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1. Introduction and Main Results

In 1984, Björner [4] showed that every interval in the Bruhat order of a Coxeter
groupW is the “face poset” of some stratified space in which each closed stra-
tum (resp., the boundary of each stratum) has the homology of a ball (resp., of a
sphere). Passing to the Euler characteristic, this result impliesVerma’s formula [19;
20] for the Möbius function of the Bruhat order—namely,µ(u, v) = (−1)`(v)−`(u)

(u ≤ v),wherè denotes the length function. (This is, in turn, equivalent to saying
that each Bruhat interval contains equally many elements of even and odd length.)

In fact, Björner proved a stronger result: Every interval in the Bruhat order is
the face poset of a regular cell complex (i.e., closed strata actuallyareballs). How-
ever, the construction of such complex in [4] was entirely “synthetic” (essentially,
a succession of cell attachments; cf. [5, 4.7.23]). Furthermore, it was based on
the existence of a combinatorial shelling, which by itself easily implies Verma’s
formula, bypassing all geometry. A question posed in [4] asked for a natural geo-
metric construction of a stratified space with the desired properties.

In this paper, we propose such a construction for the case whereW is the Weyl
group of a semisimple groupG. In the type-A case, whereW is the symmetric
group andG the special linear group, we prove that our stratified spaces indeed
have the required homological properties. The spaces we construct are links of
cells in the Bruhat decomposition of thetotally nonnegativepart of the unipotent
radical ofG.

In the remainder of Section 1, we present the details of this construction and
state our main results and conjectures. The rest of the paper is devoted to proofs.

Let G be a semisimple, simply connected algebraic group defined and split
overR. LetB andB− be two opposite Borel subgroups ofG, so thatH = B− ∩B
is anR-split maximal torus inG; we denote byN andN− the unipotent radicals
of B andB−, respectively.

For the typeAn−1: the groupG is the real special linear group SL(n,R); H,
B, andB− are the subgroups of diagonal, upper triangular, and lower triangular
matrices, respectively;N andN− are the subgroups ofB andB− that consist of
matrices whose diagonal entries are equal to 1.
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We denote byY the set of alltotally nonnegativeelements inN. In the case
of the special linear group,Y consists of the upper-triangular unipotent matrices
all of whose minors are nonnegative. The general definition was first suggested
by Lusztig (see [17] and references therein). In our current notation, Lusztig de-
finedY as the multiplicative submonoid ofN generated by the elements exp(tei),
t ≥ 0, where theei are the Chevalley generators of the Lie algebra ofN. An alter-
native description in terms of nonnegativity of certain “generalized minors” was
given in [10] (cf. our Proposition 2.9).

Let W be the Weyl group ofG. The length of an elementw ∈ W is denoted
by `(w). The groupW is partially ordered by the Bruhat order, defined geometri-
cally by

u ≤ v ⇐⇒ B−uB− ⊆ B−vB− .
The Bruhat decompositionG = ⋃

w∈W B−wB− induces the partition ofY into
mutually disjointtotally positive varietiesY ◦w = Y ∩ B−wB−, w ∈W (this termi-
nology is borrowed from [9]).

We denoteYw = Y ◦w. The varietiesY ◦w were first studied by Lusztig in [16],
where, in particular, the following basic properties were obtained.

Proposition 1.1 [16]. Each totally positive varietyY ◦w is a cell; more precisely,
Y ◦w is homeomorphic toR`(w). Furthermore,Yw =

⋃
u≤w Y

◦
u .

Example: G = SL(3,R). In this case,

Y =
x =

 1 x12 x13

0 1 x23

0 0 1

 : x12 ≥ 0, x23 ≥ 0, x13 ≥ 0,

∣∣∣∣ x12 x13

1 x23

∣∣∣∣ ≥ 0

.
Thus the setY is described in the coordinates(x12, x23, x13) as the closure of one
of the pieces into which the planex13 = 0 and the hyperbolic paraboloidx12x23 =
x13 partition the 3-space—namely, the piece containing the point(1,1, 1

2). The
semialgebraic setY decomposes naturally into six algebraic strata: the origin,
two rays (the positive semi-axes forx12 andx23), two 2-dimensional pieces con-
necting them, and the 3-dimensional interior. These are the six Bruhat strataY ◦w
for w ∈W = S3 (the symmetric group). Figure 1 shows a planar cross-section of
this stratification (or, equivalently, the link of the 0-dimensional cell). The adja-
cency of the strataY ◦w is indeed described by the Bruhat order onS3, in agreement
with Proposition1.1.

Figure 1 Totally nonnegative varietiesY ◦w in the special caseG = SL(3,R)
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For u, v ∈W (u ≤ v), theBruhat interval[u, v] is defined by [u, v] = {u ≤
w ≤ v},with the partial order inherited fromW. Similarly,(u, v]

def= {u < w ≤ v}.
In view of Proposition1.1, it isnatural to suggest that the geometric model for

a Bruhat interval [u, v] (or (u, v]) is provided by thelink

Lk(u, v) = lk(Y ◦u , Yv)

of the cellY ◦u inside the subcomplexYv ⊂ Y.
The following are our main results.

Theorem 1.2. For anyu ≤ v, the link Lk(u, v) is well-defined as a stratified
space. The strataSu,v,w = Lk(u, v) ∩ Y ◦w are labeled by the elementsw ∈ (u, v],
and each stratumSu,v,w is an open smooth manifold of dimension`(w)−`(u)−1.
The closures and boundaries of the strataSu,v,w are given by

Su,v,w =
⋃

u<w ′≤w
Su,v,w ′ , ∂Su,v,w =

⋃
u<w ′<w

Su,v,w ′ . (1.1)

Here, by a stratified space we mean a decomposition of a semialgebraic set into
disjoint smooth submanifolds labeled by the elements of a partially ordered set,
as described for example in [11, Sec.1.1]. Although the stratifications we consider
seem to satisfy Whitney’s regularity conditions (cf. [11, Sec.1.2]), we will not need
to verify these conditions to justify our constructions.

