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1. Introduction

1.1. Backgound

Toric varieties admit a combinatorial description, which allows many invariants
to be expressed in terms of combinatorial data. Batyrev [Ba2] and Morrison and
Plesser [MP] describe the quantum cohomology rings of certain toric varieties in
terms of generators (divisors and formabariables) and relations (linear relations
andg-deformed monomial relations). The relations are easily obtained from the
combinatorial data. Unfortunately, the relations alone do not tell us how to multi-
ply cohomology classes in the quantum cohomology W#g*(X ), or even how
to express ordinary cohomology classegdit(X, Q) in terms of the given gener-
ators. In this paper, we give a formula that expresses any cld#s(ik, Q)—as
a polynomial in divisor classes and formghariables—for anyX belonging to a
certain class of toric varieties. These expressions, along with the presentation of
QH*(X) via generators and relations, permit computation of any product of co-
homology classes iOH*(X).

Let X be a complete toric variety of dimensianover the complex humbers
(all varieties in this paper are over the complex numbers). This meanX tisat
a normal variety with an action by the algebraic tof@)" and a dense equi-
variant embeddingC*)" — X. By the theory of toric varieties (cfF]), such
X are characterized by a fak of strongly convex polyhedral cones M ®7 R,
where N is the latticeZ”. The cones are rational, that is, generated by lattice
points. In particular, to every ragl-dimensional conej there is a unique gen-
eratorp € N such thab N N = Z>¢ - p. There is a one-to-one correspondence
between such ray generat@rand toric (i.e., torus-invariant) divisors &f. Given
toric divisors Dy, ..., Dy with corresponding ray generatgss, ..., px, we have
Din---N Dy #@ifand only if pg, ..., px Span a cone il\. Hypotheses orX
translate as follows into conditions ax

() X is nonsingular if and only if every cone is generated by a partftmsis
of N;

(i) given thatX is nonsingularX is Fano (i.e.X has ample anticanonical class)
if and only if the set of ray generators is strictly convex.
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We need the following terminology from [Ba1l].

DerFiNITION 1.1.  LetX be a complete nonsingular toric variefyDs, ..., Dy} is
then aprimitive seffor X if D1N---N Dy = @butDN-- ﬂ/D?rL --N Dy #£ Pfor

all j. Equivalently, this means thaps, ..., px) ¢ A but(p1, ..., pj, ..., px) €A
forall j. If S :={Ds,..., D}isaprimitive setthenthe elememt= p;+-- -+ px
lies in the relative interior of a unique cone of, say the cone generated by
P1,---» py. Then

prt- -+ pr=aipi+-+ap, (@>0i=1..7r) (@0}

is the correspondingrimitive relation Correspondingly there is a unique curve
classB € Hx(X, Z) such thatfﬂ D; =1fori=1,...,k andfﬂ Dj = —ajfor j =
1...,r,with fﬂ D = 0 for all other toric divisors oK. This is called therimitive
classassociated to the primitive sgt

We provide more details in Section 2, in particular regarding the fact that, on any
nonsingular projective toric variety, every primitive class is effective.

THEOREM 1.2. Let X be a nonsingular Fano toric variety of dimensiamwith a
corresponding fam of cones inV ®z R, with N = Z". Let M = Hom(N, Z).
LetC be the cone of effective curve classestomwith Q[C] the semigroup alge-
braonC. LetDs, ..., D,, denote the toric divisors oK, with corresponding ray
generatorsos, ..., p,,. Then

OH*(X) = (QICDI[Dy, ..., Dul/I, (2)
wherel is the ideal generated by
@(p1)D1+ -+ @(om) D 3)
for all ¢ € M and by
Dy Dy — qP(D)™ - - (D)) (4)

for every primitive se{D4, ..., D;}, with corresponding primitive relatiofl) and
primitive curve clas$.

A general primitive set should perhaps be denoted{As,..., D; }, with
{i, ..., ik} C {1,...,m}; this gets cumbersome, so we let there be an implied
shuffling of indices in (4). The element f[C] indexed byg € C is denoted
q”; these, for nonzerg, are the quantum correction terms of the quantum coho-
mology ring. Note that when all the variablgé for 0 £ g € C are set to 0, we
recover the presentation of the usual conomology ring.dh fact, the cohomol-
ogy ring with integer coefficients of any complete nonsingular toric variety has,
as generators, the toric divisor classes and, as relations, the linear relations (3) and
the monomial terms (4) (with ng-terms).

Theorem 1.2 was stated in [Ba2] and also discussed in [MP]. A suggestive argu-
ment was given in [Ba2], but the first proof was supplied by Givental in [Gi], where
complete intersections in toric varieties were considered, with the toric varieties
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themselves as a trivial first case. The argument of [Gi] relied upon a collection
of axioms of equivariant Gromov—Witten invariants. For these, the later-supplied
equivariant localization theorem of Graber and Pandharipande [GP] is needed. A
recently announced formula [Sp] reduces computaticangiGromov-Witten in-
variant on a nonsingular projective toric variety to a certain sum over a finite set of
graphs, although deducing the relations (4) from this would be a formidable com-
binatorial task. Also, [CK, pp. 393—-395] and [Sp] exhibit nonsingular projective
(but non-Fano) toric varietie¥ for which (4) fails to vanish iDH*(X).

WhenX is Fano, one can identif@gH*(X) ~ Q[C] ®g H*(X, Q) asQ[C]-
modules, wher& denotes the semigroup of effective curve classeX oA co-
homology class € H*(X, Q) is identified with 1® « € QH*(X). To “know”
QH*(X) means to know how to computg - az in QH*(X) for any a1, ap €
H*(X, Q). The structure constants in the expressionofpr«, as a linear com-
bination of elementg? ® «’ are the three-point Gromov-Witten invariants. The
three-point Gromov-Witten invariants in turn determine all the Gromov-Witten
invariants, by the inductive procedure of the first reconstruction theorem of Kont-
sevich and Manin [KM] (the needed hypothesigbf(X, Q) being generated by
divisor classes is satisfied for toric varieties). All the Gromov-Witten invariants
are thus determined from having (i) a presentationdéf*(X) in terms of gener-
ators and relations and (ii) an expressiondon QH*(X) for anya € H*(X, Q).

This second piece of data, in the context of homogeneous spaces, is referred to as
aquantum Giambelli formulésee e.g. [Ber]). So the ring presentation of Batyrev
and of Morrison and Plesser needs to be supplemented by a quantum Giambelli
formula before we can say we “knovH *(X).

1.2. Main Result

In this paper, we provide a quantum Giambelli formula for a class of toric vari-
eties. We first need some new terminology.

DerFiNITION 1.3.  Anexceptional sets a set of toric divisor§Dy, ..., D;} such
that the corresponding ray generatpss. .., p; are linearly independent and such
thatp; + - - - + pi IS equal to some ray generaj@rThenp; + - - - + pp = g isthe
associateéxceptional relationThere is the correspondirexceptional divisoD
andexceptional clasg € H»(X, Z), with fﬂ D; =1fori =1,... k, fﬂ D=-1,
and [, D" = 0 for all other toric divisorsD".

DerFNITION 1.4.  Letacone € A befixed. Then an exceptional $&1, ..., Dy}
is calledspecial(for o) if some(k — 1) of p1, ..., px, as well asp, lie in o.

