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Dedicated to Jack Eagon on the occasion of his 65th birthday

1. Introduction

LetA = K[xy, ..., x,] be apolynomial ring over afiel®, andletR = A/I be the
quotient ofA by an ideall C A that is homogeneous with respect to the standard
grading in which deg@r;) = 1. WhenI is generated by square-free monomials, it
is traditional to associate with it a certain simplicial complexfor which I = I

is theStanley—Reisner idealf A andR = K[A] = A/I, is theStanley—Reisner
ring or face ring. The definition ofA as a simplicial complex on vertex sef [ =
{1,2,...,n}is straightforward: the minimal non-faces &fare defined to be the
supports of the minimal square-free monomial generators of

Many of the ring-theoretic properties @f then translate into combinatorial
and topological properties ok (see [14, Chapll]). In particular, a celebrated
formula of Hochster [14, Thm. 11.4.8] describes TgR, K) in terms of the ho-
mology of the full subcomplexes df. HereK is considered the triviaA-module
K = A/mform = (x,...,x,). Itis well known that the dimensions of these
K-vector spaces TR, K) give the ranks of the resolvents in the finite minimal
free resolution ofR as anA-module.

In a series of recent papers, beginning with [8] and subsequently [9; 15; 13], it
has been recognized that, for square-free monomial ideal$, , there is another
simplicial complexA* which can be even more convenient for understanding free
A-resolutions ofR. The complexA*, which from now on we will call théeagon
complexof I = I, carries equivalent information t&4 and is, in a certain sense,
its canonical Alexander dual

N :={FCn]:[n]-F¢A}.

The crucial property ofz* that makes it convenient for the study of TgR, K)

is that, instead of the full subcomplexesafthat are relevant in Hochster’s for-
mula, the relevant subcomplexessifare thdinks of its faces. Therefore, various
hypotheses or\* which are inherited by the links of faces, or which control the
topology of these links, lead to strong consequences fof (RrK) (see Sec-
tion 3).
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Our motivation was to understand whether hypotheses*anight also lead to
good consequences for thinite resolution ofK as a trivialR-module—that is,
for TorR(K, K). There are relatively few classes of rings where one can compute
Tor® (K, K) (see [12]); however, there is a particularly nice class caBedbd
rings where Tof (K, K) is determined by Tot(R, K) in a simple fashion. Our
goal then is to show that, under reasonably simple hypothesas tre ringR =
A/l is Golod.

It is known [3] that if a homogeneous idealhas linear resolution as af-
module (defined in the next section), thBn= A/I is Golod. Herzog and Hibi
[13] generalized the notion of linear resolution to thatomponentwise linear-
ity, and our main result (Theorem 4) states that, whe&ma componentwise linear
ideal, the ringR = A/I is Golod. We also observe (Theorem 9) that, for square-
free monomial ideal$ = 15, componentwise linearity is equivalent to the Eagon
complexA* beingsequentially Cohen—Macaulay ovit a notion introduced by
Stanley [14, Sedll.2.9]. Checking whethen* is sequentially Cohen—Macaulay
over K is relatively easy, and sequentially Cohen—Macaulay-ness is implied for
all fields K by the hypothesis thak is shellablein the nonpure sense defined by
Bjorner and Wachs [5]. Thus, shellability is a simple condition on the Eagon com-
plex A* implying that both Tof (R, K) and To* (K, K) are easy to compute and
independent of the field.

The paper is structured as follows. Section 2 reviews the notions of Golod rings
and componentwise linearity and also proves Theorem 4. Then Section 3 gives
a “dictionary” summarizing how various conditions on a square-free monomial
ideal I, translate into conditions on the Eagon compiéxincluding the observa-
tion (Theorem 9) that componentwise linearitylafcorresponds to sequentially
Cohen—Macaulay-ness of.

