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1. Introduction and Main Results

In 1984, Bjorner [4] showed that every interval in the Bruhat order of a Coxeter
group W is the “face poset” of some stratified space in which each closed stra-
tum (resp., the boundary of each stratum) has the homology of a ball (resp., of a
sphere). Passing to the Euler characteristic, this resultimplies Verma’s formula [19;
20] for the Mobius function of the Bruhat order—namelyy, v) = (—1)*®—¢®
(u < v), wheref denotes the length function. (Thisis, inturn, equivalent to saying
that each Bruhat interval contains equally many elements of even and odd length.)

In fact, Bjorner proved a stronger result: Every interval in the Bruhat order is
the face poset of a regular cell complex (i.e., closed strata acaralballs). How-
ever, the construction of such complex in [4] was entirely “synthetic” (essentially,
a succession of cell attachments; cf. [5, 4.7.23]). Furthermore, it was based on
the existence of a combinatorial shelling, which by itself easily implies Verma’s
formula, bypassing all geometry. A question posed in [4] asked for a natural geo-
metric construction of a stratified space with the desired properties.

In this paper, we propose such a construction for the case vifiésehe Weyl
group of a semisimple grou@. In the typeA case, wherd¥ is the symmetric
group andG the special linear group, we prove that our stratified spaces indeed
have the required homological properties. The spaces we construct are links of
cells in the Bruhat decomposition of thaally nonnegativgart of the unipotent
radical ofG.

In the remainder of Section 1, we present the details of this construction and
state our main results and conjectures. The rest of the paper is devoted to proofs.

Let G be a semisimple, simply connected algebraic group defined and split
overR. Let B andB_ be two opposite Borel subgroups@f so thatH = B_NB
is anR-split maximal torus inG; we denote byV and N_ the unipotent radicals
of B andB_, respectively.

For the typeA,_1: the groupG is the real special linear group &t R); H,
B, and B_ are the subgroups of diagonal, upper triangular, and lower triangular
matrices, respectivelyy and N_ are the subgroups @ and B_ that consist of
matrices whose diagonal entries are equal to 1.
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We denote byY the set of alltotally nonnegativeslements inN. In the case
of the special linear grougy, consists of the upper-triangular unipotent matrices
all of whose minors are nonnegative. The general definition was first suggested
by Lusztig (see [17] and references therein). In our current notation, Lusztig de-
finedY as the multiplicative submonoid &f generated by the elements €xp),
t > 0, where they; are the Chevalley generators of the Lie algebr&/of\n alter-
native description in terms of nonnegativity of certain “generalized minors” was
given in [10] (cf. our Proposition 2.9).

Let W be the Weyl group of5. The length of an element € W is denoted
by ¢(w). The groupW is partially ordered by the Bruhat order, defined geometri-
cally by

u<v < B_uB_C B_vB_.

The Bruhat decompositio& = | J,,.,» B-wB_ induces the partition of into
mutually disjointtotally positive varietie¥,, = ¥ N B_wB_, w € W (this termi-
nology is borrowed from [9]).

We denoteY,, = Y. The varietiesy? were first studied by Lusztig in [16],
where, in particular, the following basic properties were obtained.

ProposiTioN 1.1 [16].  Each totally positive variety, is a cell more precisely,
Y is homeomorphic t&“®). Furthermore,Y,, = |J, ., ¥

u<w “u

ExaMPLE. G = SL(3, R). Inthis case,

1 xpp x13
_ X12  X13
Y=3x=]0 1 xo3|:x12>0,x23>0, x13>0, >0
X23
0O O 1

Thus the seY is described in the coordinatés,,, x»3, x13) as the closure of one

of the pieces into which the plangs = 0 and the hyperbolic parabolaig,xz3 =

x13 partition the 3-space—namely, the piece containing the pairit %). The
semialgebraic se¥ decomposes naturally into six algebraic strata: the origin,
two rays (the positive semi-axes for, andx»3), two 2-dimensional pieces con-
necting them, and the 3-dimensional interior. These are the six Bruhat Bfrata
for w e W = S3 (the symmetric group). Figure 1 shows a planar cross-section of
this stratification (or, equivalently, the link of the 0-dimensional cell). The adja-
cency of the strat&; is indeed described by the Bruhat order&y) in agreement
with PropositionL.1.

T12T23 = T13 / \

T10=x13=0 Tr13=0 To3=x13=0 \ /

Figure 1 Totally nonnegative varietieg; in the special casé = SL(3, R)
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Foru,ve W (u < v), theBruhat interval[u, v] is defined by [, v] = {u <

w < v}, with the partial order inherited fro. Similarly, («, v] def {fu<w=<vl.
In view of Propositiori.1, it isnatural to suggest that the geometric model for
a Bruhat intervalg, v] (or (u, v]) is provided by thdink

Lk (u, v) = [k(Y?, Y,)
of the cellY;? inside the subcompleX, C Y.
The following are our main results.

THEOREM 1.2. For anyu < v, the link Lk (&, v) is well-defined as a stratified
space. The stratd, , , = Lk (4, v) N Y, are labeled by the elemenise (u, v],
and each stratuny, , ,, is an open smooth manifold of dimensigw) — ¢(u) — 1.
The closures and boundaries of the stréta, ,, are given by

Su,v,w - U Su,v,w’v aSu,v,w = U Su.v,w’~ (11)

u<w'<w u<w’'<w

Here, by a stratified space we mean a decomposition of a semialgebraic set into
disjoint smooth submanifolds labeled by the elements of a partially ordered set,
as described for example in [11, Séd]. Although the stratifications we consider
seem to satisfy Whitney'’s regularity conditions (cf. [11, Sec. 1.2]), we will not need
to verify these conditions to justify our constructions.

