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Introduction

Let X be a compact complex algebraic variety of pure dimensiarhose Betti
numbers vanish in all odd degrees. Then the cohomologyHing() with com-

plex coefficients is a commutative, positively graded algebra, of finite dimension
as a complex vector space. Itis well known that the dualizing module (in the sense
of commutative algebra, see e.g. [8]) Bf(X) is the homologyH..(X); more-

over, H*(X) is Gorenstein if and only iX satisfies Poincaré duality. This holds

if X is smooth or, more generally, rationally smooth; that is, the local cohomol-
ogy at any point is the same as the local cohomology of complex affspace

(see [17] for other characterizations).

We shall generalize these observations to the richer setting of equivariant ho-
mology and cohomology, with applications to Coxeter groups. Assume that a
d-dimensional toru§" acts onX with isolated fixed points (examples include ra-
tionally smooth projective varieties where a complex reductive group acts with
finitely many orbits, Schubert varieties, and varieties of complete flags fixed by a
given linear transformation). Then the equivariant cohnomology HifgX ) with
complex coefficients is positively graded, commutative and reduced; it is a free
module of finite rank over the equivariant cohomology ring of the point. The lat-
ter is a polynomial ring irl variables. Thus, the ring;:(X) is Cohen—Macaulay.

We show that several topological invariants of he&ariety X can be read off that
ring.

Specifically, restriction to th&-fixed point set,(X) — H;(X") is the nor-
malization of H;(X). It follows that the complex affine algebraic variety(X)
associated td4;'(X) is a finite union of copies of the Lie algebra of glued
along rational hyperplanes (Proposition 2). The dualizing modukggi ) turns
out to be the equivariant Borel-Moore homology (X) (Proposition 1); it ad-
mits a more concrete description in terms of regular differential form¥ @n)
(Proposition 3). On the other hand, the conductoHgf X ) in its normalization
H7(X")is closely related to equivariant conomology with suppo#t in and also
to equivariant multiplicities; the latter are uniquely determined by the abstract ring
H}(X), up to a common scalar multiple (Section 3).

These considerations yield the following linear inequalities for the Betti num-
bers of a varietyX as above, if all equivariant multiplicities are nonzero:
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bg(X) +bg—1(X) + -+ + bo(X)
= banq(X) + b2n7q+l(x) +--+ bZn(X) (1)

forq = 0,1, ...,n — 1 (Theorem 2; recall that the Betti numbers are assumed to
vanish in all odd degrees). It follows easily that

2b2(X) +4b4(X) + - -+ + 2nb2(X) = nx(X), @

whereyx(X) denotes the Euler characteristic. Moreover, equality in (2) is equiva-
lenttod, (X) = bo,—y(X)forg =0,1,...,n—1and, inturn, to Poincaré duality
for X (Theorem 1).

The assumptions of Theorem 2 are satisfiex i§ the disjoint union of locally
closedT-stable subvarieties (“cells”) that are isomorphic to complex affine spaces.
Moreover, the ratio

a(X) _ bz(X) + 2b4(X) + -+ I’lbzn(X)
T bo(X) +ba(X) + -+ ba(X)

is just the average dimension of cells. In this setting, (2) translates into the
inequality

1.
a(X) z 5 dim(X),

with equality if and only ifX satisfies Poincaré duality.

The latter result was discovered by Carrell and Peterson (see [4]) for Schubert
varieties in the flag variety of a Kac—Moody group (these have a natural decom-
position into Schubert cells). Finding an explanation and generalization of this
result in terms of equivariant conomology was the main motivation for the present
article.

When applied to Schubert varieties, the sharper inequalities (1) yield the fol-
lowing purely combinatorial statement on the repartition of lengths of elements in
a Bruhat interval [1w] of a crystallographic Coxeter groufg:

#x e[l w], L(x) <q} <#xell, w], £(x) > L(w) — g}

forl<gqg < %Z(w) (Corollary 2; it extends to arbitrary Coxeter groups).

ACKNOWLEDGMENTS. Many thanks to Jim Carrell, Stéphane Guillermou, Shra-
wan Kumar, and especially Alexis Marin for useful discussions and e-mail ex-
changes.

1. Equivariant Homology and Cohomology

Throughout this article, we consider a complex algebraic vaXety pure (com-
plex) dimensiom, endowed with an algebraic action of a torfis= (C*)? of
dimensiond. We denote byt = C? the Lie algebra of".