2. Componentwise Linear Resolution and Golodness

Asin the introduction, leA = K[x1, ..., x,], letI be a homogeneous ideal i
and letR = A/I. Any finitely generated gradedl-moduleM has a finite minimal
free resolution

0= AP — ... 5 AP AP0 5 M — 0, (2.1)

in which the maps can be made homogeneous by shifting the degrees of the vari-
ousA-basis elements in the free module’ . It is well known that the number of
A-basis elements of# having degreg is the dimension of the¢th graded piece
Tor(M, K); of the gradedK -vector space Tgr(M, K).

We say thatM has linear resolutionif all nonzero entries in the matrices
9;: AP > APi-1fori > 1 are linear forms iM. It is not hard to see tha
has linear resolution if and only i has a minimal generating set all of the same
degree, and that Tof (M, K);; = O for j # 1.

In [13], the authors defined the notion of componentwise linear homogeneous
ideals as follows. Given a homogeneous ideial A, let 7, denote the ideal gen-
erated by all homogeneous polynomials of degrée I, and let/, denote the
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ideal generated by the homogeneous polynomials of degree ak imostWe say
that 7 is componentwise lineaf Iy has linear resolution for ak. In [13] it is
observed thastablemonomial ideals [10] are componentwise linear, as are ideals
that areGotzmanrin the sense that every, is a Gotzmann ideal.

We next wish to relate componentwise linearity to the (infinite) minimal free
resolution ofK as anR-module and Tof (K, K). The Poincaré serieselevant
for the finite and infinite resolutions are defined as follows:

Poif™(R, t, x) = Z dimg Tor’ (R, K);t'x’,

i,j=0

Poil™ (R, t, x) 1= Z dimg TorR (K, K);t'x.
i,j>0
In the late 1950s (see [12]), Serre proved by means of a spectral sequence that
A+ 1x)"

t Poirfin(R, t, x)’
where ‘<" is used here to mean coefficientwise comparison of power series in
Subsequently, Eagon (see [12, Chap. 4.2.4]) and Golod [11] independently gave a
very concrete proof of this result by constructing a certain free (but not necessar-
ily minimal) resolution ofK as ankR module that interprets the right-hand side of
equation (2.2). This Eagon-Golod construction:
(a) starts with the Koszul resolutid@” for K as anA-module;
(b) tensors withR to obtain a Koszul compleX# ® R whose homology com-

putes Tof' (K, R) = Tor*(R, K);
(c) “kills” the homology of the compleX“ ® R in a certain fashion to obtain a

free R-resolution ofK.
Furthermore, Golod [11] was able to characterize equality in Serre’s result (2.2)
(or, equivalently, characterize minimality in the Eagon—Golod resolution) by the
vanishing of allMassey operations the Koszul compleXX ® R considered as a
differential graded algebrdDGA). When this vanishing occurs we say ttiats
Golodor the ideall is Golod, whereR = A/I. We refer the reader to [12] for full
definitions and discussion of Massey operations, but emphasize here the proper-
ties that we will use as follows.
(i) The Massey operatign(zy, . . ., z,), whichis defined only for certaintuples

71, ..., 2, Of cyclesina DGAA, is acycle inA. Itis defined using the DGA

structure, and its homology class depends only upon the homology classes of

Poin™(R, ¢, x) < - (2.2)

21+« sy Zp-
(i) If z; has homological degregand degreé, with respect to some extra grad-
ing preserved by the multiplication id, then(zs, . . ., z,) will have ho-

mological degree — 2 + i, and degreg_ ¢, with respect to the extra
grading.
We now wish to prove our main result, beginning with two lemmas. Recall that
m = (xy, ..., x,) denotes the irrelevant ideal i.