Theorem 1.3 (TypeA only). All the strataSu,v,w are orientable.

Theorem 1.4 (TypeA only). Each closed stratumSu,v,w is contractible. More-
over, the contraction can be chosen so that it restricts to a contraction of the open
stratumSu,v,w.

These theorems ensure that the stratified spaces Lk(u, v) have the desired homo-
logical properties, as we will now explain. Let Hi(X) (resp., Hi(X,X ′)) denote,
as usual, the ordinaryith homology group CW complexX (resp., pair of CW com-
plexesX ′ ⊂ X). The corresponding Euler characteristics are denoted byχ(X)

andχ(X,X ′), respectively.

Corollary 1.5 (TypeA only). For anyu < w ≤ v, we have

H i(Su,v,w, ∂Su,v,w ) =
{ Z if i = `(w)− `(u)− 1,

0 otherwise.
(1.2)

Consequently,χ(Su,v,w, ∂Su,v,w ) = (−1)`(w)−`(u)−1.

Proof. We will need the Lefschetz duality isomorphism [8, Ex. 18.3]:

H i(X,A) ' Hn−i(X \ A;Z), i > 0,

whereX is a compact topological space andA its closed subset such thatX \A is
a smooth orientablen-dimensional manifold. TakeX = Su,v,w andA = ∂Su,v,w.
Then Theorems 1.2 and 1.3 ensure that the above conditions are satisfied, with
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n = `(w)− `(u)−1. Hence Hi(Su,v,w, ∂Su,v,w ) = H`(w)−`(u)−1−i(Su,v,w). Since
Su,v,w is contractible by Theorem 1.4, (1.2) follows.

Corollary 1.6 (Verma’s formula for the typeA).
∑

u≤w≤v(−1)l(w) = 0.

Thus every Bruhat interval is anEulerian poset[18].

Proof. The additivity of the Euler characteristic [7, V.5.7], which applies in view
of Theorem 1.2, gives

χ(Lk(u, v)) =
∑

u<w≤v
χ(Su,v,w, ∂Su,v,w ).

In the last identity, the left-hand side is equal to 1 by Theorem 1.4, while the right-
hand side is equal to

∑
u<w≤v(−1)l(w)−l(u)−1 by Corollary 1.5. Simplifying, we

obtain the desired formula.

For the typeA,we prove the following refinement of Theorem1.2. Let us define the
stratified spaceY[u,v] byY[u,v] =

⋃
w∈[u,v] Y

◦
w. Note that Lk(u, v) = lk(Y ◦u , Yv) =

lk(Y ◦u , Y[u,v]).

Theorem 1.7 (TypeA only). The stratified spaceY[u,v] has the structure of the
direct product of the cellY ◦u and the cone over the linkLk(u, v). More precisely,
there exists an isomorphism of stratified spacesY[u,v] andY ◦u × Cone(Lk(u, v))
whose restriction to each stratum is a diffeomorphism.

Remark1.8. Theorem1.3 can be deduced from Theorem1.7 as follows. By(1.1),
the stratumSu,v,w coincides with the interior of Lk(u,w). Thus Theorem 1.7 as-
serts, in particular, that the cellY ◦w is a direct product of the cellY ◦u and the interior
of the cone over Lk(u,w). Both cellsY ◦w andY ◦u are evidently orientable. There-
fore (see e.g. [12, Ex. 3.2.24]), the interior of the cone over Lk(u,w) is orientable
and so is the interior of Lk(u,w).

Conjecture 1.9. Theorems 1.4 and 1.7(hence Theorem 1.3 and Corollary 1.5)
hold for any semisimple algebraic groupG.

We believe that Conjecture 1.9 can be strengthened as follows.

Conjecture 1.10. Each stratumSu,v,w (resp., its closure and its boundary) is
homeomorphic to an affine space(resp., a closed ball and a sphere) of dimension
`(v)− `(u)−1 (resp.,`(v)− `(u)−1 and`(v)− `(u)− 2). ThusLk(u, v) is a
regular cell complex.

Assuming Conjecture1.10holds, each stratified link Lk(u, v) provides a geomet-
ric realization of the “generalized synthetic Schubert variety” whose existence was
hypothesized by Björner [4].

We hope to extend the construction of the spaces Lk(u, v) to an arbitrary sim-
ply laced Coxeter group, and possibly further, so that the analogs of all statements
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formulated above would still hold. (Note that Björner’s original result applies to
intervals inanyCoxeter group.)

It should be mentioned that one of our “hidden motivations” has been the desire
to better understand the combinatorics of Kazhdan–Lusztig polynomials. It was
already pointed out in their original paper [14] that Verma’s formula is equivalent
to the assertion that the constant term of any Kazhdan–Lusztig polynomial is 1.

The remainder of this paper is organized as follows. Sections 2–3 introduce
some useful Lie-theoretic machinery; in particular, we define a projection onto a
cell Y ◦u that plays a crucial role in subsequent proofs. In Section 4, we prove The-
orem 1.2. Section 5 contains the proofs of Theorems 1.4 and 1.7. These proofs
are based on a technical lemma (Lemma 5.4), which is proved in Section 6 for
the special case ofG = SL(n); this is the only “type-specific” ingredient of our
proofs.

Acknowledgments. The authors are grateful to Saugata Basu, Ilia Itenberg,
Viatcheslav Kharlamov, Boris Shapiro, Eugenii Shustin, Viktor Vassiliev, and
Andrei Zelevinsky for valuable advice.

2. Preliminaries

This section introduces necessary technical background; throughout it, we do not
claim any originality. The notation used here is consistent with [9]. In particular,
we denote by

G0 = B−B = N−HN
the set of elements ofx ∈G that have a Gaussian decomposition; for the latter, we
use the notationx = [x]−[x] 0[x]+.

We think of the Weyl groupW as the quotient of the normalizer ofH moduloH,
and we identify each elementw ∈W with a fixed representative inG.

