. Thus, if 1 is a section of OX(u(M + ∑
i miDi)), then it is also a

section of OY (u(π∗M + ∑
i miD

Y
i )).

Assume now that M = ∑
j ajMj is an R-combination of Cartier divisors,

with M + ∑
i miDi ≥ 0. Recall that either Di or −Di is prime by assump-

tion. As a condition on the mi and aj , the effectivity of M + ∑
i miDi is

a system of linear inequalities with integer coefficients. Any of its real solu-
tions can be approximated arbitrarily close by rational solutions. We conclude
from the case where M is a Q-Cartier Q-divisor by taking limits coefficient-
wise. �
The following corollary allows us to reduce questions about R-divisors to R-
Cartier R-divisors.

Corollary 3.4. Let Di be a finite set of R-divisors on a normal variety X. Then
there exist a quasiprojective, normal variety Y , a proper birational morphism
π : Y → X, and R-Cartier R-divisors DY

i on Y such that π∗DY
i = Di and

π∗OY

(
G + π∗M +

∑
i

miD
Y
i

)
= OX

(
M +

∑
i

miDi

)

for all mi ∈ R+, all effective π -exceptional R-divisors G on Y and all R-Cartier
R-divisors M on X.

Proof. We may assume that Di or −Di is a prime divisor for each i. Successively
normalize the blow-up of the birational transform of each Di , obtaining a bira-
tional morphism f : Z → X with R-Cartier R-divisors D′

i such that f∗D′
i = Di .

Let g : Y → Z be the normalized blow-up of the exceptional locus of f . Let
π = f ◦ g. Then Di := g∗D′

i is an R-Cartier R-divisor with π∗Di = Di . The
relative O(−1) for g is equal to OY (F ) for an effective Cartier divisor F whose
support is the exceptional locus of π . As in the proof of Lemma 3.3, for r � 0,
we may set DY

i := Di + rF . To obtain Y quasiprojective, apply Chow’s lemma
and normalize. �

We have defined vol(D) := lim supm→∞
h0(mD)
mn/n! . For R-Cartier R-classes on pro-

jective varieties, this definition of volume differs from the classical one (cf.
[Laz04, Cor. 2.2.45]). The definitions coincide for Z-classes, but in [Laz04] the
volume of Q-classes is defined by homogeneous extension from Z, and for R-
classes, it is given by continuous extension from Q. We check that the definitions
in fact agree. We also check that we can replace lim sup by lim.

Theorem 3.5. Let D be an R-divisor on a proper normal variety X of dimen-
sion n. Then

(i) vol(D) = limm→∞ h0(mD)
mn/n! .

(ii) If D is an R-Cartier R-divisor, then vol(D) agrees with the definition in
[Laz04, Cor. 2.2.45].

(iii) (Kodaira lemma) vol(D) > 0 if and only if, for every R-divisor B , there exist
ε > 0 and an effective R-divisor C such that D ∼Q ε · B + C.
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(iv) If D′ is an R-divisor on X such that D′−D is a numerically trivial R-Cartier
R-divisor, then vol(D) = vol(D′).

Most of the references used in the proof work over C. [Cut13b, §2.2] and the
references therein explain how to extend these to arbitrary fields.

Proof. We start by proving (i). By Corollary 3.4, we may assume that X is pro-
jective and D (hence, also D′) and B are R-Cartier R-divisors. Then there exists
an ample Z-divisor H with D ≤ H . Hence, H 0(X,mD) is a graded linear series.
If vol(D) = 0, then the limit is also zero. Otherwise, by [Cut13a, Thm. 1.2] we
have

vol(D) = lim
m→∞

h0(m · m0D)

(m · m0)n/n! < ∞, (3.2)

where m0 = gcd{m ∈ Z|h0(mD) �= 0}. We will finish the proof later on by show-
ing that m0 = 1.