TueoreM 1.3 (TypeA only). All the stratas$, , ,, are orientable.

THEOREM 1.4 (TypeA only). Each closed straturfi, , ., is contractible. More-
over, the contraction can be chosen so that it restricts to a contraction of the open
stratums,, .-

These theorems ensure that the stratified spacés bk have the desired homo-
logical properties, as we will now explain. Let;¢X) (resp., H(X, X)) denote,
as usual, the ordinagyh homology group CW compleX (resp., pair of CW com-
plexesX’ c X). The corresponding Euler characteristics are denotegd(iy)
andx(X, X'), respectively.

CoroLLARY 1.5 (TypeA only). Foranyu < w < v, we have

7 ifi=0ew)—ew) —1,

1.2
0 otherwise. (12)

Hi(Su,v,wa 8Su,v,w) = {

Consequentlyy(Sy. v w, 3S,.v.0) = (=1 —t@-1
Proof. We will need the Lefschetz duality isomorphism [8, Ex. 18.3]:
Hi(X,A) ~H" (X \ A;Z), i>0,

whereX is a compact topological space aadts closed subset such thst\ A is
a smooth orientable-dimensional manifold. Tak& = S, ., andA = 35S, .-
Then Theorems 1.2 and 1.3 ensure that the above conditions are satisfied, with
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n=L(w)—Lu)—1 Hence H(S, y.uw, 0S40, ) = HW—tW-1=i(g ). Since
Su.v.w IS contractible by Theorem 1.4, (1.2) follows. O

CoroLLARY 1.6 (Verma's formula for the typa). >~ ,_,_,(—=D)'™ =0.
Thus every Bruhat interval is d@ulerian posef{18].

Proof. The additivity of the Euler characteristic [7, V.5.7], which applies in view
of Theorem 1.2, gives

X(Lk @, ) = D X(Suvws 3Suvw)-

u<w<v

In the last identity, the left-hand side is equal to 1 by Theorem 1.4, while the right-
hand side is equal t3_,_, ., (—1)!®~!®=1 py Corollary 1.5. Simplifying, we
obtain the desired formula. O

Forthe typeA, we prove the following refinement of Theorem 1.2. Letus define the
stratified space(u,.j by Yju,s] = Uefu. ) Yu- NOte that Lku, v) = k(¥ Y,) =
|k(YMO, Y[u,v])-

THEOREM 1.7 (TypeA only). The stratified spac#,, . has the structure of the
direct product of the cell,” and the cone over the linkk («, v). More precisely,
there exists an isomorphism of stratified spakgs; andY,;” x Cone(Lk (u, v))
whose restriction to each stratum is a diffeomorphism.

REMARK 1.8. Theorem 1.3 can be deduced from Theorem 1.7 as followél. By
the stratums, , ,, coincides with the interior of L&k, w). Thus Theorem 1.7 as-
serts, in particular, that the célf is a direct product of the celiy and the interior
of the cone over Lks, w). Both cellsY,; andY,” are evidently orientable. There-
fore (see e.g. [12, Ex. 3.2.24]), the interior of the cone ovdul k) is orientable
and so is the interior of L, w). O

CoNJECTURE 1.9. Theorems 1.4 and 1(hence Theorem 1.3 and Corollary 1.5
hold for any semisimple algebraic group

We believe that Conjecture 1.9 can be strengthened as follows.

ConsecTurk 1.10. Each stratums, , ,, (resp., its closure and its boundgris

homeomorphic to an affine spafresp., a closed ball and a sph¢i@f dimension
£(v) — L(u) — 1 (resp..L(v) — £(u) —land{(v) — €(u) — 2). ThusLk (u, v) isa

regular cell complex.

Assuming Conjectur&.10holds, each stratified link Li«, v) provides a geomet-
ric realization of the “generalized synthetic Schubert variety” whose existence was
hypothesized by Bjorner [4].
We hope to extend the construction of the space@ k) to an arbitrary sim-
ply laced Coxeter group, and possibly further, so that the analogs of all statements



Stratified Spaces Formed by Totally Positive Varieties 257

formulated above would still hold. (Note that Bjorner’s original result applies to
intervals inany Coxeter group.)

It should be mentioned that one of our “hidden motivations” has been the desire
to better understand the combinatorics of Kazhdan—Lusztig polynomials. It was
already pointed out in their original paper [14] that Verma’s formula is equivalent
to the assertion that the constant term of any Kazhdan—Lusztig polynomial is 1.

The remainder of this paper is organized as follows. Sections 2—3 introduce
some useful Lie-theoretic machinery; in particular, we define a projection onto a
cell Y;? that plays a crucial role in subsequent proofs. In Section 4, we prove The-
orem 1.2. Section 5 contains the proofs of Theorems 1.4 and 1.7. These proofs
are based on a technical lemma (Lemma 5.4), which is proved in Section 6 for
the special case @& = SL(n); this is the only “type-specific” ingredient of our
proofs.

ACKNOWLEDGMENTS. The authors are grateful to Saugata Basu, llia Itenberg,
Viatcheslav Kharlamov, Boris Shapiro, Eugenii Shustin, Viktor Vassiliev, and
Andrei Zelevinsky for valuable advice.

2. Preliminaries

This section introduces necessary technical background; throughout it, we do not
claim any originality. The notation used here is consistent with [9]. In particular,
we denote by

Go= B_B = N_HN

the set of elements afe G that have a Gaussian decomposition; for the latter, we
use the notatiom = [x]_[x]o[x]..