Lemma 1. If I has linear resolution them/ also has linear resolution.
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Proof. Assume that’ has linear resolution and is generated in degress that
TorA(I, K); = 0 for j > i +¢. The short exact sequence Afmodules

O->ml—1—I/ml—0
gives rise to a long exact sequence
.-+ — Tor\,(I/ml, K) — Tor(mI, K) — Tor* (I, K) — - --

Note that//m1 is also generated in degreand isomorphic to a direct sufyim/ =

8 _; K(—1), whereK (—t) denotes the triviall-module structure oK with gen-
erator in degreeand where; is the number of minimal generatorsiofTherefore,
the minimal freeA-resolution of//m1 is a direct sum of Koszul resolutions f&f,
each shifted by degreeSince Koszul resolutions are linear, ¢t /mI, K);..; =
0 for j # ¢. It then follows from the displayed portion of the long exact sequence
that Tor;“(m[, K)i+j = 0for j # ¢ + 1, which means than/ has linear resolu-
tion since it is generated in degree- 1. O

ReEMARK 2. Note that the only property of the polynomial ridg(and its max-
imal homogeneous ideat) used in the preceding lemma is that the fi&ld=
A/m has a linear minimal fred -resolution—that is, that is aKoszulring (see
e.g. [3]). Thus the lemma remains valid in all Koszul rings.

LemMma 3. If I is componentwise linear theh, is componentwise linear for
all k.

Proof. This follows directly from the definition of componentwise linearity and
the previous lemma, since

Lij) for j <k,

U<y = { O

m-/_k1<k> for j > k.
THEOREM 4. If I is componentwise linear and contains no linear forms, then
is Golod.

Proof. Let I be a componentwise linear ideal, witrand 7 the minimum and
maximum degrees of a minimal generator foiVe will prove that/ is Golod by
induction on the differenc& — ¢.

The base case where= T requires us to show that an ideahaving linear
resolution and generated in degree 2 is Golod. This is well known [3], but
we include the proof for completeness. We must show that the Massey opera-
tions in the Koszul compleK* ® R that computes Ta¥(K, R) all vanish. Given
71, . . ., 2» € KA ® R with z, ani,-cycle of degreé, + j,;, we may assume without
loss of generality thaf, = ¢+ — 1, otherwise,

TOl’{:‘(K, R)itj, = TOT{:‘(R, K)itj, = Torlffl([, K)i—1+(j+» = 0

by the linearity of the resolution. Therefore, the Massey operatien, . . ., z,),
when it is defined, will be represented byianycle withi :=r —2+ 3" i, hav-
ing degree)_ i, + j, =i + (2 —r) +r(t —1). Hence, this Massey operation
represents a class in 'Eb(rR, K)i4j with
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j=rit—2)+2

By linearity of the resolution, it will vanish unlegs= r — 1, which one can check
is equivalent to0 = 1+ % < 2. Sincel has no linear forms the latter cannot
happen, and the Massey operation vanishes.

We now proceed to the inductive step, assuming the result for componentwise
linear ideals withT — r smaller. Consider the idedl = I-7_1, which is com-
ponentwise linear by Lemma 3 and hence Golod by induction. If wlet=
A/J, then note that the natural surjectign R" — R induces a-vector space
isomorphismR! — R; inthe range O< j < T —1 It also induces a surjection
of differential graded algebras; : K* ® R’ — K* ® R, which gives an isomor-
phism

(K*® Rit; = (K" ® R)iy
for 0 < j < T — 1and hence induces an isomorphism
¢ s TOr (K, R)iy; = Tor (K, R)iy (2.3)

forO<j<T-2

With this information, we can now proceed to show that all Massey operations
in K* ® R vanish. Giverzy, ..., z, € K* ® R with z, ani,-cycle of degree
is + js, we have two cases.

Case 1: Eachj; < T — 2. Inthis case we are in the range of the isomorphism
. for eachiy, j,. Settingz’ = ¢;%(z,) € K ® R’ for eachs, the Massey oper-
ation uu(z}, . . ., z,), when it is defined, must vanish in T&(K, R’) sinceR’ is
Golod. Letc e K* ® R’ be a chain wittbc = 11(z}, . . ., z,). Becausep; is a dif-
ferential graded algebra map, we may conclude dgatc) = u(zy, . . ., z;) and
hence the Massey operatigrizs, . . ., z;) vanishes as desired.

Case 2: Somg,; > T — 1. Without loss of generality, say thgt > 7 — 1
Sincel contains no linear forms, we haye > 1 for all s and hence the Massey
operationu(zs, - . ., z,), when defined, represents a class in/i@t, K ), ; with

j:2_r+st
>2—-r+T-DHD+G¢-1-1

>T.