For now we prove (ii) and (iii). Provisionally denote by Vol(D) the volume
of the R-Cartier R-divisor D in the sense of [Laz04, Cor. 2.2.45]. From (3.2) we
see that vol is also homogeneous, so that for a Q-Cartier Q-divisor D, we have
vol(D) = Vol(D).

We first show that if vol(D) > 0, then vol(D) = Vol(D). By homogeneity we
may assume h0(D) > 0. Then D = E + div(f ) for some effective R-Cartier R-
divisor E and for some rational function f on X. By Lemma 3.1 we have E =∑

i aiEi for some positive ai ∈R and effective Cartier Z-divisors Ei . Then

1

mn
vol

(∑
i

�mai�Ei +div(f m)

)
≤ vol(D) ≤ 1

mn
vol

(∑
i

�mai�Ei +div(f m)

)
.

The LHS and RHS both converge to Vol(D) as m grows. Furthermore, if
vol(D) > 0, then

∑
i�mai�Ei + div(f m) is a big Cartier Z-divisor for large

enough m; hence, it dominates some ample Q-divisor by Kodaira’s lemma (cf.
[Laz04, Cor. 2.2.7]).

It remains to show that if Vol(D) > 0, then vol(D) > 0. First, observe that if
Vol(D) > 0, then D is big in the sense of [Laz04, §2.2.B], that is, D dominates
an ample R-divisor. Indeed, by continuity (cf. [Laz04, Cor. 2.2.45]) there exists a
small ample R-divisor H such that D −H is a Q-Cartier Q-divisor with Vol(D −
H) > 0. Then the claim follows from Kodaira’s lemma. We can write

D =
∑

i

ai(Hi + div(fi)) +
∑
j

bjEj ,

where Hi are ample effective Z-divisors, fi are rational functions, Ej are ef-
fective R-Cartier Z-divisors, and ai and bj are positive real numbers. Let F be
the union of the supports of div(fi). There exists a real number N > 0 such that
{mai}div(fi) > −N · F for all i and all m. Furthermore, there exists a positive
integer r such that for each i, the Weil divisor rHi − N · F has a section given by
some rational function gi . In particular,

rHi + {mai}div(fi) + div(gi) > 0.
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Then

mD >
∑

i

((�mai� − r)Hi + �mai�div(fi) − div(gi)) +
∑
j

�mbj�Ej .

The RHS is an effective big Cartier Z-divisor for m sufficiently large, and there-
fore vol(D) > 0. The proof of (ii) is complete. We have showed that if D is an
R-Cartier R-divisor, and Vol(D) = vol(D) > 0, then mD is effective for m large
enough. This proves that m0 = 1 and completes the proof of (i).

The forward implication of (iii) follows easily from the projective and R-
Cartier case by applying Corollary 3.4. Conversely, if we choose B a big effective
Cartier divisor, then we can write εB = ε0B + B ′ for some rational ε0 < ε and
some effective B ′. The equality D ∼Q ε0B + B ′ + C easily implies the bigness
of D.

Similarly, to show part (iv) we may apply Corollary 3.4 to reduce to the pro-
jective normal case and to assume that D is an R-Cartier R-divisor. The volume
function Vol is defined on the real Néron–Severi space N1(X)R, and then part (iv)
follows. �

4. Divisorial Zariski Decompositions

Let X be a normal proper variety over a field K . Let D be a big R-divisor. Fol-
lowing Nakayama [Nak04], for � a prime divisor on X, we define

σ�(D) = inf{mult� D′|D′ ∼R D,D′ ≥ 0},
where we write D ∼R D′ if there exist rational functions fi on X and real num-
bers ai such that D−D′ = ∑

i ai ·div(fi). The basic properties of σ�(D) are stud-
ied by [Nak04] for smooth projective varieties in characteristic 0 and by [Mus13;
CHMS13] for smooth projective varieties in arbitrary characteristic. We make the
brief verifications necessary to extend these results to normal proper varieties as
well. We start with the projective case.