In this situation, we review the definitions and some properties of equivariant
cohomology (see e.g. [12]) and of equivariant Borel-Moore homology (see [9,
Chap. 19] for Borel-Moore homology and [6; 11] for its equivariant version); both
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will be considered with complex coefficients. For any positive integezonsider
the space
Erm = (C" =0,

whereT acts by(zq, ..., 1) - (v, ..., vg) = (fvy, ..., tyvg). This action is free,
and the quotient

P Erm = (C"1—0) - (P™)? = By,

is a principalT-bundle. The mapg,,: Er.. — Br. define a direct system for
the obvious inclusion8y,, C Br.,+1; the direct limitp: Er — By is a univer-
sal principalT-bundle, with theEr,, as algebraic approximations.

For aT-variety X, let X xT E; be the quotient o x E; by the diagonaf -
action; then we have a map

px: X x" Ep — E;/T = Br,

afibration with fiberX. The cohomology ring ok x” E7 is the equivariant coho-
mology ring of X, denoted byH;/(X). Itis a graded algebra over the equivariant
cohomology ring of the pointd f(pt) = H*(Br).

Each charactey of T defines a line bundle oAy, whence an elemeant x) of
H?(B7). The mapy — c(x) extends to an isomorphism of the symmetric alge-
bra overC of the character group df, onto H*(Br); this isomorphism doubles
degrees. Assigning to each character its differential at the identity element, we
identify the character group with a discrete subgroug of his identifiesH *(BT)
to the ring of polynomial function€[t], where the nonzero linear forms have de-
gree 2. Restriction to a fiber gfy defines a magf;(X) — H*(X) that vanishes
ont*Hj(X).

One may check that, for a fixed degigewe haveH; (X) = HY(X x Er,,)
whenm > ¢/2. Thegth equivariant Borel-Moore homology group is defined sim-
ilarly, as the Borel-Moore homology grow), + 2,ma (X x” Ez ) form > n—q/2.
This group is independent ef; it will be denoted bquT(X). (Specifically, for
m' > m > n—q/2, the Gysin magH,  2ma(X X" E7,) = Hyioma(X X7 E7,5)
is an isomorphism.) The space

HI(X)=EP H](X)
qe
is a gradedd; (X )-module via the cap product
H{(X) x H{(X) - H]_,(X), (a,B) > anp.

In particular,HT(X) is a graded[t]-module, where* acts with degree-2.
Any closedT-stable subvariety of X defines a classf] € H] gy, (X). This
yields the equivariant Poincaré duality map

H}(X) - Hj, ,(X), ar an[X]r.

This map is an isomorphism X is rationally smooth. In particula#Z!(pt) is
isomorphic toC[t] (with the opposite grading.) The Gysin maps
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Hq+2md(X XT ET,m) - Hq(X)

fitinto a mapH!(X) — H.(X) that vanishes ot*H!(X) and sends eacly| r
to[Y].
The following version of the localization theorem [10; 12] will be our main tool.

Lemma 1. Let7’ be asubtorus of’, and leti: X7 — X be the inclusion of the
fixed point set. Then botfi[t]-linear maps

i*: Hi(X) — HxX") and i,: H'(X") - HI(X)

become isomorphisms after inverting finitely many characterg tiat restrict
nontrivially to 7”.

In particular, lety be an indivisible character @. Then ke x) is a subtorus of
codimension 1; the mag4;(X) — H; (X ) andHI (X 0y — HI(X) are
isomorphisms at the generic point of the hyperpléape= 0) of t. The union of
the subsetx k") is the union of allT-orbits of dimension< 1.

The indivisible charactey will be calledsingularif X*¢"X) - X7 Note thatthe
kernels and cokernels of the mafis(X) — H;j(X") andH!(X") — HI(X)
have support in the union of singular hyperplanes and of a subset of codimension
atleast 2 irt.

For compaci, the mappy : X x” E; — By is proper and yields @[t]-linear
mappx.: HI(X) — HI(pt) = C[t]. Inturn, this defines &[t]-linear map

/X: HT(X) — Homeg(HE(X), CI). @ > (B> pxs(BNa)).

This map is the equivariant version of the usual map from homology to the dual of
cohomology. The latter is an isomorphism, fytmay be trivial. In fact, it fol-
lows from the localization theorem thé is nonzero if and only ifX contains
T-fixed points.

We shall see thaﬁx is an isomorphism iX is equivariantly formaln the sense
of [10], that is, if the cohomology spectral sequence associated with the fibration
px: X xT Er — By collapses. Equivalently, thé[t]-module #;5(X) is free and
the mapH/(X)/t*H(X) — H*(X) is an isomorphism. First of all, we record
the following well-known lemma.

LemMma 2. Consider the following conditions for B-variety X.
(i) X is equivariantly formal.

(i) TheC[t]-moduleH;(X) is free.

(iii) The Betti numbers of vanish in odd degrees.