DEerFINITION 1.5.  Let{Sy, ..., S;} be a collection of exceptional sets. We say this
set of exceptional sets hascygcleif there exists{iy, ..., i;} C {1,...,¢} such
that the exceptional divisor fdf; ., isin S; forv =1,..., j — 1 and the excep-
tional divisor for$;, is in S;.. Otherwise, we say the set of exceptional sets

no cycles.
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THEOREM 1.6. LetX be anonsingular projective toric variety. Assuiés Fano,
and assume further that every toric subvarietyXofs Fano and that, for every
nonsingular toric varietyX’ dominated by such thatX — X’ is the blow-up of
an irreducible toric subvarietyX’ is Fano.

(i) Every primitive relation ofX is either of the form

pr+--+pe=0 or pi4---+ pp = pi.

(ii) If {Dy, ..., D;}is asetof toric divisors such th#@, N - - -N D; is nonempty
and ifa denotes the cohomology class Poincaré duglen - - - N D;], then we

have
a = Z gbrtth H D; (5)

{S1,..., 51} 1<i<j

D;¢81U--US,

in QH*(X), where the sum is over sets of exceptional $§1s..., S} that are
special for the cone associatedfgN- - -N D;, have distinct exceptional divisors,
and have no cycle$or the sum in(5), 8; denotes the exceptional class associated
to §; for eachi.

REMARK 1.7. It is not obvious yet, but the hypotheses in Theorem 1.6 guaran-
tee that, for any(Sy, ..., S;} in the sum (5), the set§ are pairwise disjoint. This
means that the degrees work out correctly: itis a general fact thdty it .., D,,}

is the set of all toric divisors o, then we have-Ky = D, +--- + D,, and, in
general QH*(X) is a graded ring with deg’ = [,(~Kx) and degr = i fora €
H?(X, Q).

After setting up notation in Section 2, we study the class of toric varieties indi-
cated by Theorem 1.6 in Section 3. These toric varieties are all iterated blow-ups
of products of projective spaces, along irreducible toric subvarieties, such that the
exceptional divisors of the blow-up can be blown down in any order; see the char-
acterization in Theorem 3.9. This is a convenient class of toric varieties, since it is
closed under blow-downs and under inclusions of toric subvarieties. In fact, it is
the largest category of nonsingular Fano toric varieties that is closed under these
operations. Also, it has the nice feature of admitting a neatly presentable quantum
Giambelli formula in terms of the given combinatorial data only. And, unlike in
the case of products of projective spaces, there are gazngection terms in the
guantum Giambelli. Still, it is a limited class of toric varieties; the author has no
idea what sort of shape a general quantum Giambelli formula might take (say, for
arbitrary nonsingular Fano toric varieties).

The class of toric varieties includes products of projective spaces themselves,
for which the results are known, as well as blow-ups of points, which were stud-
ied in [Ga]. This class also includes some of the projective bundles over projective
spaces [Ma; QR] and over products of projective spaces [CM]. Such toric varieties
are generally not convex varieties, so in the theory of quantum cohomology (cf.
[FP] and references therein) one needs virtual fundamental classes [B; BF; LT].

The proof of Theorem 1.6 uses no computations of intersection numbers on mod-
ulispaces, but only the following facts regardi@/ *(X ): itis aring (commutative
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and associative), graded (see Remark 1.7), presented by (2), with multiplicative rule
governed by the three-point Gromov-Witten invariants. &, € H*(X, Q),
the pairing (via the usual cup product)ef - o, with az € H*(X, Q) is

/(061-062) Uaz = Z (o1, o2, a3)pq .
X peHy(X.2)

The number(ay, a2, a3)g is @ Gromov-Witten invariant; it counts the (virtual)
number of rational curves in claggassing through cycles that represent Poincaré
duals taxs, o2, andas. So, forinstancelos, a2, ag)s = O if there are no curvesin
homology clas$ satisfying such incidence conditions. The Gromov-Witten in-
variant also vanishes if one of the is a divisor class whose intersection number
with g8 is 0, assuming # 0 (divisor axiom). These facts let us deduce Theo-
rem 1.6 from Theorem 1.2, using some combinatorial reasoning (Section 4). The
reader needs to grant that Theorem 1.2 is proved in [Gi], or else work through Ex-
ercise 4.13, which derives relations (4) from scratch (for a class of varieties that
includes those indicated in Theorem 1.6).

As a valuable exercise, the reader may list all five isomorphism classes of 2-
dimensional toric varieties satisfying the hypotheses of Theorem 1.6, and write
down the quantum Giambelli. Note there are often several pairs of divisors in-
tersecting in a point, giving several different expressions for the point class in
QH*(X). Any two such expressions must be equal, via the linear relations and
deformed monomial relations i@H*(X). Unlike in the case of homogeneous
spaces, there is no canonical basis#ot( X, Q).

ACkNOWLEDGMENT. The author would like to thank Victor Batyrev, Barbara Fan-
techi, Bill Fulton, and Harry Tamvakis for helpful discussions and encouragement.

2. Preliminaries

2.1. Conventions

We use the following notation:
N = finite-dimensional integer lattic&\g = N Q R;
M = dual lattice Mr = M Q R;
X = nonsingular projective toric variety;
A = corresponding fan of cones Mg;
n = dimension of the lattice (hence also the dimensioiX pf
m = number of 1-dimensional rays i (equal to the number of
toric divisors ofX);
Dy, ..., Dy, ... = toric divisors;
p1, ..., Py, -.. = corresponding ray generators;
A(o) = star of the cone € A: afan inN/{c) whose cones are in
one-to-one correspondence with the conea @bntainingo ;
X(o) = corresponding toric subvariety;
QH*(X) = the small quantum cohomology ring &t
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2.2. Divisors and Curve Classes

We let X be an arbitrary nonsingular projective toric variety, with notation as just
listed. Some standard exact sequences are

O—-M-—>7Z"— Pic(X) >0
and the dual sequence
0— HyX,Z)— 7Z" — N — 0.

The dual exact sequence indicates that any linear relation among ray generators,
such as (1), determines a classHn(X, Z).

It is known (cf. [O]) that the set of effective curve classesXis equal to the
cone generated by the toric curvesXrisimply let an arbitrary curve degenerate
by means of the torus action). Shortly we shall see that this is also equal to the
cone generated by the primitive classes.

We first recall the characterization of ample divisors. Let the toric divisors on
X be denoted, ..., D,,. Then a divisory_'; a; D; is ample if and only if the
piecewise linear functiogy: Ng — R, linear on every cone ok and defined by
¥(p;) = —a;, is strictly convex. Linearly equivalent divisors correspond to piece-
wise linear functions that differ by a global linear function. To every stig¢here
corresponds a convex polytope/Mi:

Py ={veMp| (v,x) > y(x) forall x € Ng}.

Translation ofyr by a global linear function corresponds to translatiorPpfby
an element of/. There is a unique translation sending a given verte®pfo
the origin. Correspondingly, for a fixed ample dividor to every maximal cone
w there is a unique representative forof the form""" , a; D;, with a; > 0 for
all i anda; = 0, if and only if p; € u. This implies the following proposition.

ProrosiTION 2.1. If B € Hy(X, Z) is nonzero and if the toric divisors thatin-
tersects negatively have nonempty common intersectiongthrrst have positive
intersection with every ample divisor.