Lemma 4.1. Let X be a normal projective variety, and D a big R-divisor. Fix a
prime divisor �.

(i) We also have σ�(D) = inf{mult� D′|D′ ∼Q D,D′ ≥ 0} and

σ�(D) = lim
m→∞

1

m
min{mult� D′′|D′′ ∼Z mD,D′′ ≥ 0}.

(ii) Let A be an ample R-Cartier R-divisor. Then limε↘0 σ�(D + εA) = σ�(D).
(iii) The R-divisor F := D − σ�(D)� has σ�(F ) = 0 and σ�′(F ) = σ�′(D)

for any other prime divisor �′. Furthermore, the natural inclusion H 0(X,

mF) ↪→ H 0(X,mD) is an equality for any positive real number m.
(iv) If L is a numerically trivial R-Cartier R-divisor, then σ�(D + L) = σ�(D).

The induced function σ� : N1(X) → R sending a numerical class α ∈
N1(X) to σ�(D +α) is continuous in a sufficiently small neighborhood of 0.

Proof. The proofs are analogous to [Nak04, Lem. III.1.4] and [Nak04, Lem.
III.1.7]. �
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We can usually reduce questions involving σ� to the projective case by using
Lemma 3.3 and the following:

Lemma 4.2. Let π : Y → X be a birational morphism of normal, proper varieties.
Suppose that D is a big R-divisor on X. Assume that one of the following holds:

(i) There exists a big R-divisor L on Y with π∗L = D such that, for every R-
Cartier R-divisor M on X, the condition D + M ≥ 0 holds iff L+ π∗M ≥ 0.

(ii) X and Y are projective, and there exists a big R-divisor L on Y such that
π∗OY (mL) = OX(mD) for all integers m ≥ 0.

Then, for any prime divisor � on X, we have σ�(D) = σ�′(L) where �′ is the
birational transform of � on Y .

Proof. By letting M range through the R-linearly trivial divisors on X we imme-
diately obtain (i). Part (ii) is a consequence of Lemma 4.1(i) and the fact that π∗
induces an equality of global sections for sheaves. �

Remark 4.3. Let X be a normal proper variety. Suppose that D is a big R-Weil
R-divisor on X. Then there are at most finitely many prime divisors � such that
σ�(D) > 0 (since 0 ≤ σ�(D) ≤ mult�(D′) for any fixed effective D′ ∼R D).

We can now define

Nσ (D) =
∑

� prime divisor on X

σ�(D) · � and Pσ (D) = D − Nσ (�). (4.1)

We call the decomposition D = Pσ (D)+Nσ (D) the divisorial Zariski decompo-
sition of D.

Definition 4.4. We say that a big R-divisor D is movable if Nσ (D) = 0 or,
equivalently, D = Pσ (D).

Remark 4.5. Let D be a big, movable R-divisor on a normal proper variety X. Let
D′ ∼R D with D′ ≥ 0. Then D′ = Pσ (D′) is the componentwise limit of the divi-
sors D′

m := D′ − 1
m

min{mult� D′′|D′′ ∼Z mD′,D′′ ≥ 0}. (This is Lemma 4.1(i)
when X is projective, and we can reduce to this case via Lemma 4.2(i).) Observe
that |mD′

m| is a linear series without fixed divisorial components for large m.
In this sense, we understand movable R-divisors as limits of divisors moving in
linear series without fixed divisorial components.

Remark 4.6. If D is a big and nef R-Cartier R-divisor on a proper normal va-
riety X, then D is movable. (Indeed, we can find a birational map π : Y → X

from a projective normal variety Y , and the pullback π∗D satisfies the hypothe-
ses for L in Lemma 4.2(i). Applying the result of the lemma, we can conclude by
Lemma 4.1(ii).)