Lemma 2.1. For w ∈W, we havew−1B−w ⊂ G0 andw−1Bw ⊂ G0. Moreover,
w−1N−w ⊂ N−N andw−1Nw ⊂ N−N.
Proof. SinceB = HN, B− = HN−, andw normalizesH, it suffices to prove the
last statement. It is well known (cf. [9, Prop. 2.12] or [2, (5.3)]) that anyx ∈ N
is uniquely factored asx = x1x2 with x1∈N ∩ wN−w−1 andx2 ∈N ∩ wNw−1.

HenceN ⊂ wN−w−1 · wNw−1= wN−Nw−1, as desired.

Lemma 2.2. If z ∈ w−1B−w then [z]−, [z]+ ∈ w−1N−w. Analogously, ifz ∈
w−1Bw then[z]−, [z]+ ∈w−1Nw.

Proof. It is enough to show thatz ∈ w−1Bw implies [z]+ ∈ w−1Nw. Just as in
the proof of Lemma 2.1, we can writez = hw−1x1x2w, whereh ∈ H, x1 ∈
N ∩wN−w−1, andx2 ∈N ∩wNw−1. Thenz = (hw−1x1w)(w

−1x2w), where the
factors belong toB− andN, respectively. Thus [z]+ = w−1x2w ∈ w−1Nw, as
desired.
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We define the subgroups

N−(w) = w−1Bw ∩N− = w−1Nw ∩N−,
N(w) = w−1Bw ∩N = w−1Nw ∩N,

and the set
Nw = B−wB− ∩N.

Lemma 2.3. For anyw ∈ W and xw ∈ Nw, there exists a uniquey ∈ N−(w)
satisfyingxw = [wy]+. Specifically,y = w−1[xww−1]+w.

Proof. Immediate from [9, Prop. 2.10 and 2.17].

Lemma 2.4. Letxw ∈Nw, b− ∈B−, andxwb− ∈G0. Then[xwb−]+ ∈Nw.

Proof. [xwb−]+ ∈B−xwb− ⊂ B− · B−wB− · b− = B−wB−.
The following statement, though obvious, is quite useful.

Lemma 2.5. If x ∈G0 andy ∈G, then[[ x]+y]+ = [xy]+, provided one of the
two sides is well-defined.

Lemma 2.6. For anyxw, x̃w ∈Nw, there exists a uniquen1∈N−(w) satisfying
xw = [ x̃wn1]+. Specifically,n1= w−1([ x̃ww−1]+)−1[xww−1]+w.

Proof. Uniqueness follows from the uniqueness part of Lemma 2.3, together with
Lemma 2.5 and the fact thatN−(w) is a group. In more detail: Assume that
xw = [ x̃wn1]+ = [ x̃wn′1]+, wheren1 6= n′1 andn1, n

′
1 ∈ N−(w). Let y be as in

Lemma 2.3. Thenxw = [ x̃wn1 · n−1
1 n
′
1]+ = [xwn

−1
1 n
′
1]+ = [wyn−1

1 n
′
1]+, where

y 6= yn−1
1 n
′
1∈N−(w), a contradiction.

With the notationy = w−1[xww−1]+w andỹ = w−1[ x̃ww−1]+w, it remains to
check thatn1= ỹ−1y satisfiesxw = [ x̃wn1]+. Indeed,xw = [wy]+ = [wỹn1]+ =
[xwn1]+.

We now turn to total nonnegativity. Let us first recall Lusztig’s original defini-
tion [16], whereby the setY of totally nonnegative elements inN is defined as the
multiplicative monoid generated by the elements

xi(t) = exp(tei), (2.1)

wheret ≥ 0 and theei are the Chevalley generators of the Lie algebra ofN. One
of the first results in [16] is the following description of the Bruhat stratumY ◦w =
Y ∩ B−wB−.
Proposition 2.7 [16]. Let (a1, . . . , al) be a reduced word forw ∈W. Then the
map

(t1, . . . , tl) 7→ xa1(t1) · · · xal (tl) (2.2)

is a bijection betweenRl>0 andY ◦w.
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(It is clear from this description thatY ◦w is indeed a cell of dimensionl = `(w);
cf. Proposition1.1.) One istempted to use the parameterizations (2.2) to prove our
main theorems. Unfortunately, this approach encounters substantial difficulties,
due chiefly to the fact that the relationship between parameterizations of adjacent
cells is generally quite complicated. In what follows, we make very little use of
Proposition 2.7.

Proposition 2.8 [17,6.3]. The cellY ◦w is a connected component inNw (in the
ordinary topology).

Foru∈W, we denoteY≥u =
⋃
v≥u Y

◦
v .

To state the next result, we will need the notion of a generalized minor of an
elementx ∈G (see [9, Sec. 14]). Generalized minors are certain regular functions
onG that can be defined as suitably normalized matrix coefficients corresponding
to pairs of extremal weights in some fundamental representation ofG. In the case
of typeA, this notion coincides with the ordinary notion of a minor of a square
matrix.

Proposition 2.9 [10, Thm. 3.1]. An elementx ∈G is totally nonnegative, in the
sense of Lusztig[16], if and only if all its generalized minors are nonnegative.

Lemma 2.10. If a generalized minor does not vanish at some pointx ∈ Y ◦u , then
it vanishes nowhere inY ◦u and, moreover, nowhere inY≥u.

Proof. For the typeA, this is an immediate corollary of [1, Prop. 5.2.2]. The gen-
eral case can be deduced from (highly nontrivial) [3, Prop. 7.4]. According to the
latter, for any generalized minor1 and any sequence of indicesa = (a1, . . . , am),

the functionPa(t1, . . . , tm) = 1(xa1(t1) · · · xam(tm)) (cf. (2.2)) is either identically
zero or a polynomial with positive integer coefficients. (The type-A version of
this statement is well known; see e.g. [1, Thm. 2.4.4].) Since1 does not vanish
at some point inY ◦u , we know thatPa is a nonzero polynomial for any reduced
word a for u. For v ≥ u, any reduced wordb for v contains some reduced word
a for u as a subword (see [13, 5.10]). HencePa is a specialization ofPb obtained
by setting some of the variables equal to zero. ThenPa 6= 0 impliesPb 6= 0. On
the other hand,Pb is a polynomial with positive coefficients, soPb(t1, t2, . . . ) 6=
0 for anyt1, t2, . . . > 0 or, equivalently,1(x) 6= 0 for anyx ∈ Y ◦v .
Lemma 2.11. For anyu∈W,we haveB−uB− ⊂ G0u. In particular,Nu ⊂ G0u.