However, according to [13, Prop. 1.3], the componentwise linearity iafplies
Tor;(K, R)i+; = Ofor j > T. Therefore, the Massey operation again vanishes.

O
REMARK 5. The converse to Theorem 4 is already false for square-free mono-
mial ideals! generated in a single degree. We have the following more general
fact.

ProposITION 6. Let I, be a square-free monomial ideal k= K[xy, ..., x,]
containing no linear forms, and assume that the Eagon comfstelxas no two
facesF, F’ with F U F’ = [n]. Thenl, is Golod.
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Proof. When I is a monomial ideal, there is a fifé"-grading by monomials
carried byA, I, R = A/I, and Tor*(K, R). According to Hochster’s formula
[14, Thm. 11.4.8], Tor'(K, R) vanishes except in square-free multidegrees. On
the other hand, ifc(z1, . . ., z,) IS a Massey product of some nonzero cycles in
K4 ® R, then each; lives in a multidegree that divide€s; - - - x,,)/x for some
face F; of A*. Since noF;, F; satisfyF; U F; = [n], we conclude that no product
of these multidegrees can be square-fregs &g, . . ., z,) must vanish. O

This provides many examples of Golod square-free monomial idgaldor ex-
ample, wheneven* has dimension less thaty2 — 1. By Theorem 9, one need
only construct a pure but non-Cohen—Macaulay comp{&xof low dimension
(such as the graph on six vertices consisting of three disjoint edges) in order to
obtain a counterexamplg to the converse of Theorem 4.

3. An Eagon Complex Dictionary

In this section we collect some recent and new results on properties of a square-free
monomial ideall = I, in A = K[xy, ..., x,] that can be phrased conveniently
in terms of the Eagon compleX*. The first result appeared as [9, Thm. 3].

THEOREM 7. I, has linear resolution if and only ix* is Cohen—Macaulay
overk.

We wish to discuss two generalizations of Theorem 7. The first is a beautiful re-
sult of Terai [15], related to the notion Glastelnuovo—Mumford regularityRecall
that theregularity of a gradedA-moduleM is defined by

regM :=max j : Tor;(M, K);4+; # 0},
and itsinitial degreeis defined by
indegM :=min{ j : M; # 0} =min{ j : Toro(M, K); # 0}.

It is clear that reg/ > indegM, with equality if and only ifM has linear reso-
lution.

THEOREM 8.
reg/, —indegl, = dim K[A*] — depthy K[A'],

wheredim denotes Krull dimension andepth, M denotes depth oM as anA-
module(i.e., the length of the longest -regular sequence ia).

Our second generalization of Theorem 7 is a new observation linking component-
wise linearity for square-free monomial ideals to the notion of sequential Cohen—
Macaulay-ness, whose definition we recall from [14, Def. 2.9]. A module graded
M over a graded ring is said to besequentially Cohen—Macauldfyit has a fil-
tration 0= Mo C M, C --- C M, = M of graded submodules satisfying two
conditions:
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(i) each quotien;/M;_; is a Cohen—Macaulai-module;

(i) dim My/My < dimMy/M; < --- < dimM,/M,_;, where “dim” denotes
Krull dimension.

We say that a simplicial complex is sequentially Cohen—Macaulay ovgrif its

Stanley—Reisner ring [A] = A/I4 is sequentially Cohen—Macaulay. For a sim-

plicial complexA and some: > 0, we denote byA (k) the simplicial complex

generated by the-dimensional faces oA .

THEOREM 9. Let A be a simplicial complex. Thef is componentwise lin-
ear overK if and only if its Eagon comple* is sequentially Cohen—Macaulay
overk.