Definition 4.7. Let X be a normal variety. An R-divisor A is ample in codimen-
sion 1 if there exists a closed subset Z ⊂ X of codimension at least 2 such that
A|X\Z is an ample R-Cartier R-divisor.
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It is clear that a divisor that is ample in codimension 1 is R-linearly equivalent to
an effective divisor. We will prove in Lemma 4.10(iv) that if X is a proper normal
variety, then a divisor that is ample in codimension 1 on X is also big.

The following lemma shows that all normal varieties admit divisors which are
ample in codimension 1.

Lemma 4.8. Let π : Y → X be a proper, generically finite, dominant morphism of
normal varieties, and A an R-divisor on Y that is ample in codimension 1. Then
π∗A is ample in codimension 1.

Proof. By removing a suitable subset of codimension 2 from X we may assume
that π is finite flat and A is ample on Y . Write A ∼R

∑
i riAi where Ai is ample

Cartier and ri ∈ R. Note that each π∗Ai is Cartier in codimension 1, so that by
shrinking Y and X we may further assume that π∗Ai is also Cartier. By [Ful84,
Prop. 1.4.(b)], cycle pushforwards respect linear equivalence. [Gro61, Cor. 6.6.2]
shows that the pushforward of an ample Cartier divisor on Y is again ample on X,
and we conclude that π∗A ∼R

∑
i riπ∗Ai is ample. �

Lemma 4.9. Let X be a normal proper variety over a field, � a prime divisor, and
A an R-divisor that is ample in codimension 1. Then

(i) If E is an R-divisor, then, for m sufficiently large, E + mA ∼R Bm for some
Bm ≥ 0 with � �⊂ Supp(Bm).

(ii) If P is a big R-divisor with σ�(P ) = 0, then P + A ∼R C for some C ≥ 0
with � �⊂ Supp(C).

Proof. For (i), by working over the smooth locus of X we see that E + mA is
ample in codimension 1 for m sufficiently large, and then the statement is clear.

Let m be as in part (i) for E = �. By the definition of σ� there exists an
effective Pm ∼R P such that mult�(Pm) ≤ 1

m
. By (i) we have that Pm + A is

R-linearly equivalent to an effective R-divisor C without � in its support. �

Lemma 4.10. Let X be a normal proper variety. Then

(i) If D is a big R-divisor, then Pσ (D) is big and movable. If D is effective, then
so is Pσ (D).

(ii) If P and D are big R-divisors with P movable and P ≤ D, then P ≤ Pσ (D).
(iii) If π : Y → X is a proper generically finite dominant morphism of normal

proper varieties and P is a big movable R-divisor on Y , then π∗P is also
big and movable.

(iv) Let A be an R-divisor that is ample in codimension 1. Then, for every R-
divisor E, there exists εE > 0 such that A − εEE is big and movable.

Proof. Part (i) is a consequence of Lemma 4.1(iii) in the projective case and can
be reduced to this case in general by Lemma 4.2(i) and Lemma 3.3.

For part (ii), assume that D = P + N with N effective. By Lemma 4.2(i),
and Lemma 3.3 we can assume that X is projective. Let A be an effective ample
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divisor. For all prime divisors � on X, we have

σ�(D + εA) ≤ σ�(P ) + σ�(N + εA) = σ�(N + εA).

By summing over all � we obtain Nσ (D + εA) ≤ Nσ (N + εA), and hence
Pσ (D + εA) ≥ P . The continuity property in Lemma 4.1(ii) implies Pσ (D) ≥ P .

In (iii), observe first that any divisor ample in codimension 1 is big. Further-
more, an R-divisor is big if and only if it dominates some divisor ample in codi-
mension 1. From Lemma 4.8 it follows that if P is big, then π∗P is also big.