Then(i) < (ii) < (iii).

If XT is finite, then all these conditions are equivatembreover, they hold for
rationally smoothX.

If X is equivariantly formal as &-variety, then it is as & '-variety for any
subtorusT’ of 7, and the natural maf[t'] ®c[q H;(X) — H},(X) is an iso-
morphism. MoreoverX 7" is equivariantly formal as &-variety and as &7/ T")-
variety, and theC[t]-algebraf;(X"") is isomorphic taC[{] ®cre/v) Hy)7 (XT).
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Proof. (i) = (ii) « (iii) are obvious and (ii)= (i) follows, for example, from
the Eilenberg—Moore spectral sequence [12, p. 38].

Assuming thatx” is finite, we check that (ii}= (iii) . Recall that the restriction
H(X) — H(XT) = C[t] ®c H*(XT) becomes an isomorphism after inverting
finitely many nonzero elements 6f. Since theC[t]-module H}(X) is free and
X7 is finite, it follows thatH, (X ) = 0 for all oddg, whence (iii). If X7 is finite
andX is rationally smooth, theX is equivariantly formal by [10, Thm. 14.1].

If the T-variety X is equivariantly formal, then the Eilenberg—Moore spectral
sequence Yyields the isomorphigdiit’] ®crg H7(X) = H; (X); it follows that
the T'-variety X is equivariantly formal. Choose another subtofussuch that
the product mafg’’ x T” — T is an isomorphism. Then

XT/ Xr ET = BT’ X (XT/ Xrn ET”)'

Thus, with obvious notation{dT*(XT’) = ClY] ®c H;‘,,(XT’). This implies the
latter isomorphism of the lemma. TI@Ht]-moduIeHT*(XT’) becomes free after
inverting finitely many elements df that restrict nontrivially tat’; that is, this
module is locally free in a neighborhoodt6fn t. It follows that theC[t”]-module
H;‘,,(XT’) is locally free at 0 and thus free because it is positively graded.[J

ProrosiTiON 1. Let X be a compact, equivariantly formdl-variety. Then the
C[t]-moduleH[(X) is free, and the map/! (X)/t*HI (X) — H.(X) is an iso-
morphism. Moreoverf, : H](X) — Homcq(H;(X), C[t]) is an isomorphism
as well.

Proof. The main ingredient is the following lemma.

LemMa 3. Let E be a compact topological space and let E — B be a
fibration, whereB is an orientable topological manifold with orientation class
up € H'(B). Leti: F — E be the inclusion of a fiber gf, and leti': H,(E) —
H.(F)(—r) be the corresponding Gysin map. Then, for any HY(E) and 8
H,..(E), we have

(i*a,i'B)r = (up, po(@n B))p,

where(-, -)r denotes the pairing betwedh*(F) and H,.(F).
If moreoveri*: H*(E) — H*(F) is surjective, then so i$': H.(E) —
H.(F)(—r).

Proof. For the first assertion, note that
(i*a,i'B)r = (o, isi'B)e = (. p*up N B)e
= (p*up,a N B)r = (up, p«(a N p))p.

Assume that* is surjective but that' is not. Then there exists a homogeneous
nonzeroy € H*(F) such that(y,i'8)r = O for all 8 € H.(E). Leta € H*(E)
be a homogeneous element such that= y. Then we have

0= (i*a,i'B)r = (&, p*up N B)r = (@ U p*up, B)&.
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Thus,« U p*up = 0. Let M be a subspace aff *(E) such that the restric-
tion i*: M — H*(F) is an isomorphism. Let; = 1, «5,...,ay be a ho-
mogeneous basis df *(B). By the Leray—Hirsch theorem, we can write=
Zj."zlmj U p*e; with uniquely defined homogeneous, ..., my in M. Thus,
> ym; U p*(ej Uup) = O; that is,m; = 0. Moreover,i*p*a; = 0 for
J = 2, because the degrees of theseare at least 1. Then we havéx =
> ,i*m; Ui*p*a; = 0, a contradiction. O

We return to the proof of Proposition 1. The first assertion is a consequence
of Lemma 3 together with the Leray—Hirsch theorem, applied to the fibration
X xr Er,, — Br.,, for sufficiently largem.