CoroLLARY 2.2. Any B € Hy(X,Z) that intersects every ample divisor posi-
tively must satisfy{ D; | Jy Di > 0} contains a primitive set.

Proof. Apply Proposition 2.1 te-8. O

ProOPOSITION 2.3. Supposes € Hy(X, Z). If the D; for WhiChfﬂ D; < 0have
nonempty common intersection, this equal to a linear combination, with non-
negative integer coefficients, of primitive curve classes.

Proof. By Corollary 2.2,{ | Js Di > 0} contains a primitive set. Lefto be the
primitive curve class corresponding to this primitive set, and wtite 8o + 8'.
Now {i | fﬁ/ D; <0} c{i| fﬁ D; < 0} and so we are done, by induction on
the degree oB (with respect to a fixed projective embeddingof. O
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Consider a toric curv®! ~ C c X. Any toric divisor having negative intersec-
tion with [C] must containC. So, by Proposition 2.3, the cone of effective curve
classes orX is contained in the cone spanned by primitive curve classe¥.on
This constitutes half of the following known result [O; OP; Re].

THEOREM 2.4. Let X be a nonsingular projective toric variety. The cone of
effective curve classes éhis equal to the cone spanned by primitive curve classes
on X.

It is not hard to obtain a proof of Theorem 2.4 by constructing explicitly a tree of
toric PYs representing a given primitive curve class. This is an easy consequence
of some combinatorial results that are needed in this paper (see Exercise 4.3).
Batyrev’s approach [Ba2] t@H *(X) is to study the moduli space of rational
curves onX in a curve class that has nonnegative intersection with every toric di-
visor. Moduli of rational curves in such a homology class is much like that of
curves on a homogeneous space, although the situation at the boundary is a bit
more complicated. Nevertheless, if one can derive relatio@gri(X ) involving
such curve classes then one can deduce the ring presentation (2).

DEeFINITION 2.5. A class8 € Ha(X, Z) is said to bevery effectivef g8 # 0 and
fﬂ D > 0 for every toric divisorD.

Batyrev predicted that, i is a very effective curve class dhand if we set;; =
fﬂ D; for eachi, then the relation

Dyt D =g" (6)
holds inQH *(X). The enumerative interpretation is that, given a general pgint
on X and distinct pointso, 21,1, -+, 29,415 - - -» Zm.1s - - - » Zm.a,, IN gENEral position

onP?!, there is precisely one morphism P! — X, with ¢, ([PY]) = 8, such that
¢(z0) = xoande(z; ;) € D; foralli andj withl <i <mand 1< j <a; (and
that there are no curves in other homology classes that contejktigiens).

ProrosiTION 2.6. Given a nonsingular projective toric variety, assume re-
lation (6) for every very effective curve clags Then the deformed monomial
relations(4) hold. If, moreoverX is Fano, thenQH *(X) has the claimed presen-
tation (2).

Proof. Let 8 be a primitive curve class, and wrife= g, — 81 with g1 and 8,
very effective. Then

D Dy,
g T] Di:[ I1 Di]Di[ﬁl LoD

fﬂD,-:l fﬁDi:l
_ D(ffﬂoj) Dfﬁzol Dfﬂznm B D(ffﬂoﬂ
= H j 1 e =4 H j ’
Jy Dj=0 Jy Dj=0

and (4) follows since ! is a nonzero divisor iQH*(X).
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If X is Fano, then a presentation foH *(X ) is obtained by starting with a pre-
sentation forH*(X, Q) in terms of generators and relations and then replacing
each relation by g-deformed relation that holds iQH *(X) ([ST], or cf. [FP]).

The presentation (2) is of this form. O

REMARK 2.7. The proof shows that, for any effectigavith associated relation
c1p1+ -+ cpr = aipy+ - +arp;
in N (j;g D; =¢; > 0and— fﬂ Dj=a; > 0), the relation
Di*--- D =qP(D))™--- (D)™ @)
holds inQH*(X) (assuming relations (6) hold faf).

3. A Class of Fano Toric Varieties

3.1. Fano Conditions

We relate the shape of the relations among ray generators corresponding to primi-
tive sets of a fan, on the one hand, to a series of increasingly restrictive conditions
on the associated toric variety, on the other. We arrive at the following dictionary.
We recall the primitive relation associated to a primitive set:
p1+-+pr=api+--+ap. (@ >0 (pg,....p)€N).  (8)
The dictionary reads:
> a; < k for all relations (8) < X is Fano;

X is Fano, and every

; <1 for all relations (8) < . . .
2ai = ® toric subvariety ofX is Fano;

> a; <1, and everyp’ appears on the X is Fano; every toric subvariety
right-hand side of at most one relation (85 and blow-down ofX is Fano.

The first of these conditions is known (cf. [O]). The others are Theorems 3.1
and 3.9.

3.2. Conditions for Every Toric Subvariety to be Fano

Part (i) of Theorem 1.6 is a consequence of the following characterization.

THeoreM 3.1. Let X be a complete nonsingular toric variety, and letbe the
associated fan. Then the following are equivalent.

(i) X is Fano, and every toric subvariety &fis Fano.
(if) For every primitive se{D;, ..., D;} we have eithefp; + --- + p = 0 or
p1+ -+ pr = p’, wherep’ is a ray generator ofA.
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(iii) For every maximal cong = (p1, ..., p,) in A and for every ray generator
o, if we write p = byp1+ -+ + b,p, then we have-1 < b; < 1forj =
1, ...,n, with b; =1 for at most ongj.

Proof. For (i) = (ii), we induct on the dimension. The case: = 1 is trivial,

and the base cagse= 2 is easily verified. For the inductive step, let us suppose
X satisfies (i) but that (ii) fails to hold. Then there is a primitive{@et, ..., D;}
whose associated primitive relation (8) satishes; > 2.

Let u be a maximal cone containing, ..., p,, and let us denote the remain-
ing generators of by p1, ..., o1, p, .4, - .., p; (SUitably rearranging indices). We
insist that the set§pa, ..., px} and{ps, ..., p;} be disjoint. Nowp is the cone
spanned by

T :={p1 e’ Pits P -+ -» P1}- 9)

Let ¢ € M be the point corresponding to(so¢(p) = 1for all p € T). We have
e(p1+---+p) =) a; =2

SinceX is Fano, we have(p) < 1 for every ray generatqgs, with equality if
andonlyifp e T. So, forh +1 < j < k we havep(p;) = —c; for some nonneg-
ative integerc;. Now

k

p(prt-+tp)=h— Y ¢=2
j=h+1

In particular,z > 2 and sa > 3. Consider the fam\(p1) in N/{p1). Let us give
N coordinates by identifying the elements Bf(in the order listed in (9)) with
the standard basis elements. Thefp,) consists of all cones ak containingps,
projected by forgetting the first coordinate. The divisors associated to the projec-
tions of po, ..., px form a primitive set forX(p;). Note thatp; + - - - + p; has
first coordinate equal to zero; so, if we define Hom(N/{p1), Z) by ¢(p) = 1
forall p € T \ {p1}, then we have (o2 + - - -+ pr) = @(p1+ - -+ pr) = 2. We
are assuming every toric subvariety Xfis Fano. The induction hypothesis ap-
plied to the toric subvariet¥ (1) implies thatp(o2 + - - - + o) < 1, so we have
a contradiction.