Proof. This follows from Lemma 2.1.

Corollary 2.12. Y≥u ⊂ G0u.

Proof. By [9, Cor. 2.5], the setG0u is defined by several inequalities of the form
1 6= 0, where1 is a generalized minor. SinceY ◦u ⊂ G0u (by Lemma 2.11), none
of these minors vanishes onY ◦u and hence none vanishes anywhere onY≥u, by
Lemma 2.10.
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Theorem 2.13 ([6, Cor. 1.2]; cf. [15, Sec. 1.2]).For u, v ∈ W, the intersection
B−vB− ∩ BuB− is non-empty if and only ifu ≤ v.
Corollary 2.14. G0u ⊂

⋃
v≥u B−vB−.

Proof. Let x ∈G0u andx ∈B−vB−, and letv ∈W. Then, by Theorem 2.13,

B−vB− ∩ B−Bu 6= ∅ H⇒ B−vB− ∩ Bu 6= ∅ H⇒ u ≤ v,
as desired.

Corollary 2.15. Y≥u = Y ∩G0u.

Proof. The inclusionY≥u ⊂ Y ∩G0u is Corollary 2.12. The opposite inclusion is
immediate from Corollary 2.14.

Lemma 2.16. Y≥uY ⊂ Y≥u.
Proof. By [16, Lemma 2.14], for anyw1, w2 ∈W we haveY ◦w1

Y ◦w2
= Y ◦w3

for some
w3 ∈W. Moreover, it is clear from the proof of this statement in [16] thatw3 ≥
w1, and the lemma follows.

Example: G = SL(3,R). Let u = s1, the transposition of 1 and 2 in the sym-

metric groupW = S3. Then, using the notationx =
[

1 x12 x13

0 1 x23

0 0 1

]
for the elements

x ∈N, we have

N(u) = {x12 = 0}, Nu =
{
x12 6= 0 x13 = 0

x23 = 0

}
, N ∩G0u = {x12 6= 0}

and

Y ◦u =
{
x12 > 0 x13 = 0

x23 = 0

}
, Y≥u =

{
x12 > 0 x13 ≥ 0

x23 ≥ 0

∣∣∣∣ x12 x13

1 x23

∣∣∣∣ ≥ 0

}
.

3. Projecting on a Cell

In this section, we introduce a projectionπu : Y≥u → Y ◦u that will later be used
to construct and study the links Lk(u, v) = lk(Y ◦u , Yv). This projection can be
viewed as the totally positive version of the projection of an affine open neighbor-
hood of a Schubert cell onto the cell itself, which arises from the direct product
decomposition described by Kazhdan and Lusztig in [15, Secs. 1.3–1.4].

Let us fix an elementu∈W.
Lemma 3.1. If x ∈G0u∩G0 (in particular, if x ∈ Y≥u—cf. Corollary 2.12), then
u−1[xu−1]+u∈G0 andu[u−1[xu−1]+u]− ∈G0.

Proof. The first statement follows from Lemma 2.1. Proof of the second: For some
b−∈B− andb∈B, we haveu[u−1[xu−1]+u]− = uu−1b−xu−1ub = b−xb∈G0.

Lemma 3.2. The map(xu, xu) 7→ x = xuxu is a bijection

Nu ×N(u)→ N ∩G0u.
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The inverse mapx 7→ (xu, x
u) is given by

xu = [u[u−1[xu−1]+u]−]+ (3.1)
and

xu = [u−1[xu−1]+u]+. (3.2)

Furthermore, ifx ∈ N ∩ G0u is totally nonnegative(i.e., if x ∈ Y≥u—cf. Corol-
lary 2.15), thenxu is totally nonnegative(i.e.,xu ∈ Y ◦u ).
Proof. Assume thatxu ∈ Nu, xu ∈ N(u), andx = xux

u. Thenx = xux
u ∈

G0u · u−1Nu = G0u (by Lemma 2.11 and the definition ofN(u)), as claimed.
Let us prove that the map in question is a surjection. Letx ∈N ∩G0u, and let

xu andxu be given by (3.1) and (3.2); note that the right-hand sides of these for-
mulas are well-defined (by Lemma 3.1). Thusxu = [u[y]−]+ andxu = [y]+,
wherey = u−1[xu−1]+u. Thenxu ∈ B−u[y]− ⊂ B−uB− andxu ∈ N(u) (by
Lemma 2.2). Furthermore,xuxu = [u[y]−]+[y]+ = [uy]+ (sincey ∈ N−N by
Lemma 2.1) and thereforexuxu = [uy]+ = [[ xu−1]+u]+ = x (by Lemma 2.5).

Let us now prove injectivity. Again, supposexu ∈ Nu, xu ∈ N(u), andx =
xux

u. We will show thatxu andxu can be recovered fromx via (3.1)–(3.2). Since
x ∈N ∩G0u, the right-hand sides of (3.1)–(3.2) are well-defined (by Lemma 3.1).
Then

[u[u−1[xu−1]+u]−]+ = [u[u−1[xux
uu−1]+u]−]+

= [u[u−1[xuu
−1]+uxuu−1u]−]+ (sinceuxuu−1∈N)

= [u[u−1[xuu
−1]+u]−]+

= [u · u−1[xuu
−1]+u]+ (by Lemma 2.3)

= xu (by Lemma 2.5),

proving (3.1).
Let us prove (3.2). DenoteA = u−1[xu−1]+u. We have

x = [x]+ = [u(u−1[xu−1]+u)]+ = [uA]+ = [u[A]−]+[A]+

(by Lemma 2.1). On the other hand, we already proved thatxu = [u[A]−]+. Thus
x = xu[A]+ (i.e.,xu = [A]+), as desired.