For the remaining assertions, note that@j€g-module Homyq (H/(X), C[{])
is free becaus¥ is equivariantly formal. By the graded Nakayama lemma, it suf-
fices to check that the map

HI(X) ®cpq C[]/t*C[t] — Homepq(H;(X), C[t]) ®cpq C[t]/t*C[4]
is an isomorphism. But
Homepq (Hy (X)), C[t]) ®crq C[t]/t*C[t] = Home(H7 (X)/t*H7 (X), C)

is isomorphic to Hom(H*(X), C), becauseX is equivariantly formal; and the
map
HI(X) ®crg CIU/t*ClY] = H](X)/t'"H[(X) — H.(X)

is also an isomorphism. Thus, it suffices to check that the diagram
HI(X) — Homcq(H;(X), C[t])

! |

H.(X) — Hom¢(H*(X), C)

commutes. In a fixed degrgeand for largen, this amounts to the commutativity
of the diagram

Hq+2md(X XT ET,m) — Hom(C(Hq(X XTET,m)9(C)

l l

H,(X) — Hom¢(HY(X), C),
where the top horizontal map sengito the mapo — (px.(eNp), ug;,)). But
this follows again from Lemma 3. O

2. Equivariant Homology and Regular Differential Forms

We assume from now on thatis a compact, equivariantly form@tvariety with
isolated fixed points. By Lemma 1, it follows that’(X) = 0 = H/(X) for all
oddg. Thus, the algebra® *(X) and H;(X) are commutative. We shall obtain
geometric interpretations d@f;(X) andH(X).
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Letr be the number of -fixed points inX; then the algebraZ;;(X") identifies
to C[t]" = C[] x --- x C[{] (r factors). By Lemmas 2 and 3, tiigt]-module
H}(X) is free of rank- and the inclusiori: X” — X defines an injective[t]-
algebra homomorphism

it H;(X) — (C[t]r, a > () yexr

that becomes an isomorphism after inverting all singular characters. As a conse-
guence, the algebrd;}(X) is finitely generated, Cohen—Macaulay of dimension

d, and reduced. Le¥(X) be the corresponding complex affine algebraic variety
(defined over the rationals).

ProposiTION 2. The mapi*: Hj(X) — C[t]” is the normalization. In other
words, the normalization of (X) is a union of disjoint copies, of t, indexed by
the T-fixed points.

Moreover, the seV(X) is obtained as followsfor any singular charactery
and for anyT-fixed pointsc andy in the same connected componen&df ),
we identify the hyperplangg = 0) in t, andt,.

Proof. The algebraC[t]” is integrally closed in its total ring of fractions; it is
a finite module ovefC[t] and hence oveH;(X). Moreover, H;/(X) andC[{]"
have the same total ring of fractions, by the localization theorem. Thisthe
normalization.

For the second assertion, consider first the case whiéseonnected an@ =
C*. Then theC[t]-algebra structure off/(X) yields a finite flat map/(X) —
Al The fiber at 0 is the spectrum &f *(X), whereas the other fibers consist of
r distinct points. SinceX is connected, the set-theoretical fiber at 0 is a unique
point. Thus,V(X) is a union ofr affine lines with the origins identified.

The general case follows by induction dnusing Lemmas 1 and 2. O

Note that this description df (X) as a set does not determifig(X) uniquely.
For example, ifX is connected an@ = C*, then the se¥ (X) depends only on
the number of fixed points.

We now turn to a description a7 (X) in terms of regular differential forms.
These were defined in [18] for curves and in [16] for arbitrary schemes. This defi-
nition simplifies as follows in the present setting.

Define the space of regular differential forms oi as the set of all polyno-
mial differential forms of degree on that affine space. Thesy is a free module
of rank 1 overC[t]; tensoring with its quotient fiel@(t), we obtain the space of
rational differential forms. Now gegular differential formon V(X) is anr-tuple
(wy),cxr Of rational differential forms on such that the forn} ", _yr o 0, is
regular for alle € H}(X).

By the localization theorem, the latter condition is equivalent to the following:
For any charactey of 7 and for any connected componéhof X €0, the form
Y eyt @@y has no pole along the hyperpla(e = 0). In particular, the poles
of thew, are contained in the finite union of the singular hyperplanes.
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The set of all regular differential forms oVi(X) is stable under multiplica-
tion by any element of*H;'(X): itis a gradedd;:(X )-module that we denote by
wV(X)-

ProrosiTioN 3. With notation as beforapy x) is the dualizing module of the
graded Cohen-Macaulay ring?;(X). Moreover, the gradedd;(X)-module
HI(X) is isomorphic tavyx)(2d) with the opposite grading.

Under this isomorphism, the image of the clfs}; of any T-fixed point has
value a generator of, on t, and0 on the othert,. If X is irreducible, then the
image of the fundamental clagX]; generates the space of homogeneous ele-
ments of minimal degree iy x,).