For (ii) = (iii), we let u = (p1, ..., p,) be a maximal cone and giv€ the
coordinates thus dictated. Suppose some ray genegratehen written in coor-
dinates agby, ..., b,), satisfiesh; < —2. If the P! on X corresponding to the
(n —1)-dimensional conép,, ..., p,), has fixed points () andX(u'), then in
the coordinate system of we find thatp has first coordinate-b;. Hence, if (iii)
fails then, for some: and p, the coordinatesb,, ..., b,) for p satisfyb; > 2 or
b1 = by = 1 (after shuffling indices). Among all such pajtsandp we may as-
sume thab; + - - - + b, is as large as possible. Nqw p4, ..., p, fail to generate
a cone and so, by (ii), the supi of p and some nonempty subset{@f, ..., p,}
is also a ray generator. Byt must have either some coordinate? or at least
two coordinates= 1, and the sum of the coordinates @fis strictly larger than
b1+ -+ b,. This is a contradiction.
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Statement (iii) implies thaX is Fano; for any cone, statement (iii) forA im-
plies statement (iii) forA (o) and hence that the toric subvarietyo) is Fano.
Thus every toric subvariety df is Fano, and we have (iigs (i). O

3.3. Blow-Downs of Fano Toric Varieties

We show that, for toric varieties satisfying the conditions of Theorem 3.1, the
blow-downs of toric divisors are in one-to-one correspondence with primitive re-
lations with nonzero right-hand side. The property that every blow-down is Fano
then becomes that every ray generator appears on the right-hand side of at most
one primitive relation. Such varieties then enjoy the property of possessing a col-
lection of exceptional divisors that can be blown down in any order, at every stage
producing a nonsingular Fano toric variety, and yielding finally a product of pro-
jective spaces.

DEerINITION 3.2. If X satisfies the conditions of Theorem 3.1, we say a toric di-
visor D is exceptionalf p; + - - - + px = p is a primitive relation forX for some
Pls «vvs Pk-

LEmMA 3.3. SupposeX satisfies the conditions of Theorem 3.1. If a ray gener-
ator p is equal to a nonnegative linear combination of ray generators other than
p, then the toric divisoiD associated t is exceptional.

Proof. Induct on the sum of the coefficients, and apply Theorem 3.1(ii). O

LemMa 3.4. AssumeX satisfies the conditions of Theorem 3.1. Lg}, ..., p;)

be a cone ofA, and letw = ajp; + - + arp; with a; > 1for eachi and

ap > 2. If {ps,..., p;} is any linearly independent set of ray generators, then
pit---+pFw.

Proof. We induct onj. Suppose;+---+p; = w. Then{Dy, ..., D;} must con-
tain a primitive set. The s¢Dy, ..., D;} itself cannot be a primitive set, sinae
is not a ray generator in. Hence, we may suppose tHdds, ..., D,} is primitive
with i < j. Then we havep; + - - - 4+ p, = p for some ray generatar, and now
P+ pnt1+ -+ pj = wwith p, ppya, ..., p; linearly independent. This contra-
dicts the induction hypothesis. O

PROPOSITION 3.5. AssumeX satisfies the conditions of Theorem 3.1. Pebe
an exceptional divisor with primitive relatiopy + - - - + o, = p. Then there exists
a morphism of nonsingular toric varietie$ — X’ such thato := (p, ..., o)
is a cone of the fam\' corresponding toX’ and such tha — X’ is the blowing
up of X’ along X'(o).

Proof. We need to show that, for a@ll (1 < 4 < k) and for every cone € A with
peo,
PREo = (0L ..oy Ph».-es Pk, O) EA. (10)
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Suppose (10) fails fos = (5). We may suppose thdos, ..., px—1, 0) ¢ A
and, in fact, tha{D,, ..., D,, ﬁ} is a primitive set with 1< r < k — 1. Hence
p1+ -+ p, + p = p forsomep’. Now p’, p,11, ..., px are linearly indepen-
dentando’ + p, 11+ --- + pr = 20, SO we have a contradiction to Lemma 3.4.
Suppose that (10) fails far 2 (p); that is, we havgp, p1, ..., pj’) € A but
(P2, --s Pr=1, O, P ...,pj’) ¢ A. Then (rearranging indices further) there is a
primitive set composed ab;, some subset ofDo, ..., Di_1, 13}, and (without
loss of generality) all of Dy, ..., D}} with j positive. Therefore,

p1+c2p2+ -+ ck1pr-1+ P+ prt o+ p =0
for somep and some:, ..., ci_1, ¢ € {0, 1}. We now have
p+A—cpa+ -+ A—crDpr-1+pr +1=0)p =2p+pi+---+p}.

This contradicts Lemma 3.4. O

Exercise 3.6.  Produce a 3-dimensional toric variétysatisfying the conditions

of Theorem 3.1, such that there is a blow-down of an exceptional diXiser X’

with X’ nonsingular and projective but not Fano. For a characterization of when
the blow-down of a Fano toric variety fails to be Fano, see [Sa].

Lemma 3.7. AssumeX satisfies the conditions of Theorem 3.1. { &4, ..., D;}
and {Dy, ..., D;} be distinct primitive sets, and suppose tpat- - - - + p; = p’
and o1 + --- + pr = p’ are the corresponding primitive relations. 4f and 5’
are equal or span a cone &, then{py, ..., p;} N {p1, ..., pr} = 0.

Proof. Suppose notp, = p1, say. Inthe casp’ = p’ we findp, + --- + p; =
02 + -+ -+ pyr; a contradiction. Ifo’ # p’ then, by Proposition 3.5, the fact that
(p', p") € Aimplies that{po, ..., p;} U {p’, o'} and{po, ..., px} U{p’, p'} are
two sets of cone generators. Now

pat-tp+p =p +p —pr=p2+ -+ p+ 0,

and we have a contradiction. O

ProrosiTioN 3.8. Assume thak satisfies the conditions of Theorem 3.1. Then
the following statements are equivalent.

(i) Every blow-down ok along an exceptional divisor produces a nonsingular
Fano toric variety.

(ii) Every blow-down ofX along an exceptional divisor produces a nonsingu-
lar toric variety which(a) is Fano, (b) satisfies the condition that all of its
toric subvarieties are Fano, anft) is such that every blow-down of an ex-
ceptional divisor is nonsingular Fano.

(iii) Every ray generator o appears on the right-hand side of at most one prim-
itive relation of X.
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Proof. Since a Fano toric variety is determined uniquely by the set of ray gen-
erators, we have (i} (iii), and (ii) = (i) is clear. We obtain (iii))= (ii)

from the characterization of how primitive relations behave under blow-down.
By [Sa, Cor. 4.9], ifX — X’ is the blow-down corresponding to the primitive
relationps + - - - + pxr = p, then the primitive sets ok’ are precisely the prim-
itive sets ofX not containingb (other than{D;, ..., Dy}), plus the sets’ =

(S\ {D}) U{Dx, ..., D} (disjoint union, by Lemma 3.7) for some (though per-
haps not all) primitive set§ containingD. For suchS andS’ (primitive sets forx
and X', respectively), the respective primitive relations have the same right-hand
sides. Given (iii), then, every blow-down of an exceptional divisor is a toric va-
riety that satisfies condition (ii) of Theorem 3.1 and also condition (iii) of this
proposition and hence, by induction on the number of toric divisors, is a Fano
toric variety all of whose toric subvarieties and toric blow-downs along divisors
are Fano. O

Let X be atoric variety satisfying the conditions of Theorem 3.1, and suppose that
each exceptional divisor can be blown down in exactly one way. Then, by Propo-
sition 3.8, we can perform a sequence of blow-downs

X=Xr—>X,.,l—)~-~—>X1—> Xo

and so finally obtain the toric varietyy, which satisfies the conditions of Theo-
rem 3.1 and has no exceptional divisors. Now, by Theorem 3.1(ii), the absence
of exceptional divisors implies that every linearly independent set of ray genera-
tors spans a cone df. It is apparent, then, th&, is isomorphic to a product of
projective spaces.