It remains to prove thatxu is totally nonnegative wheneverx is. Assume that
x ∈ Y ◦w ⊂ Y≥u. Consider a path that connectsx with a pointx0 ∈ Y ◦u and stays in-
sideY ◦w (such a path exists becauseY ◦w is connected and its boundary containsY ◦u ;
see Proposition1.1). Theimage of this path under the projectionN ∩G0u→ Nu

connectsxu with x0. Sincex0 ∈ Y ◦u , Proposition 2.8 implies thatxu ∈ Y ◦u .
In view of Lemma 3.2, the formula

πu(x) = [u[u−1[xu−1]+u]−]+ (3.3)

defines a continuous projectionπu : Y≥u→ Y ◦u . (The mapπu is a projection since
x = x ·1 gives the factorization in question forx ∈ Y ◦u .)
Example: G = SL(3,R), u = s1. For x ∈ Y≥u (or, more generally,x ∈
N ∩G0u), the factorizationx = xuxu is given by
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0 1 x23

0 0 1

 =
 1 x12 0

0 1 0

0 0 1

 1 0 x13− x12x23

0 1 x23

0 0 1

 .
The fiber of the projectionπu : x 7→ xu over a pointxu =

[
1 a 0
0 1 0
0 0 1

]
∈ Y ◦u (a > 0)

is therefore

π−1
u (xu) = Y ∩ {x12 = a} =


 1 a x13

0 1 x23

0 0 1

 : ax23 ≥ x13 ≥ 0

.
4. Transversals and Links. Proof of Theorem 1.2

Our next goal is to prove that the restriction of the projectionπu ontoY[u,v] is glob-
ally trivialized alongY ◦u .

Lemma 4.1. For any x̃ ∈ N ∩ G0u and anyxu ∈ Nu, there exists uniquen− ∈
N−(u) such that the elementx ′ = [ x̃n−]+ is well-defined and belongs toxuN(u).

If, moreover,x̃ andxu are totally nonnegative, thenx ′ is also totally nonnega-
tive. We thus obtain a cell-preserving projection

ρxu : Y≥u→ π−1
u (xu)

x̃ 7→ x ′ (4.1)

(see Figure 2).

Figure 2 The projectionρxu

Proof. Let x̃ = x̃u x̃u, wherex̃u ∈Nu andx̃ u ∈N(u), as in Lemma 3.2. Letn1 ∈
N−(u) be such thatxu = [ x̃un1]+ (suchn1 exists and is unique by Lemma 2.6).
Set

n− = [(x̃u)−1n1]−. (4.2)

Since bothx̃ u andn1 belong tou−1Nu, the elementn− is well defined in view of
Lemma 2.1, and belongs toN−(u) by Lemma 2.2. Let us prove that the element
n− defined by (4.2) has the desired properties; that is,x ′ = [ x̃n−]+ is well-defined
and belongs toxuN(u), as shown in the following diagram:
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x̃ Ã x ′ = [ x̃n−]+
πu↓ ↓
x̃u Ã xu= [ x̃un1]+ .

(4.3)

Denotez = x̃ un−. Once again,z ∈ u−1Nu ⊂ N−N, and (4.2) implies [z]− =
[ x̃ un−]− = [ x̃ u[(x̃u)−1n1]−]− = n1. Then x̃n− = x̃uz = x̃un1[z]+ ∈ G0 (be-
cause [̃xun1]+ = xu), sox ′ is indeed well-defined. Furthermore,x ′ = xu[z]+ ∈
xuN(u) (by Lemma 2.2), as desired.

Uniqueness is proved by a similar argument. Suppose thatn− ∈N−(u) is such
thatx ′ = [ x̃n−]+ ∈ xuN(u). As before, denotez = x̃ un−. Thenz = [z]−[z]+
andx ′ = [ x̃uz]+ = [ x̃u[z]−]+ · [z]+. Since [x̃u[z]−]+ ∈Nu (by Lemma 2.4) and
[z]+ ∈N(u), it follows from Lemma 3.2 that [̃xu[z]−]+ = xu = [ x̃un1]+. Hence,
by Lemmas 2.2 and 2.6,n1= [z]− = [ x̃ un−]−, implying (4.2).

It remains to prove the second part of the lemma. In view of Lemma 2.6, a path
connecting̃xu andxu within Y ◦u gives a continuous deformation of the identity 1∈
G into n1 within N−(u), which gives rise (via (4.2)) to a continuous deformation
of 1 inton− and, finally, to a path connecting̃x andx ′ = [ x̃n−]+ within the Bruhat
cell containingx̃. Hencex ′ is totally nonnegative by Proposition 2.8.

Example: G = SL(3,R), u = s1. For

x̃ =
 1 x̃12 x̃13

0 1 x̃23

0 0 1

∈ Y≥u and xu =
 1 a 0

0 1 0

0 0 1

∈ Y ◦u ,
computations give

n− =
 1 0 0

a−1− x̃−1
12 1 0

0 0 1


and

x ′ = ρxu(x̃) = [ x̃n−]+ =


1 a

ax̃13

x̃12

0 1
x̃12x̃23− x̃13

a
+ x̃13

x̃12

0 0 1

 .
Total nonnegativity ofx ′ does indeed follow from total nonnegativity ofx̃ andxu.

We denote bywo the element of maximal length inW.

Theorem 4.2. (1) For xu ∈ Y ◦u , the setxuN(u) is a smooth submanifold in
N ∩ G0u diffeomorphic to the affine spaceR`(wo)−`(u). Furthermore,xuN(u) is
transversal to every Bruhat stratumNw, w ≥ u (and hence to every stratum
Y ◦w ⊂ Y≥u).