We think of the Weyl groupV as the quotient of the normalizer BfmoduloH,
and we identify each elemente W with a fixed representative i@.

LeEmMa 2.1. For w e W, we havew B_w C Goandw~Bw C G,. Moreover,
w™IN_w c N_N andw™Nw C N_N.

Proof. SinceB = HN, B_ = HN_, andw normalizesH, it suffices to prove the
last statement. It is well known (cf. [9, Prop. 2.12] or [2, (5.3)]) that any N
is uniquely factored as = x1x» with x; € N N wN_w~tandx, e N N wNw ™2
HenceN ¢ wN_w™t wNw™' = wN_Nw™, as desired. O

Lemma 2.2. If z € w™B_w then[z]_, [z]; € w™IN_w. Analogously, ifz €
wBw then[z] -, [z]+ € wNw.

Proof. It is enough to show that € w=Bw implies [z]. € wNw. Just as in
the proof of Lemma 2.1, we can write = hw xixow, whereh € H, x; €
NNwN_w™ andx, e NN wNw™ Thenz = (hwixw)(wxow), where the
factors belong taB_ and N, respectively. Thusz], = wlx,w € wNw, as
desired. O
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We define the subgroups
N_(w) = wBwWNN_=wNwNN_,
Nw)=w"BwNN =w NwnN,

and the set
N" = B_wB_NN.

LemMma 2.3. Foranyw € W andx, € N, there exists a unique € N_(w)
satisfyingr,, = [wy],. Specificallyy = w[x,w ™, w.

Proof. Immediate from [9, Prop. 2.10 and 2.17]. O
LeEmMma 2.4. Letx, e N, b_e B_, andx,b_ < Gq. Then[x,b_], e N".
Proof. [x,b_], € B_x,b_ C B_-B_wB_-b_ = B_wB_. O
The following statement, though obvious, is quite useful.

LemMma 2.5. If x € Gpandy € G, then[[x]+y]+ = [xy] ., provided one of the
two sides is well-defined.

LemMma 2.6. For anyx,, X, € NV, there exists a unique; € N_(w) satisfying
Xu = [Xpn1] . Specificallyp; = w([Xp,w ™) xpw yw.

Proof. Uniqueness follows from the uniqueness part of Lemma 2.3, together with
Lemma 2.5 and the fact thaf_(w) is a group. In more detail: Assume that
Xy = [Xypm]y = [X¥yni]l4+, whereny # ny andny, n; € N_(w). Let y be as in
Lemma 2.3. Then,, = [X,n; - nl_ln’l]+ = [anl_ln/l]+ = [wynl_ln/l]+, where
y # yny'nj € N_(w), a contradiction.

With the notationy = w[x,w ™ w andy = w[%,w ] w, it remains to
check thati; = 71y satisfiest,, = [%,,n1]4. Indeedx,, = [wy] = [wini];+ =
[xwna] 4. U

We now turn to total nonnegativity. Let us first recall Lusztig’s original defini-
tion [16], whereby the sét of totally nonnegative elements ivi is defined as the
multiplicative monoid generated by the elements

x;(t) = exp(te;), (2.1

wherer > 0 and thee; are the Chevalley generators of the Lie algebra/oDne
of the first results in [16] is the following description of the Bruhat straf(jn=
YNB_wB_.

PrOPOSITION 2.7 [16]. Let (ay, ..., a;) be a reduced word fow € W. Then the
map
(11, . 1) > Xgy(12) -+ - X, (1) (2.2)

is a bijection betweeR’ , and Y.
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(It is clear from this description that; is indeed a cell of dimensioh= £(w);

cf. PropositioriL.1.) One igempted to use the parameterizations (2.2) to prove our
main theorems. Unfortunately, this approach encounters substantial difficulties,
due chiefly to the fact that the relationship between parameterizations of adjacent
cells is generally quite complicated. In what follows, we make very little use of
Proposition 2.7.

ProposiTION 2.8 [17,6.3]. The cellY, is a connected component M (in the
ordinary topology.
Foru € W, we denoter~., = (J,., ¥,

To state the next result, we will need the notion of a generalized minor of an
elementr € G (see [9, Sec. 14]). Generalized minors are certain regular functions
on G that can be defined as suitably normalized matrix coefficients corresponding
to pairs of extremal weights in some fundamental representatién bf the case
of type A, this notion coincides with the ordinary notion of a minor of a square
matrix.

ProrosiTioN 2.9 [10, Thm. 3.1]. An elemenk € G is totally nonnegative, in the
sense of Lusztifg6], if and only if all its generalized minors are nonnegative.

LeEmma 2.10. If a generalized minor does not vanish at some peiatY,?, then
it vanishes nowhere ii° and, moreover, nowhere ifi.,,.

Proof. For the typeA, this is an immediate corollary of [1, Prop. 5.2.2]. The gen-
eral case can be deduced from (highly nontrivial) [3, Prop. 7.4]. According to the
latter, for any generalized minax and any sequence of indices= (ay, ..., a,),

the functionP, (t1, ..., t,) = A(xa, (1) - - - x4, (tn)) (cf. (2.2)) is either identically
zero or a polynomial with positive integer coefficients. (The typ&ersion of
this statement is well known; see e.g. [1, Thm. 2.4.4].) Sinc#goes not vanish
at some point int,?, we know thatP, is a nonzero polynomial for any reduced
word a for u. Forv > u, any reduced word for v contains some reduced word
a for u as a subword (see [13, 5.10]). HenRgis a specialization of, obtained

by setting some of the variables equal to zero. TRes 0 implies P, # 0. On
the other handpP, is a polynomial with positive coefficients, $,(r1, t2, ...) #

0 for anyty, to, ... > 0 or, equivalentlyA(x) # O for anyx € ¥,’. O

LemmMma 2.11. Foranyu e W, we haveB_uB_ C Gou. In particular, N* C Gou.
Proof. This follows from Lemma 2.1. O
COROLLARY 2.12. Y>, C Gou.