Proof. We have
H*T(X) = Hom@[t](HT*(X), C[t) = Homc[t](H}“(X), wy)(2d)

becausa; = C[t](—2d). Moreover, Hom[q (H;'(X), w¢) is the dualizing mod-
ule of Hj(X) (see e.g. [8, Thm21.15]. And Homy[q(H;(X), w¢) is mapped
injectively to

Home ) (H7 (X) ®cpy C), @ @cpg CH) = wi ®crg CO).
The image, by definition, i&yx).

The assertion on the images of classeB-fiked points is obvious. For the latter
assertion, observe thaX]r is nonzero, since the same holds f&f[ Thus, [X]r
generates the space of homogeneous elements of maximal degidéxn =
C[t] ®c Hu(X). U

LetY be another compact, equivariantly forrfakpace with isolated fixed points,
and letf: X — Y be an equivariant morphism. Theghdefines a ring homomor-
phism

f*HF(Y) > Hi(X)

together with aH (X )-linear map
for HI(X) —> H(Y).
This yields a finite morphisn¥(X) — V(Y), whence a trace map
Tr: wyix)y = o).

By [8, Thm. 21.15], we can viewvyx) as Hom,;(y)(HT*(X), wy(y)); then the
trace map becomes evaluation at 1.

ProrosiTioN 4. With notation as beford r identifies withf,. Moreover, we have
Tr((@ ) exr) = ( > wx)
xexT fo=y 7YV

Proof. By Proposition 3, both assertions hold for the inclusioX” — X. Using
functoriality of the trace map, we reduce to the case wiXesadY are finite sets;
then the statements are obvious. O
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This description off [ (X ) becomes much more preciseifcontains only finitely
many T-orbits of dimension 1; equivalently, the fixed point set of any subtorus of
codimension 1 contains only finitely maffrorbits. By [10, Thm.7.1], theimage

of i*: Hf(X) — C[t]” consists then of all-tuples(f;),cxr of polynomial func-
tions ont such that: f, — f, is divisible by x wheneverr, y are fixed points in
the closure of a 1-dimensional orbit wheFeacts through the charactgr Here

we obtain the following dual statement.

CoroLLARY 1. Let X be a compact, equivariantly formdl-variety containing
only finitely many orbits of dimension 1. Then HI(X) consists of all tuples
(wy)exr Of rational differential forms on satisfying the following conditions.
(i) The poles of eactr, are contained in the union of singular hyperplanes, and
their order is at most.
(i) For any singular charactey and for any connected componéhbf X koo,
the sum of residues of the, (x € YT) along the hyperplanéy = 0) is zero.

Proof. By Lemmas 1 and 2, we may assume tiat 1 and thatX is connected

of dimension 1. Then the normalization &fis a disjoint union of copies of the
complex projective liné?X. Since the cohomology of vanishes in degree 1, the
Mayer-Vietoris exact sequence implies that each irreducible compgéhehtX
contains 2 fixed points; moreover, the union of all other components is either
disconnected or meets in a unique fixed point. In other word¥ is a tree

of curves homeomorphic tB'. Now the statement follows easily from an ex-
plicit description ofH £ (P1) together with induction on the number of irreducible
components. O

This result will be applied to Schubert varieties in Section 4.

3. Equivariant Multiplicities and the Conductor

We still assume thaX is a compact, equivariantly formdl-variety, with a finite
T-fixed point set that we denoté By the localization theorem, we can assign to
eachx € F arational functiorer (x, X) ont (the T-equivariant multiplicity ofX
atx) such that

[X]r = ZET(X, X)[x]r

xeF

in H1(X)®c[gC(t). Thener(x, X) is either zero or ahomogeneous rational func-
tion of degree-2n whose denominator is a product of singular characters. (This
definition makes sense, more generally, for an isolated fixed poinT ivariety;
see [3;7].)

For irreducibleX, note that the equivariant multiplicities depend only on the
algebrafH;(X) up to multiplication by a common nonzero complex number (this
follows from Proposition 3).

The equivariant multiplicity is related with trexuivariant Euler classf [2],
as follows. Letx € F and letH (X) denote equivariant conomology &fwith
support in{x}. By the localization theorem again, the restriction map
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Hy (X) — Hy(x) EC[t], at> oy

is an isomorphism after inverting finitely many nontrivial characterg.othus,
we may choose a no@{t]-torsiona € Hy (X). Then we haver, # 0 and

/ aN[X]r =er(x, X)a,.
X

Therefore, the equivariant Euler class7Eu, X) is the inverse oé7 (x, X) if the
latter is nonzero. This holds, for example, Xfis rationally smooth ak; then
Eur (x, X) is a scalar multiple of a product of singular characters (see [2, Sec. 2]).
Note that equivariant multiplicity may well be zero in our setting. Consider,
for example, the action df = C* onP* defined by its linear action oA® with
weights 0, 1,1, 1, —1, and letzy, ..., z4 be the corresponding homogeneous
coordinates; then thE-fixed points are the coordinate points ..., x4. The sub-
variety X ¢ P4 defined byz1z» — 2374 = 0 is T-stable and equivariantly formal;
moreover XT = {xoq, ..., x4} andez(xo, X) = 0.
Let now¢ be theconductorof H;:(X) into H/(F); that s,

¢={aeHiX) | i*aUBei*H}(X) VB € Hi(F)).