(2) For xu, x̃u ∈ Y ◦u , the mapρxu described in Lemma 4.1 establishes a diffeo-
morphism betweeñxuN(u) andxuN(u). This diffeomorphism respects total non-
negativity and the Bruhat stratification; more precisely, it restricts to a stratified
diffeomorphism between the fibersπ−1

u (x̃u) andπ−1
u (xu).
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Proof. The mapn+ 7→ xun+ establishes a diffeomorphism betweenN(u) ∼=
R`(wo)−`(u) andxuN(u). To prove transversality, consider a pointx∈xuN(u)∩Nw.

It will be enough to show thatxuN(u) is transversal to the smooth submanifold
[xN−(u)]+ of dimensioǹ (u) in Nw. Assume the contrary—in other words, that
there exists a common tangent vectorv to [xN−(u)]+ andxuN(u) at the pointx.
Let us evaluate the differentialD of the projectionN ∩G0u→ Nu at the vectorv.
On the one hand, the projection is constant onxuN(u) and henceD(v) = 0. On
the other hand, in view of (4.2), the restriction of the projection onto [xN−(u)]+
is a diffeomorphism and henceD(v) 6= 0—a contradiction.

Let us prove the second part of the theorem. From (4.2) and (4.3), we havex ′ =
[ x̃[(x̃u)−1n1]−]+, wherex̃ u is given by (3.2) andn1 by Lemma 2.6. The result-
ing mapx̃uN(u)→ xuN(u) is rational and therefore differentiable on its domain.
Its inverse is again a map of the same kind, with the roles ofxu andx̃u reversed.
Hence these maps are diffeomorphisms. Furthermore, they preserve the Bruhat
stratification (in view of Lemma 2.4) and total nonnegativity (by the second part
of Lemma 4.1).

Recall the notationY[u,v] =
⋃
w∈[u,v] Y

◦
w andY≥u =

⋃
w≥u Y

◦
w.

Corollary 4.3. For u, v ∈ W, (u ≤ v) and anyxu ∈ Y ◦u , we have the diffeo-
morphism of stratified spaces,

Y[u,v]
∼= Y ◦u × (π−1

u (xu) ∩ Y[u,v]).

In particular,Y≥u ∼= Y ◦u × π−1
u (xu).

Proof of Theorem 1.2.Corollary 4.3 shows that the link ofY ◦u in Y[u,v] is well-
defined (up to a stratified diffeomorphism); it is explicitly given by

Lk(u, v) = (π−1
u (xu) ∩ Y[u,v]) ∩ Sε(xu),

wherexu is an arbitrary point onY ◦u andSε(xu) is a small sphere centered atxu.
The first two statements of Theorem 1.2 follow right away. The equalities(1.1)
follow from the analogous property for the Bruhat stratification ofY (cf. Proposi-
tion1.1),combined with Corollary 4.3.

5. Proofs of Theorems 1.4 and 1.7

Recall that the elementsxi(t) are defined by (2.1). For the typeAn−1, xi(t) is the
n× n matrix that differs from the identity matrix in a single entry (equal tot) lo-
cated in rowi and columni +1.

Definition 5.1. We define the regular map str :N → C by the conditions
str(xi(t)) = t and str(xy) = str(x)+ str(y). In particular, in the case of typeA,
we have str(x) = ∑ i xi,i+1, the sum of the matrix elements immediately above
the main diagonal.

Definition 5.2. Forτ > 0, let d(τ)∈H be uniquely defined by the conditions
(d(τ ))αi = τ for all simple rootsαi. Thend(τ)xi(a)d(τ )−1 = xi(τa) for any i.
For the typeAn−1,
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d(τ) = τ−(n−1)/2


τ n−1 0 · · · 0

0 τ n−2 · · · 0
...

...
. . .

...

0 0 · · · 1

 , (5.1)

and the automorphismx 7→ d(τ)xd(τ)−1 of the groupN multiplies each matrix
entryxij of x by τ j−i .

Note that the automorphismx 7→ d(τ)xd(τ)−1 preserves the cellsNw and the
subgroupsN(w); it also preserves total nonnegativity.

Definition 5.3. Foru ∈ W and xu ∈ Y ◦u , we define the vector fieldψ on
π−1
u (xu) by

ψ(x) = d

dτ
(ρxu(d(τ )xd(τ)

−1))

∣∣∣∣
τ=1

(5.2)

(recall thatρxu is defined by (4.1)).

Lemma 5.4 (TypeA only). The vector fieldψ vanishes nowhere onπ−1
u (xu) ex-

cept at the pointxu. The directional derivative∇ψ str(x) is positive at every point
x 6= xu.

The proof of this lemma is given in Section 6.

Proof of Theorem 1.7.In view of Corollary 4.3, it remains to show that the fiber
π−1
u (xu) ∩ Y[u,v] has the structure of the cone over the link Lk(u, v).

The vector fieldψ can be extended (by the same formula (5.2), withxu =
πu(x)) to the open subsetN ∩G0u of N. Furthermore,ψ(x) is given by rational
functions in the affine coordinates ofx; therefore, the theorem of uniqueness and
existence of solutions applies to this extension ofψ (and hence toψ itself ). Since
ψ is tangent to each stratum of the preimageπ−1(xu) (all these strata are smooth
by part (1) of Theorem 4.2), it follows that every trajectory ofψ is contained in a
single stratum.

The intersectionY ∩ {str≤ c} is compact for anyc > 0. Lemma 5.4 then im-
plies that, for everyx0 ∈ π−1(xu), the solutionx(t) of the Cauchy probleṁx =
ψ(x) andx(0) = x0 with t < 0 exists fort ∈ (−∞,0]. (Otherwise, the trajec-
tory T− = {x(t) : t ≤ 0} would hit the boundary of the stratum containingx0.)