Proof. By [9, Cor. 2.5], the seGou is defined by several inequalities of the form
A # 0, whereA is a generalized minor. Sind& C Gou (by Lemma 2.11), none
of these minors vanishes dff and hence none vanishes anywhereYep, by
Lemma 2.10. OJ
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THEOREM 2.13 ([6, Cor. 1.2]; cf. [15, Sec. 1.2]).For u, v € W, the intersection
B_vB_ N BuB_ is non-empty if and only if < v.

CoroLLARY 2.14. Gou C .., B-vB_.

Proof. Letx € Gou andx € B_vB_, and letv € W. Then, by Theorem 2.13,
B vB_NB_Bu#0 — B_vB_NBu+#0 — u<wv,

as desired. 0
CoROLLARY 2.15. Y-, =Y N Gou.

Proof. The inclusionY-, C Y N Gou is Corollary 2.12. The opposite inclusion is
immediate from Corollary 2.14. O

LEMMA 2.16. Y>,Y C Y5,

Proof. By [16, Lemma 2.14], for anyy, w, € W we haveY; Y. = Y. for some
w3z € W. Moreover, it is clear from the proof of this statement in [16] that>
w1, and the lemma follows. O

ExaMpPLE: G = SL(3, R). Letu = s1, the transposition of 1 and 2 in the sym-

1 x12 x13
metric groupW = S3. Then, using the notation = [o 1 m] for the elements
x € N, we have 00 1

x127#0 x13=0

N(@u) = {x12 =0}, N”={ Xos=0

}, N N Gou = {x12 # 0}
zo}.

In this section, we introduce a projectian : Y-, — Y, that will later be used

to construct and study the links Ik, v) = Ik(Y;?, ¥,). This projection can be
viewed as the totally positive version of the projection of an affine open neighbor-
hood of a Schubert cell onto the cell itself, which arises from the direct product
decomposition described by Kazhdan and Lusztig in [15, Secs. 1.3-1.4].

Let us fix an element € W.

and

X12  X13

Y, = 1 x23

x12>0 x13=0 x12>0 x13>0
) Y>u=
x23=0 = x23>0

3. Projecting on a Cell

LemMa 3.1, If x € Gou N Go (in particular, if x € Y-,—cf. Corollary 2.1, then
uxu,ueGoanduluxu", u]_ € Go.

Proof. The first statement follows from Lemma 2.1. Proof of the second: For some
b_eB_ andbe B, we haveu[u [xuY  u]- = uub_xu=tub = b_xbeGy.

O
LemMma 3.2. The map(x,, x*) — x = x,x" is a bijection

N" x N(u) - N N Gou.



Stratified Spaces Formed by Totally Positive Varieties 261

The inverse map +— (x,, x*) is given by

x, = [ulu oeu™ ] u] 14 3.1
and
x* = xu Y ul 4. (3.2)
Furthermore, ifx € N N Gou is totally nonnegativéi.e., if x € Y-,—cf. Corol-
lary 2.15), thenx, is totally nonnegativéi.e., x, € ¥,).

Proof. Assume thats, € N*, x* € N(u), andx = x,x". Thenx = x,x" €
Gou - uNu = Gou (by Lemma 2.11 and the definition &f(x)), as claimed.

Let us prove that the map in question is a surjection.xetN N Gou, and let
x, andx" be given by (3.1) and (3.2); note that the right-hand sides of these for-
mulas are well-defined (by Lemma 3.1). Thys= [u[y]_]+ andx" = [y].,
wherey = u[xu=Y,u. Thenx, € B_u[y]- C B_uB_ andx" € N(u) (by
Lemma 2.2). Furthermore, x* = [u[y]_]+[y]+ = [uy]+ (Sincey e N_N by
Lemma 2.1) and thereforg, x* = [uy]; = [[xuY;u],. = x (by Lemma 2.5).

Let us now prove injectivity. Again, supposg € N“, x* € N(u), andx =
x,x". We will show thatx, andx" can be recovered fromvia (3.1)—(3.2). Since
x € NN Gou, the right-hand sides of (3.1)—(3.2) are well-defined (by Lemma 3.1).
Then

7] 7 B ) O B 17 7 P i 7] G

= [u[u [ x,u ™ ]yux"uu] ], (sinceuxu=teN)

= [ufu o™ 0] 14
=[u-uxu ™Y u]s (by Lemma 2.3)
=X, (by Lemma 2.5),
proving (3.1).
Let us prove (3.2). Denoté = u~*[xu~],u. We have
x = [x]y = (@ xu T )]y = [uAly = [u[A] ] [A]4

(by Lemma 2.1). On the other hand, we already provedithat [u[A]_].. Thus
x = x,[A]+ (i.e.,x"* = [A]}), as desired.

It remains to prove that, is totally nonnegative wheneveris. Assume that
x €Y, CY-,. Consider a path that conneatsvith a pointxg € ¥,? and stays in-
sideY,) (such a path exists becauggis connected and its boundary contaiffs
see Propositioth.1). Theimage of this path under the projectiohN Gou — N*
connectsy, with xo. Sincexo € Y2, Proposition 2.8 implies that, € Y. O

In view of Lemma 3.2, the formula
7 (x) = [ufu ™ oxu™ cu] -4 (3.3)

defines a continuous projectien: Y-, — Y°. (The mapr, is a projection since
x = x - 1 gives the factorization in question fore ¥”.)