By Lemma 3.3, for any iterated blow-dowf1 of X dominatingX,, every toric
divisor D’ on X’ with {p’) ¢ Ao must be exceptional. Hence, starting wkhthe
divisors{ D | {p) ¢ Ap} can be blown down in any order to yield a succession
of birational morphisms of toric varieties, with each variety satisfying the condi-
tions of Proposition 3.8 and terminating wilfy. The results of this section are
summarized in the following statement.

THeEOREM 3.9. Let X be a complete nonsingular toric variety. Then the follow-
ing are equivalent.

(i) X is Fano, every toric subvariety df is Fano, and every nonsingular toric
variety X’ dominated byX, such thatX — X’ is the blow-down of a toric
divisor, is Fano.

(if) The fan associated t& satisfies: for every primitive sdtDy, ..., Dy} we
have eitherps + --- 4+ pr = 00r p1+ --- + px = p’ for some ray gener-
ator p’, with everyp’ equal top1 + - - - + p; for at most one primitive set
{D1, ..., D;}.

Moreover, ifX satisfieqi) and (ii), thenX is an iterated blow-up of a product of

projective spaces, along irreducible toric subvarieties, such that the exceptional

divisors of the blow-up can be blown down in any order, and every intermediate

blow-up is a toric variety satisfyinj) and (ii).
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4. Rational Curves on Toric Varieties

4.1. Curves Joining a Point and a Divisor

We need the following result, which characterizes the lowest possible degree of a
stable, torus-invariant genus-0 curve joining a toric point to a toric divisor. Degree
of a curve refers to degree under the anticanonical embeddings degq(—Kx).

ProrosiTioN 4.1. Let X be a toric variety satisfying the conditions of Theo-
rem 3.1. Letu = (p1, ..., p,) be @ maximal cone ok corresponding to the toric
pointx = X(u), and let us giveV coordinates so thap; is theith standard basis
vector for each. Let D be a toric divisor with corresponding ray generator=
(p®, ..., p™) in coordinates. Then there is a tree of tofi¢’s joining x to a
point of D and having degreg— Y7, o> and homology clasg given by

B=0 if pe{pr....pon}s
D=1 [,D;=—p® Vi, (&Y
s ,fﬂ ) P otherwise.
J; D' =0V¥D'¢{Dy, ... D, D}

Any tree of toridP''s that joinsx to a point ofD; having homology class not equal
to B must have degree larger than- Y7, p@.

Proof. For a maximal cong/, let X, denote the affine span of the generators
of 1" and let dist—, X,/) denote (signed) integer distanceXg in N. Then the
quantity 1— >""_, p appearing in the statement is dist £,). We prove the
statement by induction on the degréef a tree ofPYs. The induction hypothe-
sis is: (i) that, given any tre€ of P's of total degree< 4 meetingD, the toric
pointX (') liesinC only if dist(p, X,/) < degC for any maximal cong’; (ii) if
dist(p, X,/) = degC < d andX(u') € C then the homology class d@f is that
indicated in (11); and (iii) for any maximal cong with dist(p, X,/) < d, there
exists a tree oP¥'s that join the corresponding toric point to a pointdfand have
degree equal to diép, =,).

Let C be atree oP’s, of total degre!, joining x to a point ofD. It suffices to
assume thaf = CoU C1, whereCy is a toricP? joining x to y for some toric point
y, and thatCy is a tree of?''s joining y to a point ofD;. Shuffling coordinates, we
may suppos€, = X(o), whereo = (p», ..., p,). Denote the additional gen-
erator of the maximal cong’ corresponding to by p, 41 (i.e., 1’ = (0, ppi1),
and let us writep, 11 = (=1, a®@, ..., a"™) in coordinates. Thed, has intersec-
tion numbers 1 withD; and with D, ., and—a® with D; for 2 < i < n. Hence,
degCo = dist(p,1+1, £,) =2 — > ", a®. We claim

dist(p, ,) < dist(p, Z,/) + dist(p,+1, Z,.), 12)

with equality if and only ifp®® = —1 This is a computation: digp, =,/) =
14+ pD =3 ,(p? 4+ aPp?), so the right-hand side minus the left-hand side
of (12) equals
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14 0@ = 3" (00 +a®p®) 423 a® — <1_ po'))

i=2 i=2 i=1
i eafz-3oa)
i=2

and by Theorem 3.1(iii) we hay&™ + 1 > 0. By the induction hypothesis, then,
we have deg > dist(p, £,) with equality only if p® = —1 and that the ho-
mology classg8; = [Cy] satisfiesB; = 0 if p = p,41; otherwise f D=1,
fﬁl 1 = —1, f Di=—p® +aDfor2<i<n, andf D' =0 foraII other
D’. Therefore 8 = [C] = [Co] + [C1] satisfies (11).

For the existence portion of the inductive step, if distx,) > 0 thenp must
have some coordinate equal td and so, without loss of generality, we have
oM = —1 We can now take" to be the union o’y (as defined in the previ-
ous paragraph) and a tr€g of P''s joining y to a point of D satisfying de@’; =
dist(p, =,/) (the existence of suai; follows from the induction hypothesis).[]

CoroLLARY 4.2. AssumeX satisfies the conditions of Theorem 3.1. Suppose
B € Hx(X,7Z), and suppose the toric divisors thatintersects negatively have
nonempty common intersection. Theis represented by a tree of toris.

Proof. Let { p | JyD < 0} = {p1..... p;}, and letu be a maximal cone con-
taining p1, ..., p; with x = X(u). For each ray generator, let C, be a tree of
PYs that joinx to a point of D and with deg”, = dist(p, £,,). For eachp ¢ u,
leta, = j;g D; we havea, > 0 for all p ¢ n. Now the sum over alp ¢ u of a,
copies ofC, has homology clasg. O

Exercisk 4.3.  Prove Corollary 4.2 for an arbitrary nonsingular projective toric
variety X. (The treesC, are constructed as in the existence portion of the induc-
tive step in the proof of Proposition 4.1, except thatFigoining toric pointsx
andy is given multiplicity —p®, where ordering of coordinates is chosen so that
o < 0.) In particular, every primitive homology class is represented by a tree
of Ps; see Theorem 2.4.