The trajectoryT− must have limit points; letxlim be one of them. The function
s : t 7→ str(x(t)), t < 0, is increasing (by Lemma 5.4) and bounded from below.
Therefore limt→−∞ ṡ(t) = 0, implying that∇ψ str(xlim) = 0. By Lemma 5.4, this
means thatxlim = xu. Thus every trajectory ofψ originates at the pointxu (at t =
−∞). A similar argument shows that limt→t+ str(x(t)) = +∞,wheret+ denotes
the upper limit of the maximal domain of definition ofx(t) (so t+ ∈ [0,∞]). We
conclude that the function str increases from str(xu) to∞ along each trajectory
of ψ, except for the trajectoryx(t) = xu. Thus every nontrivial trajectoryT ⊂
Y[u,v] intersects the set

Lε(u, v) = Lε,xu(u, v) = π−1
u (xu) ∩ Y[u,v] ∩ {x : str(x) = str(xu)+ ε} (5.3)
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at exactly one point; see Figure 3. Therefore,π−1(xu) ∩ Y[u,v] is diffeomorphic
to the cone Cone(Lε(u, v)). (In particular,π−1(xu) ∼= Cone(Lε(u,wo).) This
implies thatLε(u, v) is isomorphic (as a stratified space) to the link Lk(u, v).

Theorem 1.7 is proved.

Figure 3 Embedding of the link intoπ−1(xu) ∩ Y[u,v]

Proof of Theorem1.4.Forx ∈π−1
u (xu)∩Y[u,v], letλu,v(x) denote the unique point

of intersection of the linkLε(u, v) with the trajectory ofψ that passes throughx
(see the sentence containing (5.3)).

Fix z∈ Y≥v, and defineRu,v : Lε(u, v)× [0,1]→ Lε(u, v) by

Ru,v(x, τ ) = λu,v(ρxu(πv(d(τ )zd(τ )−1d(1− τ)xd(1− τ)−1))). (5.4)

(Note thatd(τ)zd(τ )−1 ∈ Y≥v and therefored(τ)zd(τ )−1d(1− τ)xd(1− τ)−1 ∈
Y≥v, by Lemma 2.16; hence the right-hand side of (5.4) is well-defined.)

Let us show that the mapRu,v is a deformation retraction ofLε(u, v) into a
point. First,Ru,v is continuous with respect toτ. Second, limτ→0 d(τ)xd(τ)

−1=
1 and limτ→1d(τ)zd(τ )

−1 = z. ThereforeRu,v(x,0) = x. On the other hand,
Ru,v(x,1) = λu,v(ρxu(πv(z))), a point independent ofx.

It remains only to observe thatSu,v,w ∼= Su,w,w ∼= Lε(u,w).

6. Proof of Lemma 5.4

Our first goal is an explicit formula for the vector fieldψ.
Throughout this section, we use the following notation. Forx ∈ Y≥u, denote

xu = πu(x) = [u[u−1[xu−1]+u]−]+,

A = u−1[xu−1]+u,

y = [A]−,

xu = [A]+ = x−1
u x.

(6.1)

Thusx = xuxu, xu = [uy]+ (agreeing with Lemma 2.3), andA = yxu.
Let us fix an arbitrary totally nonnegative elementd ∈ H. We will need some

basic properties of the cell-preserving automorphismx 7→ dxd−1.
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Lemma 6.1. The automorphismx 7→ dxd−1 of Y≥u commutes with the maps
x 7→ xu andx 7→ xu:

(dxd−1)u = dxud−1, (dxd−1)u = dxud−1.

Proof. In view of Lemma 3.2, the statement follows from the factorization
dxd−1 = dxud

−1 · dxud−1, where the two factors on the right belong toY ◦u
andN(u), respectively.

Lemma 6.2. The automorphismxu 7→ dxud
−1 of Y ◦u commutes with the map

xu 7→ y (cf. Lemma 2.3). In other words,

dxud
−1 = [u · dyd−1]+.

The unique elementn1∈ N−(u) such thatxu = [dxud−1n1]+ (cf. Lemma 2.6) is
given byn1= dy−1d−1y.

Proof. First part: dxud−1 = d[uy]+d−1 = [duyd−1]+ = [udyd−1]+. The sec-
ond part is then a special case of Lemma 2.6.

Lemma 6.3. ρxu(dxd
−1) = x([dA−1d−1A]+

)−1
.

Proof. Applying (4.1) tox̃ = dxd−1 and using Lemmas 6.1 and 6.2 along with
(6.1), we obtain

ρxu(dxd
−1) = [dxd−1[d(xu)−1d−1dy−1d−1y]−]+ = [dxd−1[dA−1d−1A]−]+

= [dxd−1 · dA−1d−1A]+
(
[dA−1d−1A]+

)−1

= [xA−1d−1A]+
(
[dA−1d−1A]+

)−1
.

It remains to show that [xA−1d−1A]+ = x. This is done as follows:

[xA−1d−1A]+ = [xuy
−1d−1A]+ = [[uy]+y−1d−1A]+ = [uyy−1d−1A]+

= [ud−1yxu]+ = [ud−1y]+xu = [uy]+xu = xuxu = x.
Let g, n, andb− denote the Lie algebras of groupsG, N, andB−, respectively.
Let πn denote the projectiong→ n alongb−. (In the caseg = sln, πn replaces
all lower triangular entries of a traceless matrix by zeros.)

Lemma 6.4. Letf(τ) = f−(τ )f+(τ ), wheref−(τ )∈B− andf+(τ )∈N for all
τ > 0. Assume thatf(1) = 1. Thenf ′+(1) = πnf

′(1).

Proof. The equalityf(1) = 1 implies f−(1) = f+(1) = 1. Then f ′(1) =
f ′−(1)f+(1) + f−(1)f ′+(1) = f ′−(1) + f ′+(1). Sincef ′−(1) ∈ b− andf ′+(1) ∈ n,
we are done.

Proposition 6.5. ψ(x) = xπn(A
−1d ′(1)A).