In other wordsj*c is the greatest ideal df;*(F') contained in*H;(X). Thus, we

have
i*c= l_[c)C

xeF

where ther, are ideals ofC[t]. Note that the map
Homp-x)(H7 (F), Hf (X)) = ¢, u > u(l)

is an isomorphism.
We construct elements ofas follows. Denote byi; . (X) the equivariant co-
homology with support in” and byr: Hy -(X) — H7(X) the natural map. Set

0 =r(Hf (X)) =Y r(H; (X))
xeF
a C[t]-submodule ofH;(X). Note thati*o = [],., 0., whered, denotes the
image of the natural mag/; . (X) — Hj(x) = C[t]. Moreover, each, is an
ideal of C[t]. As a consequence,is contained irc; in other words, each, is
contained irc,.
In fact, ¢, ando, are closely related to each other and to the equivariant multi-
plicity at x, as shown by the following proposition.

ProrosiTiON 5. (i) Each idealc, is generated by a monomial in the singular
characters and satisfies (x, X)c, C C[t].

(i) If X is rationally smooth atx, thend, equalsc, and is generated by
Eur(x, X).

(i) If X" s rationally smooth ak for all singular charactersy of 7, then
the rational functiorer (x, X) is nonzero and its denominator generates the ideal
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¢.. Moreover, the support of th€[{]-modulec, /v, has codimension at lea&
int.

Proof. (i) Let (a1, ..., «,) be a basis of the fre€[t]-module H}(X). Write F =
{x1,...,x,}and

i*Olk = (ak]_, ey ak,) € (C[f]r
forl<k <r,andletf = (f1,..., f,) € C[t]". Thenf €i*cif and only if, for
1< j <r, there exists #; € H;(X) such that 8;),; = f; and(8;),, = 0 for all
k # j. Writing 8; = Y_;_4 fixa With fj € C[t], the latter condition translates
into the following system of linear equalities:
ia =P M=
— I 1 0  otherwise.

Solving this system yielda f; = (—1)f+"Ajkf/ forl < j, k < r, whereA de-
notes the determinant of the mat(ix,;) andA j its principal( j, k)-minor. There-
fore, f; e ¢; ifand only if f; is divisible by allA /(A, Ajy) fork =1,...,r, where

(A, Ajy) denotes the greatest common divisor of these polynomial functions. This
shows that; is generated by the least common multiple of thg(A, Ay) (1 <
k<r).On the other hand; contains a monomial in the singular characters, by
the localization theorem. This proves the first assertion.

Let f € ¢,. Then there exists am € H/(X) such thatr, = f anda, = O for
all y e Fwith y # x. Nower(x, X) f = [, a N[X]7 isinC[t].

(i) By [2, 2.3], the C[t]-module H} (X) is freely generated by a homoge-
neous element of degree 2. Moreover, the image af in H;f(x) = C[t] equals
Eur(x, X), theinverse oé7(x, X). Thus Ew (x, X) generates,, andc, is con-
tained in Ey (x, X)C[t] = 0., whenced, = c,.

(iii) By the localization theoremgr (x, X) is the product ok (x, X*¢X)) (a
constant multiple of a power of the singular charagtgrvith a rational function
defined along the hyperplagg = 0). It follows that the denominator ef (x, X)
is the product of the denominators of the(x, X*¢"X)), wherey runs over the
singular characters up to multiple. Now the assertion follows from (ii) together
with the localization theorem. O

Next we obtain sufficient conditions for equality = 9, to hold (we do not know
any example where, # 0,).

Recall thatx is calledattractiveif all weights of T' in the Zariski tangent space
of X atx are contained in an open half-space. Equivalently, there exist an open
affine T-stable neighborhood, and a one-parameter subgroupf T such that
lim,oA(r)y = x forall y € X,. Then such a neighborhhax; is unique and,
settingX, = X, — {x}, the quotientX,/A(C*) is a projectivel-variety that we
denote byP(X,) (see e.g. [3]). Finally, the rational functien (x, X) is defined
ata (identified with its differential at 1), and its value is a positive rational number;
in particular,er(x, X) is nonzero.