ExamMpLE: G = SL(3 R), u = s5. Forx € Y-, (or, more generallyx €
N N Gou), the factorizationc = x,x" is given by
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1 x12 x13 1 x12 O 1 0 xi13—x12x23
0 1 X23 = 0 1 0 0 1 X23
0 O 1 0O 0 1 00 1
1a0
The fiber of the projectiom, : x — x, over a pointx, = [o 1 o} €Y (a>0)
is therefore 001
1 a X13
JTJl(xu) =YN{xpp=a}= 0 1 xo3|:axy;3>x13>0
0 0 1

4. Transversals and Links. Proof of Theorem 1.2

Our next goal is to prove that the restriction of the projectipontoYy, .; is glob-
ally trivialized alongy,;.

LemMma 4.1. For anyx € N N Gou and anyx, € N*, there exists unique_ <
N_(u) such that the element = [xn_] . is well-defined and belongs iQ N (u).
If, moreoverx andx, are totally nonnegative, theti is also totally nonnega-
tive. We thus obtain a cell-preserving projection
pxu . YZM — n,;l(xu)
I x (4.1)
(see Figure 2

Figure 2 The projectionoy,

Proof. Letx = x,x%, wherex, € N* andx* € N(u), as in Lemma 3.2. Let; €
N_(u) be such thak, = [X,n1]+ (suchn; exists and is unique by Lemma 2.6).
Set

n_ = [(x*)"n]_. (4.2)

Since botht* andn; belong tou'Nu, the element_ is well defined in view of
Lemma 2.1, and belongs 18_(x) by Lemma 2.2. Let us prove that the element
n_ defined by (4.2) has the desired properties; that'is; [xn_] is well-defined
and belongs ta, N(u), as shown in the following diagram:
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X ~ x'=[xn_]s
myo (4.3)
Xy ~ x,=[X,n1]4.

Denotez = ¥“n_. Once againg € u *Nu C N_N, and (4.2) implies{]_ =
[n_]- = [F[(Z") 1] _]- = n1. Thenin_ = X,z = ¥,m[z]+ € Go (be-
cause k,ni1]y+ = x,), sox’ is indeed well-defined. Furthermore, = x,[z]. €
x,N(u) (by Lemma 2.2), as desired.

Unigueness is proved by a similar argument. SupposeithatN_(u) is such
thatx’ = [Xn_]; € x,N(u). As before, denote = ¥“n_. Thenz = [z] _[z]+
andx’ = [%,z]+ = [%u[z] -]+ - [z]+- Since [,[z] -]+ € N* (by Lemma 2.4) and
[z]+ € N(u), it follows from Lemma 3.2 that{,[z] -]+ = x, = [X,n1]+. Hence,
by Lemmas 2.2 and 2.63 = [z]— = [x¥“n_]_, implying (4.2).

It remains to prove the second part of the lemma. In view of Lemma 2.6, a path
connectingg, andx, within Y,? gives a continuous deformation of the identity 1
G into n1 within N_(u), which gives rise (via (4.2)) to a continuous deformation
of linton_ and, finally, to a path connectifigandx’ = [xn_] . within the Bruhat
cell containingr. Hencex' is totally nonnegative by Proposition 2.8. O

ExamPLE: G = SL(3 R), u = s1. For

1 )’512 x~13 1 a O
x=(0 1 Xx»3|€Ys, and x,=|0 1 O0fe¥r,,
0 O 1 0 0 1
computations give
1 00
n_ = a‘l—iizl 1 0
0 0 1
and ai1s
1 a -
X12
x'=py, (%) =[in_]; = 0 1 i12i23_i13+$
a X12
0O 1

Total nonnegativity ok’ does indeed follow from total nonnegativity ofandx,,.
We denote byw, the element of maximal length iW.

THEOREM 4.2. (1) For x, € Y?°, the setx, N(u) is a smooth submanifold in
N N Gou diffeomorphic to the affine spad o —¢@  Furthermore,x, N(u) is
transversal to every Bruhat stratum™, w > u (and hence to every stratum
Y2 C Ysy).

(2) For x,, X, € Y,?, the mapp,, described in Lemma 4.1 establishes a diffeo-
morphism betweef, N(u) andx, N(u). This diffeomorphism respects total non-
negativity and the Bruhat stratification; more precisely, it restricts to a stratified
diffeomorphism between the fibers!(x,) and = 1(x,).
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Proof. The mapn, — x,n, establishes a diffeomorphism betweaiiu) =
R¢wo)=t@) andx, N(u). To prove transversality, consider a paird.x, N(u) NN v.

It will be enough to show that, N(u) is transversal to the smooth submanifold
[xN_(u)], of dimensiont(u) in N*. Assume the contrary—in other words, that
there exists a common tangent vectdo [xN_(u)]+ andx, N(u) at the pointx.
Let us evaluate the differential of the projectionrV NGou — N* atthe vectow.
On the one hand, the projection is constantiV () and henceD (v) = 0. On
the other hand, in view of (4.2), the restriction of the projection orté_[(u)] +

is a diffeomorphism and hende(v) # 0—a contradiction.