4.2. Quantum Giambelli

Here we prove Theorem 1.6(ii). Leéb, ..., D, be toric divisors such that
P1, ---, P Span a cone oh. Recall the two facts about quantum cohomology we
use. First, for Q£ 8 € Ho(X, Z) andw € H*(X, Q), if D is atoric divisor satisfy-
mgf D = 0thenthe coefﬂmentojﬂ in D-wis 0. Second, if—in the fiber of the
moduI| space of stable mapéo ., 1(X, B) over a general point a¥ ;1 (via the
morphism that forgets the map of the curvétand stabilizes; cf. [FP] for notation
and definition)—the intersectiar; (D) N - - - Nev; (Dy) Nevi 4 (T) is empty

for everyT among a collection of cycles representing a basBHf_qegs) (X, Q),
then the coefficient of? in Dy --- Dy is 0. If the cyclesT are toric subvarieties
then, to deduce that the intersection is empty, it suffices to verify that the intersec-
tion contains no fixed points for the torus actionJE{e,kH(X, B).
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DeriniTION 4.4.  We say that a collection of exceptional §6i5 ..., S;} has an
overlapif the exceptional divisor forS; is an element of; for somei and; in

{1, ..., t}. Otherwise, we say the set of exceptional $&ts no overlapswWe also

refer to a set of exceptional curves as having an overlap or not having overlaps,
depending on whether the associated set of exceptional sets has or does not have
overlaps.

REMARK 4.5. Fixing a coner, the exceptional classes that are speciabfare
linearly independent. Indeed, it suffices to consiglet (o1, ..., p,), @a maximal
cone. Let us enumerate the toric divisors{as, ..., D,, D41, ..., D,,}. Then
D41, ..., D, are linearly independent i ?(X, Q). Each special exceptional
class has intersection number 1 with exactly on®gpf,, ..., D, and 0 with all
the rest.

REMARK 4.6. Every exceptional curve class meets the conditions of Proposi-
tion 2.3 and hence is effective and is a nonnegative integer combination of prim-
itive classes. Suppose now th¥tsatisfies the conditions of Theorem 3.9. Let

= (p1, ..., pp) be a maximal cone, and let us enumerate the divisors aé
{D1,...,D,, Dy, ..., D,}. The following observations are immediate. First,
no effective curve class has negative intersection pairing Wjthy + - - - + D,,,.
Second, any effective curve class having zero intersection®jth + - - - + D),
must have nonnegative intersection with eacPgf..., D,. Consequently, if is
a special exceptional set ferwith exceptional divisoD; (1 < i < n), then (a) the
(unique) primitive sef” with exceptional divisoD; is a special exceptional set for
o and (b)S' N {Dy, ..., D,} C S. In particular, any two special exceptional sets
with the same exceptional divisor must have some elements in common. Also, the
reader should verify (by inductive application of Proposition 3.5 and Lemma 3.7),
that any two special exceptional sets with different exceptional divisors and no
cycle must be disjoint.

We first need a technical lemma.

LEMMA 4.7. Leto = (p1,..., px) be a cone ofA. Supposgpy, ..., 8.} is a
set of special exceptional classes tarLet {81, ..., B;} be a set of exceptional
classes such that each associated exceptiondl; settisfiedS; N{Dy, ..., Dy} =
|S;] — 1, and suppose thaJt:g1 D= -1 If

Brt -+ B=Prt -+ B
then at least one of the/ has nonzero intersection pairing with;.

Proof. Suppose not. Sincgs; N {Dy, ..., Dy}| = 51| — 1 andfﬂ D= -1 it
follows thatg; is special fow. By Remark 4.5, then, iD, denotes the unlque ele-
ment ofS; notin{Dx, ..., Dy}, thenfﬂ, D1 = 0 for everyi. SOZJ 1]/3 D=0,
and hence somg; has intersection numberl with D;. It follows without loss
of generality thatfﬁ2 D1 = —1. Thenp; + B is special exceptional or very ef-

fective, with (say)D- the unique element of the associated exceptional set not in
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{D1, ..., Di}. As beforef D, = 0 for everyi, and we may iterate this process.
We eventually reach a contradlctlon O

The quantum Giambelli formula follows quickly from the following pair of propo-
sitions, whose proofs occupy the bulk of this section.

ProrosITION 4.8. Let X be a toric variety satisfying the conditions of Theo-
rem 3.9. LetD1, D, ..., D, be toric divisors such that corresponding ray gen-
erators ps, ..., px Span a coner € A. Then a termg? appears with nonzero
(H*(X, Q)-valued) coefficient in the quantum produbt - D, - - - D only if 8 =
Bi+---+ B;, for some, such that thes; are special( for o) exceptional classes
that have distinct exceptional divisors and no overlaps.

ProrosITION 4.9. Let X be a toric variety satisfying the conditions of Theo-
rem 3.9. Then the quantum Giambelli form&® of Theorem 1.6(ii) holds in
QH*(X). Moreover, we have the formula BH*(X):

Di-Dy-- Z (- 1)tqﬁ1+ +/3rD 1<l<k|fﬂ D,';ﬁl}a (13)
{B1..- B}

where the sum is over sets of special exceptional claigégs. ., 8} that have
distinct exceptional divisors and no overlaps and whBre for an index set,
denotes the cohomology class Poincaré dughie, D

We prove Propositions 4.8 and 4.9 jointly, by inductionfonFor eachk > 1,
Proposition 4.8 is proved assuming the statements of Propositions 4.8 and 4.9 for
smallerk. Then, for eaclt, we deduce Proposition 4.9 for the case of products of
k divisors.

Let the maximal cones ofA be uj,..., us, with corresponding points
y, ..., Vs € M. Let p be a nonzero vector aV. Let p’ be a small perturba-

tion of p, sothatyi1(p’), ..., y;(p’) are all distinct, and let the indices be assigned
so that

yi(p") > ya(p") > - > ys(p"). 14)
For each, lett; = u; N (ﬂpg M;)

dim(ujnpi)=n—-1

LemmA 4.10 [F, Sec. 5.2]. If X is a nonsingular Fano toric variety, then the
classed X(1;)] 1 <i < s) form aZ-basis forH,(X, Z). Moreover, for anyi
andj, if r; C u;jtheni < j.

This is the basis for homology that we use to detect whi€tierms occur in a
guantum product of divisors. Inusing this basis, itis convenient to perform compu-
tations in coordinates. Given a maximal cariewe giveN coordinates so that the
generators ofi; are the: standard basis elements. Then, in dual coordinates,

(L 1,...,1). Now suppose; is a neighboring maximal cone; thatés; = u; N w;

has dimensiom — 1 Hencey; is generated by — 1 of the generators qi;,
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say all except theth standard basis element; there is one additional generator,
@?®,....,a™ = —-1,...,a"™). It follows thaty; = (1, R Z?zla(z), 1, ...,1)
in the dual coordinates we are using, where the entfy, a'“ appears in theth
position. Thus,

Yi— Yy = (0, ..., 0, degX(a), o,..., 0)

in coordinates. The degree &fo) is positive. Hence, for ani; the coner; has
dimension equal to the number of negative entries in the coordinate expression for
o’ with respect to the coordinates dictated;by

We are interested in knowing how large difn— dim z; can be.

LeEmma 4.11. SupposeX is a toric variety satisfying the conditions of Theo-
rem 3.9. Let the maximal conéa;} be ordered with respect to pairings with

as in(14). Suppose congs; and u; intersect in an(n — 1)-dimensional cone.
Thendimz; — dimrt; < degX(o); equality implies thalX (o) is an exceptional
curve, special forw;, and the following condition on coordinates pf must be
satisfied. Let coordinates fo¥ be assigned such that the generatorg.pfire the
standard basis vectors, the generatorggfare the second througtth standard
basis vectors, and—1, —1,...,-1,1 0, ..., 0); the number of-1s is equal to

d := degX(o). Then, the firstl coordinates ofp’ must be positive, with the first
coordinate larger than any of the second throutth coordinates moreover, the

(d +Dth coordinate must either be positive or else negative and larger in absolute
value than the first coordinate. The change of coordinates to the coordinate system
of u; has the effect of negating the first coordinate, making the second thihgh
coordinates negative, preserving the sign of téier 1)th coordinate and leaving

the remaining coordinates unchanged.