PrOPOSITION 6. Assume that is attractive,X ¥*" is rationally smooth a for
all singular charactersy, andP(X,) is equivariantly formal. Then, = 0,.
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Proof. Let f € ¢, be homogeneous of degrge Then there exists a uniquee
H}(X) such that, = f anda, = 0 for all y € F with y # x. We check thatr
is in the image of the natural mdﬁx(X) — HJ(X) or, equivalently, thaff is
in the image of the composition

Hi (X) > H}(X) — Hj(x).
By excision, the latter identifies with the image of the composition
H;x(Xx) — H{!(Xx) — H;!(x).
Moreover, the magpi;(X,) — Hj(x) is an isomorphism, becauses attractive.
Since the sequence
H} (X)) = H{(X,) - H{(X,)

is exact, we have to check thatmaps to zero in’i;(Xx).

Note that theT'-fixed points inP(X,) are theP(X*®*)), wherey runs over all
singular characters. Sin@X ) is equivariantly formal, the restriction map

Hi(X) — [ Hr (X))
X
is injective. Now we conclude by Proposition 5(ii). O

4. Poincaré Duality and Betti Numbers

Combining the results of the previous sections, we obtain the following criterion
for Poincaré duality.

THEOREM 1. For a compact, equivariantly formaf-variety X of dimensiom
with isolated fixed points, the following conditions are equivalent.

(i) X satisfies Poincaré duality.

(i) The algebraH;(X) is Gorenstein.
(iii) The Betti numbers ok satisfyb,(X) = b2,—4(X) for 0 < g < n, and all

equivariant multiplicities are nonzero.

If one of these conditions holds, then all equivariant multiplicities are in fact
inverses of polynomial functions.

Proof. (i) < (ii) By Proposition 3, the algebr&/(X) is Gorenstein if and only
if the H;(X)-module H!(X) is freely generated byX]r. But this amounts to
Poincaré duality foxX, by Proposition 1 and the graded Nakayama lemma.

(if) = (iii) The algebraH *(X) is Gorenstein as the quotient of the Gorenstein
algebraf;(X) by the idealt*H/(X) generated by a regular sequence. It follows
thatb, (X) = b2,—,(X) for all g € Z (see e.g. [8, p. 551]). Morever, the proof of
(i) « (ii) shows that the dualizing modutey x, is freely generated byX]r, a
homogeneous element of degrée 2- n). Thus, the conductar satisfies

¢ = Homy:x)(Hy (F), Hf (X)) = HoMyx)(H7 (F), wvx) ®mzcx) @y x)

= wy(r) OHxX) Py(x)s
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wherewy,y, denotes the inverse of the canonical module; the third isomorphism
follows from [8, Thm.21.15]. But thedualizing modulevy sy of H;(X) = C[t]”

is freely generated in degred 2Therefore, theC[t]"-modulei *c is freely gener-
ated in degree2by (say)(f,).cr. For a fixedx € F, there existsx HTZ”(X)

such thaty, = f, anda, = O forall y € F with y # x. Thus,

er(x, X)as =/a(xm[X]T

X
is in C[t]. But @, ander(x, X) are homogeneous of opposite degrees, so that
er(x, X) is the inverse of a polynomial.
(iii) = (ii) We claim that the equivariant Poincaré duality map
([X1r: HA(X) > Hj, ,(X)
is injective for allg € Z. Leto € Hj(X) be such tha& N [X]r = 0. Then

[@upnix =0
X
for all B € Hj(X). Thus, we have

D er(x, X)a B =0

xeF

in C(t). By the localization theorem, this equality holds for all sequeriges.c r
in C(t). Since ncer(x, X) vanishes, we must hawe = 0 for all x € F anda =
0. This proves our claim.
On the other hand, the assumption on Betti numbers combined with the iso-
morphisms
H}(X)=C[f] ®c H*(X) and HI(X)=C[t] ®c HI(X)

implies that the dimension af,;/(X) equals that oHZTn_q(X) forallg € Z. Thus,
the equivariant Poincaré duality map is an isomorphism, and the same holds for
the usual one. 0

We now come to our main result.