Let us prove the second part of the theorem. From (4.2) and (4.3), wehave
[X[(3*)n4] ]+, wherex" is given by (3.2) and; by Lemma 2.6. The result-
ing mapx, N(u) — x,N(u) is rational and therefore differentiable on its domain.
Its inverse is again a map of the same kind, with the roles,@fndx, reversed.
Hence these maps are diffeomorphisms. Furthermore, they preserve the Bruhat
stratification (in view of Lemma 2.4) and total nonnegativity (by the second part
of Lemma 4.1). 0

Recall the notatioryy, ,; = Yy andYs, = J Ye

welu,v] w>u Tw*

CorOLLARY 4.3. Foru,v e W, (u < v) and anyx, € Y, we have the diffeo-
morphism of stratified spaces,

Vi) = Y0 X (1, (x0) 0 Vo)

In particular, Y=, = Y° x 77 %(x,).

Proof of Theorem 1.2Corollary 4.3 shows that the link df? in 17,y is well-
defined (up to a stratified diffeomorphism); it is explicitly given by

LK (u, v) = (7, (x0) N Yop) N Se (X)),

wherex, is an arbitrary point ofY,” andS; (x,) is a small sphere centeredxgt
The first two statements of Theorem 1.2 follow right away. The equalitié¥
follow from the analogous property for the Bruhat stratificatiory ¢Ef. Proposi-
tion 1.1),combined with Corollary 4.3. O

5. Proofs of Theorems 1.4 and 1.7

Recall that the elemenis(z) are defined by (2.1). For the typg,_1, x;(¢) is the
n x n matrix that differs from the identity matrix in a single entry (equat)téo-
cated in rowi and column + 1

DerFINITION 5.1. We define the regular map stv: — C by the conditions
str(x;(z)) =t and st(xy) = str(x) + str(y). In particular, in the case of typ#,

we have stfx) = )", x; 11, the sum of the matrix elements immediately above
the main diagonal.

DEFINITION 5.2, Fort > 0, letd(r) € H be uniquely defined by the conditions
(d(1))% = t for all simple rootsy;. Thend(t)x;(a)d(r)™* = x;(ra) for anyi.
For the typeA,,_1,
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L R
0 2 ... 0

d(r) =72 . T (5.)
0 0 —

and the automorphism — d(7)xd(r)~* of the groupN multiplies each matrix
entryx;; of x by ¢/,

Note that the automorphism — d(t)xd(z)~ preserves the celly* and the
subgroupsV(w); it also preserves total nonnegativity.

DeriNITION 5.3. Foru € W andx, € Y;, we define the vector fielgy on
-1
7, (x,) by

d
Y(x) = d—(,Ox,,(d(T)xd(f)fl)) (5.2)
T =1

(recall thatp,, is defined by (4.1)).

LemMa 5.4 (TypeA only). The vector fields vanishes nowhere ofj (x,) ex-
cept at the point,. The directional derivativ&,, str(x) is positive at every point

X # Xy.
The proof of this lemma is given in Section 6.

Proof of Theorem 1.7In view of Corollary 4.3, it remains to show that the fiber
7 x,) N Y1, has the structure of the cone over the link(kv).

The vector fieldyr can be extended (by the same formula (5.2), with=
,(x)) to the open subse¥ N Gou of N. Furthermoreyr(x) is given by rational
functions in the affine coordinates .of therefore, the theorem of uniqueness and
existence of solutions applies to this extensiogrqind hence tay itself). Since
¥ is tangent to each stratum of the preimageé(x,) (all these strata are smooth
by part (1) of Theorem 4.2), it follows that every trajectoryyofs contained in a
single stratum.

The intersectiorY N {str < ¢} is compact for any > 0. Lemma 5.4 then im-
plies that, for everyy € 7 (x,), the solutionx(¢) of the Cauchy probleni =
¥(x) andx(0) = xo with z < 0 exists fort € (—oo, 0]. (Otherwise, the trajec-
tory T_ = {x(¢) : + < 0} would hit the boundary of the stratum containing)
The trajectoryT_ must have limit points; let;, be one of them. The function
s: 1> str(x(r)), t <0, is increasing (by Lemma 5.4) and bounded from below.
Therefore lim__ §(r) = 0, implying thatV,, str(x;m) = 0. By Lemma 5.4, this
means that;n, = x,. Thus every trajectory of originates at the point, (atr =
—00). A similar argument shows that lim ,+ str(x (7)) = +oo, wherer* denotes
the upper limit of the maximal domain of definition ofz) (sor™ € [0, o0]). We
conclude that the function str increases fron(stj to co along each trajectory
of ¥, except for the trajectory(s) = x,. Thus every nontrivial trajectory C
1.0 intersects the set

L.(u,v) =L, (u,v) = nu_l(x,,) N Yo N {x @ str(x) = str(x,) + ¢} (5.3)
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at exactly one point; see Figure 3. Thereforel(x,) N Y., is diffeomorphic
to the cone Con@., (u, v)). (In particular,7*(x,) = CongL,(u, wo).) This
implies thatL,.(u, v) is isomorphic (as a stratified space) to the link(dkv).
Theorem 1.7 is proved. O

71';1(:1:“) N Yv[u,v]

L.(u,v)

YO

Ty u

Figure 3 Embedding of the link intar (x,) N Y.y

Proof of Theorem 1.4Forx € n;l(xu) MY, letd, ,(x) denote the unique point
of intersection of the link . (i, v) with the trajectory ofys that passes through
(see the sentence containing (5.3)).

Fix z € Ys,, and defineR,, ,: L.(u, v) x [0,1] = L.(u, v) by

Ru o (X, T) = Ay (P, (,(d(D)zd (1) Hd(L — T)xd (L — ) ™)). (5.4)

(Note thatd(t)zd(r) ™! € Y-, and thereforel(t)zd(r) *d(1 - t)xd(1— 1)t e
Y-,, by Lemma 2.16; hence the right-hand side of (5.4) is well-defined.)