Proof. We know that, in the coordinate system dictategdydim z; is the num-
ber of negative entries in the coordinate expressiopfotet us suppose that;
is generated by the second through standard basis elements plus one additional
vector. By Theorem 3.1(iii), there are two possibilities. First, the additional gen-
erator can be of the forn-1, ..., —1,0, ..., 0); the number of-1sisd — 1 and
in this caseX (o) is not exceptional. The change of coordinates to the coordinate
system ofu; preserves the last— d 41 entries ofp’. Hence|dimt; —dim ;| <
d—-1

In the remaining case, the additional generatqu ois

(-1,...,-110,...,0),

where the number of1's isd. In this caseX(o) is exceptional. If, in the coordi-
nates ofu;, p’is

@D, ..., a4+ q@+d gy
then, in the coordinates of;, the coordinate expression is

(—a®, 4@ _ g @) _ g q@+D 4 (O L@+2) )y

R
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So dimr; — dimz; < d, with equality only if «® > 0, with additionally
0<a® <a®for2 <t <dandeitheu? > 0 org“+d < —g®, O

We can now prove Proposition 4.8 for the casé alivisors, assuming the state-
ments of Propositions 4.8 and 4.9 for fewer thadivisors. LetDs, ..., D; be
toric divisors such that := (p1, ..., pr) ISINA. Letp = p1+--- + pi. Letp’
be a perturbation g, and let the maximal congs; be ordered as in (14).
Supposes € Hy(X, Z). DefineTy ; = Ty ; (D1, ..., Dy) to be the set of stable
maps
(: C—> Xip1, ..., prt1€C) € Mo r1a(X, B),

invariant for the torus action, with theh marked point mapping int®; fori =

1 ...,k and the(k + Dth marked point mapping int&(z;) and such that, when
we forget the map t& and stabilizeC, all the marked points collapse to a sin-
gle distinguished irreducible componey of C. The important thing is that we
know the coefficient of# in the quantum produdd; - - - Dy is zero unless

dimt; =n —k+degB forsome; such thatly ; # 9.

LemMma 4.12. Suppos€ satisfies the hypotheses of Theorem 3.9.14et.., Dy
be toric divisors withD;N- - -N D, # @ and, forg € Hy(X,Z)andj € {1, ..., s},
let Ty, ; be as previously defined. Then we have

dimt; <n —k +degg

for everyg and j such thatT ; # ¢. Moreover, given(g: C — X) € T ; such
that dimt; = n — k 4 degg, there exists a chain of exceptional curvEé,;)
i =1...,t) onX, for somer, joining a point onD; N --- N Dy to the point
¢(pr+1) € X(t;) with total homology clasg (by “chain” we mean a tree with
each irreducible component joined to at most two otharshain joins two points
if removing the indicated points preserves the connectedness of the elmain
such that eaclX (o;) has positive intersection with exactly := degX(o;) of the
divisors D4, ..., D; and such that each of divisors {Dy, ..., D;} has positive
intersection with at most one of the exceptional curves in the chain.

Proof. Letg: C — X be a torus-invariant genus-0 stafle+ 1)-pointed map,
which stabilizes (upon forgetting the mapXo to k£ + 1 distinct points on a sin-
gle irreducible componeny C C, such that théth marked point maps int®;
for 1 < i < k and such that the image of tiie + Dth point isX(u;) € X(1;).
By Lemma 4.10,/ < j’ and, in fact (exercise), there exist= jo < j1 < --- <

Jje = j' for somet such that dinfu;, N ;) =n—1 y;, (p") > y;,,.(p"), and
dimt;, < dimg;, ,, for eachy (for the last assertion, use (iii) of Theorem 3.1).
Hence it suffices to prove dimy < n — k + degp.

We induct on the degree @f. The base case is the inequality< dim X(z;)
for everyj such thaf pq, ..., px) C u;. This isimmediate from the characteriza-
tion of dimt; as the number of negative entries in the corresponding coordinate
expression fop’. Equality holds only when the coordinate expressiondonas
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exactlyk positive entries, each close to 1, and- k negative entries, each small
in magnitude.

We divide the inductive step into two cases. SuppgseC — X) € Ty ;. For
the first case, assume the + 1)th marked pointp,,; does not lie on the distin-
guished componenty. Let C’ denote the connected componentf, { py.1}
containingCo, with the P* terminating inp, , 1 deleted. Assume that this' maps
to the toric curveX(w) with

o= Ny, X(u;) # evy1(C), X(uj) = evea(C).
Let 8’ denote the homology class 6f. Then, by induction,
dimz; <n —k+degp’.

By Lemma 4.11, dim;» < n — k + degp’ + degX(w) < n — k + degp and so
the inequality is established. If equality holds, théfw) is exceptional and’ is
equal to the union of’ and aP* mapping with degree 1 t&(w). By induction,C’
is equivalent in homology to a cha@ of toric curves, each exceptional, joining
a pointonD1N---N Dy to the pointX(u;). Also, equality implies that there are
preciselyd := degX(w) divisors D, € {D;, ..., Dy} having positive intersection
with X(w) and, for any of these, the correspondjmgis a generator of.; whose
corresponding entry in the coordinate expressiop’a$ positive. It follows that
each of thes®, has nonpositive intersection with every component bf

The second case is when1 € Co. As before, letX(u;) denote the image
of the (k + Dth marked point. Choose coordinates 8nso that the generators
of u;- are the standard basis elements, and order these so laatnegative first
coordinate,o®™ = —c, with ¢ > 1. Let w be the cone generated by the second
throughnth basis elements; we hawe= w; N w; for some (uniquej. Letd =
degX(w). Theny;(p) — vy (p) = cd, so in particulary;(p) — y;(p) > d. Let
C’'=C{U---UC/, whereC is the tree ofP''s joining X (u;) to D,, as given in
Proposition 4.1. The degree6f isk — y;(p). Hence, the union of’ andX (w) is
(more precisely, determines) a torus-invariant gengs-0 1)-pointed stable map
whose homology clag$’ satisfies de@’ = k — y;(p) +d < k — y;(p) < degp,
by Proposition 4.1. Moreover, th& + 1)th marked point now does not lie on the
distinguished component. By the previous case, we havediw —k +degp’,
and the desired equality holds. In case of equality we musthavé ands’ equal
to the sum of the homology classes of the curves joitkiig,;) to Dy, ..., D of
Proposition 4.1, and then we firgl = B. Thus, we are reduced to the previous
case. O

Suppose now that the coefficieat of ¢? in the quantum producD; - - - Dy
is nonzero. By Lemma 4.12, them, is a sum of exceptional curve classes,
B = B1+ --- + B, such that each corresponding primitive setsatisfies
|S; N {Dy, ..., Dy}l = |S;] — 1 It remains to show that whenever# j we
have( f;, D,)(f, Dv) =Oforall1<v < k. We must also show thatis a sum
of special exceptional classes. Suppose, first, that for sathe v < k) we have
(fﬂi D,,)(fﬁj D,) # 0 for somei # j. We cannot havéfﬂi D\,)(fﬁj D,) >0
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(the setsS; N {Dx, ..., Dy} are pairwise disjoint, and Remark 4.6 rules fytbe-
ing exceptional for botks; andg;). Thus, without loss of generality"ﬁi D=1
andfﬂj D1 = —1 It follows thatfﬁ D1 = 0. Applying quantum Giambelli to the
k — 1divisorsD,, ..., Dy, we find

Bi+-+B
Dy +-Dy=Dpa. .- . g+ " [ Dj
OA(S]. ... 5]} 2<i'<k, Dy ¢S]U--US],

(notation similar to that of (5)). The coefficient@f in D1- D23y is zero be-
causefﬁ D1 = 0. The coefficient ofy# in each additional term is zero because no
sum of special exceptional classes, each having intersection number @with
can be equal t¢ (Lemma 4.7).