Proof. By Lemma 6.3,ρxu(d(τ )xd(τ)
−1) = x([d(τ)A−1d(τ)−1A]+

)−1
. Hence

ψ(x) = d

dτ

(
ρxu(d(τ )xd(τ)

−1)
)∣∣∣∣
τ=1

= x d
dτ

(
[d(τ)A−1d(τ)−1A]+

)−1
∣∣∣∣
τ=1

.
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Applying Lemma 6.4 and observing thatd(1) = 1, we obtain:

d

dτ

(
[d(τ)A−1d(τ)−1A]+

)−1
∣∣∣∣
τ=1

= − d
dτ

[d(τ)A−1d(τ)−1A]+

∣∣∣∣
τ=1

= −πn
d

dτ
(d(τ )A−1d(τ)−1A)

∣∣∣∣
τ=1

= −πn(d
′(1)− A−1d ′(1)A) = πn(A

−1d ′(1)A),

implying the claim.

In the rest of this section, we consider only the case of the typeAn−1. ThusW is the
symmetric groupSn. We treat the elements ofW as bijective maps{1, . . . , n} →
{1, . . . , n} and choose permutation matrices as their representatives inG = GL(n).

Lemma 6.6.

(1) If 1≤ i ≤ j ≤ n andu(j) ≤ u(i) ≤ u(j + 1), then(A−1)j,i · Ai,j+1 ≥ 0.
(2) If 1≤ j < i ≤ n andu(j) ≤ u(i) ≤ u(j + 1), then(A−1)j,i · Ai,j+1 ≤ 0.
(3) Otherwise,(A−1)j,i · Ai,j+1 = 0.

Proof. For a matrixa ∈ u−1Nu, the matrix elementaij vanishes unlessu(i) ≤
u(j). It follows that(A−1)j,i · Ai,j+1 = 0 unlessu(j) ≤ u(i) ≤ u(j + 1), prov-
ing part (3) of the lemma. In order to prove parts (1) and (2), sets = u(i), p =
u(j), andq = u(j +1); thusp ≤ s ≤ q.

In what follows, we denote byzi1, ..., irj1, ..., jr
the determinant of the submatrix of a

matrix z formed by the rowsi1, . . . , ir and the columnsj1, . . . , jr (in that order).
Using the definition ofA and thatx ∈N, we obtain

Ai,j+1= ([xu−1]+)s,q = ([xu−1]+)
1, ..., s
1, ..., s−1,q

= (xu−1)
1, ..., s
1, ..., s−1,q

(xu−1)
1, ..., s
1, ..., s

=
x

1, ..., s
u−1(1), ...,u−1(s−1),u−1(q)

x
1, ..., s
u−1(1), ...,u−1(s)

.

Becausex is totally nonnegative, the sign ofAi,j+1 is either zero or(−1)n1+n2,

where

n1= card{l : l ≤ s −1, u−1(l ) > i},
n2 = card{l : l ≤ s −1, u−1(l ) > j +1}.

The sign of(A−1)j,i can be determined in a similar fashion. Using the notation
î to indicate that the indexi is being removed, we obtain:

(A−1)j,i = (([xu−1]+)−1)p,s = (−1)(s−p)([xu−1]+)
1, ..., ŝ, ...,n
1, ..., p̂, ...,n

= (−1)(s−p)([xu−1]+)
1, ..., s−1
1, ..., p̂, ..., s = (−1)(s−p)

(xu−1)
1, ..., s−1
1, ..., p̂, ..., s

(xu−1)
1, ..., s−1
1, ..., s−1

= (−1)(s−p)
x

1, ..., s−1
u−1(1), ..., û−1(p), ...,u−1(s)

x
1, ..., s−1
u−1(1), ...,u−1(s−1)

.
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Hence the sign of(A−1)j,i is either zero or(−1)s−p+n1+n3+n4,wheren1 is the same
as before and

n3 = card{l : l ≤ p −1, u−1(l ) > j},
n4 = card{l : p < ł ≤ s, u−1(l ) < j}.

Since
n3+ s − p − n4 = card{l : l ≤ s, u−1(l ) > j},

we conclude that the sign ofAi,j+1(A
−1)j,i is either zero or(−1)card{l :l=s, u−1(l )>j},

matching the claim of the lemma.

Let us extend the notation str(x) =∑ i xi,i+1 to arbitrary matricesx.

Lemma 6.7. Let ν = diag(n, n− 1, . . . ,1). Thenstr(A−1νA) ≥ 0.

Proof. Fork = 1, . . . , n, let νk = diag(1, . . . ,1,0, . . . ,0) denote the diagonal ma-
trix whose firstk diagonal entries are equal to 1, and all other entries vanish. The
equalityA−1A = 1 implies

j∑
i=1

(A−1)j,i · Ai,j+1+
n∑

i=j+1

(A−1)j,i · Ai,j+1= 0,

where (by Lemma 6.6) all terms in the first sum are nonnegative while all terms in
the second sum are nonpositive. Then(A−1νkA)j,j+1 =

∑k
i=1(A

−1)j,i · Ai,j+1 ≥
0, implying str(A−1νkA) ≥ 0. Sinceν =∑n

k=1νk, the lemma follows.

We are now prepared to complete the proof of Lemma 5.4. First, let us note that
d(τ)xud(τ )

−1 ∈ Y ◦u ; henceρxu(d(τ )xud(τ )
−1) ∈ Y ◦u ∩ π−1

u (xu) = {xu}. Thus
ψ(xu) = 0.

Let x ∈π−1(xu), x 6= xu. Sinced ′(1) = ν+λ for some scalar matrixλ, Propo-
sition 6.5 yieldsψ(x) = xπn(A

−1νA). Therefore,

str(ψ(x)) = str(x)+ str(πn(A
−1νA)) = str(x)+ str(A−1νA)

(here we identify the tangent vectorψ(x) with the corresponding traceless ma-
trix). Since str(x) > 0, Lemma 6.7 implies that str(ψ(x)) > 0; in particular,
ψ(x) 6= 0. Then str(x + ψ(x)dτ) = str(x) + str(ψ(x))dτ ; hence∇ψ str(x) =
str(ψ(x)) > 0, as desired.
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