To settle the movability of π∗P , by Lemmas 4.1(i), 4.2(i) and Remark 4.5 it is
enough to show that if V is a linear series without fixed divisorial components on
Y , then π∗V spans a linear series without fixed divisorial components on X. By
Remark 2.2 we may assume that the base field is infinite. If � is a prime divisor
on X, let �′

i with 1 ≤ i ≤ r be the divisorial components of π−1�. If π∗V spans a
linear series with a fixed component �, then mult� Q > ε for all Q ∈ π∗V and for
some ε > 0 by the finite dimensionality of V . Then V is the union of the proper
subspaces Vi = {R ∈ V |mult�i

R > ε
r·degπ

}. This is impossible over an infinite
field.

To see (iv), consider the open subset U = X − Z. By taking a closure un-
der a suitable embedding and normalizing we find a normal projective variety
X′ containing U as an open subset and an ample R-Cartier R-divisor A′ on
X′ such that A′|U = A|U . Let E′ be the closure in X′ of E|U . By the normal-
ity of X and the codimension condition on Z in the definition of ampleness in
codimension 1, for all m ≥ 1 and l ≥ 1, we have H 0(X′,OX′(l(mA′ − E′))) ⊆
H 0(U,OX(l(mA − E))) = H 0(X,OX(l(mA − E))). The bigness of mA − E

then follows from that of mA′ − E′ for m � 0.
Regarding movability, by the lower convexity of Nσ it is enough to treat the

case where A and E are Z-divisors with A ample Cartier. Then OX(mA − E) �
OX(−E) ⊗ OX(A)⊗m is globally generated for large m. In particular, the linear
series |mA − E| has no fixed components, and Nσ (A − 1

m
E) = 0. �

Remark 4.11. When π : Y → X is a finite morphism of normal proper varieties,
for every R-divisor D on X, we can define π∗D as the closure in Y of π∗

UDU ,
where U ⊂ X is the smooth locus, and πU : Y ×X U → U is the induced finite
morphism. Since codim(X\U,X) ≥ 2, we see that π∗ respects linear equivalence
(with Z, Q, and R coefficients).

Lemma 4.12. Let π : Y → X be a generically finite morphism of normal proper
varieties, and D a big R-divisor on X. Then

(i) If π is finite, then Nσ (π∗D) = π∗Nσ (D).
(ii) If π is only generically finite, but D is an R-Cartier R-divisor, then

π∗Nσ (π∗D) = (degπ) · Nσ (D).

Proof. If π is finite, then Nσ (π∗D) ≤ π∗Nσ (D) because H 0(Y,π∗D) ⊇
π∗H 0(X,D). When π is only generically finite and D is R-Cartier, the same
argument and the projection formula (cf. [Ful84, Prop. 2.3.(c)]) prove that
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π∗Nσ (π∗D) ≤ (degπ) · Nσ (D). On the other hand, D = 1
degπ

π∗Pσ (π∗D) +
1

degπ
π∗Nσ (π∗D), and π∗Pσ (π∗D) is big and movable by Lemma 4.10(iii).

By Lemma 4.10(ii) it follows that 1
degπ

π∗Pσ (π∗D) ≤ Pσ (D), and hence
1

degπ
π∗Nσ (π∗D) ≥ Nσ (D). Therefore, in both (i) and (ii),

π∗Nσ (π∗D) = (degπ) · Nσ (D).

When π is finite, this forces equality in Nσ (π∗D) ≤ π∗Nσ (D). �

Lemma 4.13. If D is a big R-divisor on the proper normal variety X, and E ≥ 0
with Supp(E) ⊂ Supp(Nσ (D)), then

Nσ (D + E) = Nσ (D) + E

and

H 0(X,D) = H 0(X,D + E) = H 0(X,Pσ (D) + E) = H 0(X,Pσ (D)).

Proof. We argue just as in [Nak04, Lemma III.1.8] and [Nak04, Cor. III.1.9].
When X is not projective, we replace the ample A from the proof of [Nak04,
Lemma III.1.8] by a divisor ample in codimension 1. �

5. Divisorial Augmented Base Locus

The augmented base locus of an R-Cartier R-divisor on a normal complex projec-
tive variety X is defined in [ELM+06, Def. 1.2] as B+(D) = ⋂

D=A+E Supp(E),
where A is an ample R-divisor, and E is an effective R-Cartier R-divisor. For
normal proper varieties, we mimic this construction by using divisors ample in
codimension 1. The resulting subset is a good analogue of the augmented base
locus in codimension 1.