THEOREM 2. LetX be a compact, equivariantly formdl-variety of dimension
n with isolated fixed points. If all equivariant multiplicities are nonzéeqg., if
all fixed points are attractivie then the following inequalities hold for the Betti
numbers

by(X) + by—1(X) + -+ +bo(X) < bop—g(X) + bop—gra(X) + -+ + b2u(X)
forO<g<n-1
2b2(X) + 4ba(X) + -+ - + 2nb2,(X) = nx(X),

wherex(X) = bo(X) +ba(X) + - - - + by, (X) is the Euler characteristic. More-
over, X satisfies Poincaré duality if and only if

2b2(X) 4 4ba(X) + - - - + 2nb2,(X) = nx(X).
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Proof. Sinceer (x, X) is a nonzero rational function for alle F, we may choose
al-dimensional subtord® of T suchthatX”" = F and eacla; (x, X) is nonzero
as well. As in the proof of Theorem 1, it follows that the map

(\[X17: Hf(X) — HE,_(X)

is injective for allg € Z. Moreover, sinceX is equivariantly formal as &"'-
variety (by Lemma 2), we havél* (X) = C[r] ®c H*(X) and HI (X) =
C[t] ®c H«(X) as graded vector spaces, wheig an indeterminate of degree 2.
It follows that

dim H/,(X) = qu_zj(X), dmH] _ (X) = Z ban_gi2;(X).
j=0 j=0
Together with vanishing of Betti numbers in odd degrees, this implies the first
inequalities. Summing them up fgr=0, ..., n — 1, we obtain

nbo(X) + -+ +2by—2(X) + bp—1(X) < bpia(X) +2by42(X) + - - + nb2y(X),

which is equivalent to the second inequality.
If X satisfies Poincaré duality, thép(X) = b2,—,(X) for all ¢ € Z, whence

2b2(X) +4bs(X) + -+ + 2nb2,(X) = nx(X).
Conversely, if the latter equality holds then we have
bq(X) + bqfl(X) +- 4+ bO(X) = banq(X) + b2n7q+l(X) +--- 4+ b2n(X)

for 0 < ¢ < n —1, by the foregoing arguments. This in turn impliegX) =
bs,—4(X). Thus,X satisfies Poincare duality by Theorem 1. O

Next let (W, S) be a Coxeter system with length functiérand Bruhat ordex
(cf. [13]). We assume thaV is crystallographic, that is, the product of any two
distinct elements af has order 2, 3, 4, 6, @o. Equivalently,W is the Weyl group
of a complex Kac—Moody Lie algebgawith Cartan subalgebrg the reflection
representation [19].

To eachw € W is associated the Schubert varigfyw), a complex projective
variety of dimensiort(w). The maximal torug” of the Kac—Moody group asso-
ciated tog acts onX(w) with isolated fixed points, indexed by the Bruhat interval

[1L,w]={xeW x <w}

Each such fixed point is attractive, ai¢w) is the disjoint union of Schubert cells
XO%x) (x €[1, w]), whereX(x) is T-stable and isomorphic to a complex affine
space of dimensiof(x). Thus, X (w) satisfies our assumptions.

The T-equivariant cohomology ring of (w) is determined in [1] and [14]; see
also [11, Sec. 4]. An alternative description follows readily from [10, TH],
becauseX (w) contains only finitely many-orbit closures of dimension 1. Each
such curve is uniquely determined by #sfixed pointsx andsx, wherex € W,

s is a reflection ofW, andx, sx < w; moreover,T acts on that curve through a
charactery such thai(x = 0) is the hyperplane fixed by[4, Thm. F]. Thus, the
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image of the restriction mai: H;(X(w)) — H;(X(w)") is the set of all tuples
(fo)xemw] in C[{] such thatf, — f;, . is divisible bya whenever (a}, € Wis a
reflection with hyperplanéx = 0) and (b)x, s, x < w.

Similarly, the equivariant homologif I (X (w)) is determined by Corollary 1:
it consists of all tuplegw, )<« Of rational differential forms o with at most
simple poles on reflection hyperplanes, satisfying

Re%:O(a)x + wsax) =0
wheneves, is a reflection and, s,x < w. Theorem 2 yields the following.

CoroLLARY 2. For any Bruhat interval[l, w] in a crystallographic Coxeter
group W, we have

#lx €[l w], £(x) =g} =#Hx e[l w], £(x) = £L(w) — g}

forl<gq < 3e(w).

Moreover, the second inequality in Theorem 2 yields the inequality > %E(w)

for the average lengi(w) of elements of [Lw], with equality if and only ifX (w)
satisfies Poincaré duality. This statement is due to Carrell and Peterson [4], to-
gether with equivalence of Poincaré duality and rational smoothness for Schubert
varieties. The latter result can be recovered from Theorem 1 combined with the
characterization of rational smoothness in terms of equivariant multiplicities (see
[2; 3; 15]).

Note finally that Corollary 2 actually holds for an arbitrary Coxeter gréiup
Although Schubert varieties no longer exist in this setting, all ingredients of the
proof of Theorem 2 still make sense (see [5; 14, (4.35)]; the nonvanishing of “equi-
variant multiplicities” follows from [5, Prop. 1]).
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