Let us show that the mag, , is a deformation retraction dof . («, v) into a
point. First,R, , is continuous with respect to Second, lim_o d(t)xd(t) ™ =
1and lim _1d(t)zd(t)™* = z. ThereforeR, ,(x,0) = x. On the other hand,
Ry v(x, 1) = ryy(px,(,(2))), a point independent of.

It remains only to observe that, , o = Sy w.w = L (1, w). O

6. Proof of Lemma 5.4

Ouir first goal is an explicit formula for the vector fiejd
Throughout this section, we use the following notation. FerY-,, denote

xy = (x) = [ufu ™ xu™ 1] Ty,
A=uxu", u,
y =[A]-,
1

x" =[Al; = x,x.

(6.1)

Thusx = x,x", x, = [uy]+ (agreeing with Lemma 2.3), antl = yx*.
Let us fix an arbitrary totally nonnegative element H. We will need some
basic properties of the cell-preserving automorphism dxd %
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LemMA 6.1. The automorphism ~ dxd ! of Y., commutes with the maps
x = x, andx — x"“:

(dxd™Y, =dx,d7Y,  (dxd™YH* =dx"d L
Proof. In view of Lemma 3.2, the statement follows from the factorization

dxdt = dx,d™! - dx"d~*, where the two factors on the right belong ¥
andN(u), respectively. O

LEmMMA 6.2. The automorphism, +— dx,d ! of Y, commutes with the map
x, — y (cf. Lemma 2.8 In other words,

dx,dt=1[u-dyd™,.
The unique element, € N_(u) such thatx, = [dx,d *ni], (cf. Lemma 2.pis
given byn; = dy~td1y.
Proof. First part: dx,d > = d[uy]+d ™ = [duyd Y+ = [udyd Y] .. The sec-
ond part is then a special case of Lemma 2.6. O
LEMMA 6.3. p, (dxd ) = x([dA7dA],) ™
Proof. Applying (4.1) toX = dxd~* and using Lemmas 6.1 and 6.2 along with
(6.1), we obtain
pr,(dxd ™) = [dxd Hd(x") " dyd Y] ]y = [dxd dATd Al ],

= [dxd ™' dA™'d AL ([dA™"d *A] +)

= [xAY U] ([dAtdA] )t
It remains to show thatfA~'d 4], = x. This is done as follows:

[xA™d Al =[xy d ALy = [[uy] sy 'd ALy = [uyy d AL,
= [ud tyx"]y = [ud ] 2" = [uylpx" = x,x" =x. O

Let g, n, andb_ denote the Lie algebras of groups N, and B_, respectively.
Let r,, denote the projectiog — n alongb_. (In the casgy = sl,, 7, replaces
all lower triangular entries of a traceless matrix by zeros.)

LEMMA 6.4. Let f(t) = f_(z) fi(7), wheref_(t) e B_and f. (r) € N for all
t > 0. Assume thay'(1) = 1. Thenf, (1) = m,, f'(D).

Proof. The equality /(1) = 1 implies f- () = f. () = 1 Then f'(D
PO+ + D@ = 2D + f1@. Since f2(1) € b_ and f (1) €

we are done.

g

PROPOSITION 6.5. (x) = xma (A7 (D A).

Proof. By Lemma 6.3, (d(7)xd(r)™}) = x([d(r)A‘ld(r)‘lA]+)_l. Hence

d d _
Y(x) = (pxu(d(r)xd(n ) =xE([d(r>A*1d(r>*lA]+) !
=1 =1
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Applying Lemma 6.4 and observing thatl) = 1, we obtain:

i 1 1 -1 . _i -1 -1
T ([dm)A™d(®) AL @A @A
= —nni(d(r)A_ld(r)‘lA)
dr o1
= —ma(d'D) — A7 (DA) = 7 (AT (D A),
implying the claim. O

In the rest of this section, we consider only the case of thedype. ThusW is the
symmetric grous,. We treat the elements &¥ as bijective mapé§l, ..., n} —
{1, ..., n}and choose permutation matrices as their representatizesitGL (n).

LEMMA 6.6.

(1) If1<i<j<nandu(j) <u@) <u(j+1),then(A™);; A; 1>0.
(@ If1<j<i<nandu(j) <u() <u(j+1),then(A™);; A; ;41 <0.
(3) Otherwise(A™);; - A; j+1=0.

Proof. For a matrixa € u~Nu, the matrix element;; vanishes unlesg(i) <
u(j). It follows that(A™1);,; - A; j+1 = O unlessu(j) < u(i) < u(j + 1), prov-
ing part (3) of the lemma. In order to prove parts (1) and (2)ssetu(i), p =
u(j), andg = u(j +1); thusp <s <gq.

In what follows, we denote by’:i_’_’::;’r the determinant of the submatrix of a

matrix z formed by the rows,, ..., i, and the columngy, ..., j, (in that order).
Using the definition ofA and thatx € N, we obtain

.....

Becausex is totally nonnegative, the sign of; ;1 is either zero o(—1)"1""2,
where

nmp=cardl:l <s—1 ul) > i},
np=cardl:l <s—1 u ) > j+1}.

The sign of(A~1); ; can be determined in a similar fashion. Using the notation
i to indicate that the indeiis being removed, we obtain:

(A = (([xu™ ) ™ps = (=D P (L p 5"
G

1 L..s—1
T

TRRRRE s—

= (D oy = (D0

1,...,s—1
X 1 ST 1
o \G=p)u @,..., u=(p),..., u=(s)
=D 1.1 :
Xu=1), .. L5 =)
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Hence the sign ofA™Y); ; is either zero of—1)$~P+m+nstns wheren, is the same
as before and

ny=cardl 1< p—1 u ) > j},
ng=cardl:p <t<s, u i) < j}.