Definition 5.1. Let D be a big R-divisor on a normal proper variety X. The
divisorial augmented base locus of D is the divisorial component Bdiv+ (D) of⋂

D=A+E

Supp(E) (5.1)

with the intersection being taken over all decompositions D = A + E with A an
R-divisor, ample in codimension 1, and E an effective R-divisor.

The next lemma implies that if X is projective, then Bdiv+ (D) equals the divisorial
part of B+(D) and that we can also compute Bdiv+ (D) in terms of just one divisor
that is ample in codimension 1.

Lemma 5.2. Let X be a normal proper variety. Let D be a big R-divisor, and
let A be an R-divisor that is ample in codimension 1 on X. Then Bdiv+ (D) is the
divisorial component of the intersection of the supports of all D′ ∈ |D − εA|R for
all ε > 0.
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Proof. Let U denote the intersection referred to in the statement of the lemma.
Its index set is a subset of the one in (5.1); therefore, U ⊇ Bdiv+ (D). Let now �

be a prime divisor that is a component of the supports of all D′ ∈ |D − εA|R for
all sufficiently small ε > 0. Let D = A′ + E with A′ ample in codimension 1 and
E ≥ 0. By Lemma 4.9(i), for all sufficiently small ε > 0, there exists Bε ∼R εA

such that A′ − Bε ≥ 0 and � �⊂ Supp(A′ − Bε). Then

|D − εA| � D − Bε = (A′ − Bε) + E.

Consequently, � is a component of Supp(E). �

The relationship between Bdiv+ (D) and the Zariski decomposition is given by the
following:

Lemma 5.3. Let X be a normal proper variety. Let D be a big R-divisor, and let
A be an R-divisor that is ample in codimension 1 on X. Then

Bdiv+ (D) = Supp(Nσ (D − εA))

for all sufficiently small ε > 0.

Proof. Note that since Supp(Nσ (D − εA)) is a closed set, for any sufficiently
small ε > 0, the sets Supp(Nσ (D − εA)) all coincide. Thus, we may show that
Bdiv+ (D) coincides with the intersection over all sufficiently small ε > 0 of the sets
Supp(Nσ (D − εA)).

By Theorem 3.5(iii) we see that D − εA is big for sufficiently small ε > 0.
Let � be a prime divisor on X. Assume that σ�(D − εA) = 0. Lemma 4.9(ii)
shows that � �⊂ Supp(D′) for some D′ ∈ |D − ε

2A|R. Therefore, Bdiv+ (D) ⊆⋂
ε>0 Supp(Nσ (D − εA)). The reverse inclusion is straightforward from the pre-

vious lemma and the definition of σ�(D − εA). �

Remark 5.4. Inspired by [ELM+06, Lemma 1.14], we define the divisorial re-
stricted base locus as

Bdiv− (D) :=
⋃
A

Bdiv+ (D + A),

where A ranges through all R-divisors on X that are ample in codimension 1. We
can show that if the base field K is uncountable and D is a big R-divisor, then
Bdiv− (D) = Supp(Nσ (D)).

Acknowledgments. We thank R. Lazarsfeld and S. Pal for comments, discus-
sions, and references. Partial financial support to JK was provided by the NSF
under grant number DMS-1362960.

References

[BFJ09] S. Boucksom, C. Favre, and M. Jonsson, Differentiability of volumes of divi-
sors and a problem of Teissier, J. Algebraic Geom. 18 (2009), no. 2, 279–308.



386 M. Fulger, J . Kollár, & B. Lehmann

[CHMS13] P. Cascini, C. Hacon, M. Mustaţă, and K. Schwede, On the numeri-
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