We show by induction onthatg = 81 + - - - + 8, can be written as a sum of
special exceptional classes (then, by the previous paragraph, the set of special ex-
ceptional classes in this sum has no overlaps). \igiite: - -+ ;-1 = B+ - -+ B.
with eachp; special. If the exceptional divisor @ is in {Ds, ..., Di}, thenp,
is special. Otherwise, the exceptional divisor intersects s@rpesitively; in this
case,ﬁ]f + B is special. By Remark 4.5, the expressiorgadis a sum of special
exceptional classes is unique, and by Remark 4.63ieave distinct exceptional
divisors and pairwise disjoint exceptional sets.

We complete the proof of Proposition 4.9 for the caseé divisors by demon-
strating (13) and then deducing quantum Giambelli from (13) sLet 81+ - -+ B,
be a sum of special exceptional classes with distinct exceptional divisors and
no overlaps. We need to show that the coefficieny &% in D;--- D is
(—1)ZD{15,-§,<|£3 p,#1)- (We assume the result is known for products of smaller

numbers of divisors.) IB has zero intersection with sonig, say with D,, then

we write
2

Di-Dy---Dy =Dy -
18y ... B0

Bit-+B ,
(=D*g" »D{Zgigk\fﬁ,ﬁmH}; Di¢1}:|.

Note that, on the right-hand side, the curve cldss (8 + --- + B;) has zero
intersection withD; for every term. Therefore, the coefficientgf in Dy - -- D

is the classical product ab; with the coefficient ofy# inside the brackets, and
this IS(_1)ID[15i§k|f51+...+ﬂ, D;#1}-

If j;g D, #0foralll<v < kandifr > 2, then we separate off the divisors
meetingpBy, apply (13), and use linear relations (3) to conclude that no term from
(13) (save that with maximajl-term) contributes anything to the coefficientydf
in Dy Dyg.

For the remaining case, where (with suitable indidgd), D, ..., Dy_1, D}
is an exceptional set witpy + --- + pr_1+ 6 = px, We apply a linear rela-
tion (3) followed by ag-deformed monomial relation (7)D1--- Dy_1- Dy =
Di-- Dy 1-(=D+---)=—q’Dp+---.

Finally, quantum Giambelli (5) follows from the formula (13) as follows. Ap-
plying known cases of quantum Giambelli to (13), we obtain
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Duo..jg=Di-Di— Y (-D%¢" Y ¢ [] b

BB B (SronS) [, DA
Di¢S1U--US,
=Dy Dy — Z (=1)* Z qﬂ +8 1_[ D; | + (%),
(B rnsB) (511} Jy DL
D;¢S1U--US,

whereg’ (resp.8) denoteg; + - - - + B, (resp.f1+ - - - + B,) with 8; the excep-
tional class associated ; where the sums are over sets of exceptional classes,
special for{p1, ..., px), with distinct exceptional divisors and no overlaps (resp.
sets of exceptional sets, special (f;or | [ﬁ, D; # l), with distinct exceptional di-
visors and no cycles); and wheke denotes the expression on the right-hand side
of (5) from Theorem 1.6(ii). We thus need to show that the quantity in brackets
in the right-hand side has mpterms. Fix some curve clags # 0, and consider
decompositiong* = B’ + g that occur in this term. We may choose a special ex-
ceptional class, which is a summand of*, such that iffy D, =10<v <

k) thenD, is not exceptional for any of special exceptional classes that are sum-
mands of8*. But now the terms that contribute to the coefficigfit can be paired

off according to whethey is among thes; or is the exceptional curve class of
somes;. Corresponding pairs of terms add with opposite sign, so the total coeffi-
cient ofg#” is zero in this term, and we have established the quantum Giambelli
formula.

4.3. Elementary Derivation of Quantum Cohomology Ring Presentation

By Proposition 2.6, to prove that relations (4) hold for a given nonsingular projec-
tive toric variety X it suffices to establish (6) for every very effective curve class
B; Theorem 1.2 then follows. As promised, we outline here an elementary deriva-
tion (not relying upon equivariant localization techniques) of Theorem 1.2 for toric
varietiesX satisfying the hypotheses of Theorem 3.1. This is essentially the ap-
proach outlined in [Ba2].

EXERcisE 4.13. Suppos« satisfies the hypotheses of Theorem 3.1. Bet
H»(X, Z) be a very effective curve class. LB, ..., D,, denote the toric divisors
of X, and sets; = fﬁ D, fori =1, ..., m. Obtain the relation

Dfl._'Der — qﬁ
in QH*(X) by the following four steps.
(i) If we write Dy*--- Dym =34, cprq® with cgr € H*(X, Q), thencg = 0
unless3’ = B. (Use Proposition 4.1 to see that there are no torus-invariant genus-0

stable mapg: C — X whose marked points collapse to distinct points on a dis-
tinguished component @f—and that satisfy the required incidence conditions—

unlessg’ = B).
(ii) cs can be computed by counting maps— X; precisely, if

T MO,r(Xs 18) - MO,r
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denotes the forgetful map with= ()" a;) + 1 and ifz € Mo, C Mo, is a gen-
eral point andc € X a general point, then with

M, = {z} X, Mo, (X, B).

M, = Mz N MO,r(Xa ﬂ)a

M= {(go:]P’l—>X)eMz‘<p(IP’1)ﬂ< U X(cr)) =@},

g€eA
dimo>2
we have
< m evi_l(Dl)> N---N < ﬂ evi_l(Dm)> N evr_l(x) c M;
1<i<ay r—ap<i<r—1

in M,. (Hint: Lety: C — X be in M, and consider separately the cases where
the distinguished component 6fmaps into a boundary divisor, or into the open
torus orbit.)

(iii) Identify M? with the space ofz-tuples of homogeneous polynomials

(pl(s’ t)s L) Pm(s’ t))

such that deg; = q; for eachi and, fori # j, p; and p; have no common
roots amongy : t] € P modulo(py, ..., pw) ~ (p1s ..., p.,) if there existsg €
Hy(X,Z) ®z C* such thatp] = (fg D;) p; for eachi (see [C, Thm. 3.1]).

(iv) Compute

Cﬂ = \/1;4 EUT(D]_) . EU;k_l(Dm) ° evf({x}) = :L

(Note thatM, is smooth of the expected dimension fpgeneral, and by (ii)
there are no contributions from virtual moduli cycle classes supported on bound-
ary components.)
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