Since
ng+s—p—ng=cardl :l <s, u) > jl,

we conclude that the sign af; ;1(A™); ; is either zero of—1)cardi:i=s, u"t0)>j}
matching the claim of the lemma. O

Let us extend the notation §i) = ). x; ;41 to arbitrary matrices.
LEmMMA 6.7. Letv =diag(n,n —1,...,1). Thenstr(A~vA) > 0.

Proof. Fork =1, ...,n, letv, =diagd,...,10, ..., 0) denote the diagonal ma-
trix whose firstk diagonal entries are equal to 1, and all other entries vanish. The
equalityA™A = 1implies

j n
Z(Ail)j,i “A 1+ Z (A A j1=0,
i=1 i=j+1
where (by Lemma 6.6) all terms in the first sum are nonnegative while all terms in
the second sum are nonpositive. THeT v A); 1= 3¢ (A ™Y Ar 1>
0, implying str(A~tv; A) > 0. Sincev = >_}_, vy, the lemma follows. O

We are now prepared to complete the proof of Lemma 5.4. First, let us note that
d(t)x,d(t)™t € Y?; hencep,,(d(t)x,d(zx)™ € Y? NnYx,) = {x,}. Thus
1;Zf(-xu) =0.

Letx e 7 Y(x,), x # x,. Sinced’(1) = v + A for some scalar matrix, Propo-
sition 6.5 yieldsy (x) = xm, (A1vA). Therefore,

str(y(x)) = str(x) + str(m, (A™wA)) = str(x) + str(A"vA)

(here we identify the tangent vectgn(x) with the corresponding traceless ma-
trix). Since st(x) > 0, Lemma 6.7 implies that st¢/(x)) > 0; in particular,
Y(x) # 0. Then st(x + ¥ (x)dr) = str(x) + str(y(x))dt; henceVy, str(x) =
str(¥(x)) > 0, as desired. O

References

[1] A. Berenstein, S. Fomin, and A. Zelevinslarametrizations of canonical bases
and totally positive matrice#\dv. Math. 122 (1996), 49-149.

[2] A. Berenstein and A. Zelevinskyiotal positivity in Schubert varietie§omment.
Math. Helv. 72 (1997), 128-166.

, Tensor product multiplicities, canonical bases, and totally positive vari-
eties,Invent. Math. (to appear).

[4] A. Bjorner, Posets, regular CW complexes and Bruhat ord&rropean J. Combin.
5 (1984), 7-16.

(3]



270 SERGEY FOMIN & MICHAEL SHAPIRO

[5] A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White, and G. M. Ziegleriented
matroids,Encyclopedia Math. Appl., 46, Cambridge Univ. Press, Cambridge,
UK., 1993.
[6] V. V. Deodhar,On some geometric aspects of Bruhat orderings. I. A finer decom-
position of Bruhat cellsinvent. Math. 79 (1985), 499-511.
[7] A. Dold, Lectures on algebraic topolog@gpringer-\erlag, Berlin, 1995.
[8] B. A. Dubrovin, A. T. Fomenko, and S. P. NovikoModern geometry—Methods
and applications. Part Ill. Introduction to homology theofgrad. Texts in Math.,
124, Springer-\erlag, New York, 1990.
[9] S. Fomin and A. ZelevinskyDouble Bruhat cells and total positivityl. Amer.
Math. Soc. 12 (1999), 335-380.
, Totally nonnegative and oscillatory elements in semisimple grdes;.
Amer. Math. Soc. (to appear).
[11] M. Goresky and R. MacPherso8tratified Morse theorykrgeb. Math. Grenzgeb.
(3), 14, Springer\ferlag, Berlin, 1988.

[12] V. Guillemin and A. Pollack Differential topology,Prentice-Hall, Englewood
Cliffs, NJ, 1974.

[13] J. E. HumphreysReflection groups and Coxeter grou@@&mbridge Stud. Adv.
Math., 29, Cambridge Univ. Press, Cambridge, U.K., 1994.

[14] D. Kazhdan and G. LusztiqRepresentations of Coxeter groups and Hecke alge-
bras, Invent. Math. 53 (1979), 165-184.

, Schubert varieties and Poincaré duali§roc. Sympos. Pure Math., 36,
pp. 185-203, Amer. Math. Soc., Providence, RI, 1980.

[16] G. Lusztig, Total positivity in reductive group$rogr. Math., 123, pp. 531-568,
Birkhauser, Boston, 1994.

, Introduction to total positivityde Gruyter Exp. Math., 26, pp. 133-145,
de Gruyter, Berlin, 1998.

[18] R. P. StanleyA survey of Eulerian poset8|ATO Adv. Sci. Inst. Ser. C Math.
Phys. Sci., 440, pp. 301-333, Kluwer, Dordrecht, 1994.

[19] D.-N. Verma,Mobius inversion for the Bruhat order on a Weyl groémn. Sci.
Ecole Norm. Sup. (4) 4 (1971), 393-398.

[10]

[15]

[17]

[20] , A strengthening of the exchange property of Coxeter gropieqrint,
1972.

S. Fomin M. Shapiro

Department of Mathematics Department of Mathematics

University of Michigan Royal Institute of Technology

Ann Arbor, Ml 48109 S-10044 Stockholm

fomin@math Isa.umich.edu Sweden

mshapiro@math.kth.se