Proof. Theorem 2.1 of [13] characterizes componentwise linear square-free mono-
mial ideals/, as those for which the pure simplicial compl&i(k) is a Cohen—
Macaulay complex for everg. On the other hand, in Theorem 3.3 of [7], the
complexA*(k) is denotedh* "] and is called theurek-skeletonit is proven there

that A* is sequentially Cohen—Macaulay ovirif and only if A*¥l is Cohen—
Macaulay for every. The theorem follows. O

Theorems 8 and 9 show that the duality operafien I* defined on square-free
monomial ideals i by I, — I has two amazing properties:

(i) reg(I) —indeg /) = dim A/I* — depthy A/I*;

(i) Iiscomponentwise linearif and onlyAf/I* is sequentially Cohen—Macaulay.

QuestioN 10. Can this operation be extended to a natural dudlity> 71*
with similar properties for more general idedlsC A, or for some class ofi-
modulesM ?

Theorem 9 provides a wealth of new examples of componentwise linear square-
free monomial ideals. For exampl&® is sequentially Cohen—Macaulay over all
fields K (and hencd, for all fields K) wheneverA* is shellablein the nonpure
sense of Bjorner and Wachs [5]. Recall that shellabilityz\tfimeans there is an
orderingFy, F», . . . of the facets ofA* with the property that, for any > 1, the
closure of the faceF; intersects the subcomplex generated by the previous facets
Fi, F, ..., F;_1in a subcomplex that is pure of codimension 1 insitle

We next discuss another pleasant feature related to Theorem 9: Y¥hHen
componentwise linear, the multigraded Betti numbergaippearing in the min-
imal free resolution turn out to encode the exact same information as what Bjorner
and Wachs call th¢-triangle (or h-triangle) of the sequentially Cohen—Macaulay
complexA*. For a simplicial complexA, define (as in [5]) thef-triangle(fi;)i> ;
and theh-triangle (h;;);> ; as follows:
(@) fij = number of faces ofA of dimension; that are contained in a face of

dimension; but in no face of higher dimension;

(b) hij = > i_o(=D7*((70) i
Itis shown in [5, Thm. 3.6] that thi-triangle of a shellable complex is nonnega-
tive and may be interpreted in terms of the shelling order. For a simplicial complex
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A andk > 0 we write A(k)’ for the k-skeleton ofA(k + 1). BecauseA (k) and
A(k)" are pure complexes, thdirtriangles degenerate to the ushatectors; =
hij. We may writeh;(A) (resp.h;;(A)) to indicate which simplicial complex is
meant when discussing tthevector (resph-triangle) if this is not clear from the
context; we use analogous conventions for fheector (resp.f-triangle).

LemMma 11. For all i > j we have
hij(A) = hj(A®@)) — hi(AG)).
Proof. By definition of thek-triangle, we have
hi(A@) — hj(AG)) = i(—l)j_k(; :i)(fik(A(i)) — fu(A@))).
Clearly, =
fiu(B) = fu(A@) — fu(AG)).

Again by the definition of thé-triangle, the assertion follows. O

The difference:; (A(i)) — h;(A(G)") was first considered in [13]. There itis shown
that, for componentwise linedi, this difference is nonnegative for the com-
plex A*. Thus, for sequentially Cohen—Macaulay compleAesTheorem 9 and
Lemma 11 imply that thé-triangle is nonnegative (a fact first discovered in [7,
Thm. 5.1]). Furthermore, it is shown [13, Thm. 2.1(b)] that, for componentwise
linearl, andj > 1,

> dimg Tor! (Ia, K)igjt' = (hu— j-1(&(@)) = by ja(AG)))( + D).

i>0 i>0

Again by Theorem 9 and Lemma 11, this yields the following result.

ProrosiTION 12. Let I, be componentwise linear gequivalently let A* be se-
guentially Cohen—Macaulay ovéf. Then

Z dimg Tor/ (Ia, K)iyjt' = Zhi,n—j—l(A*)(t +1".

i>0 i>0
In particular, the f-triangle andi-triangle encode the same information as the
multigraded Betti numberdimg Tor? (I, K);+ ;.

The remaining properties of square-free monomial ideals that we will discuss re-
late to stability properties of the monomials with respect to linear orderings of the
variablesxy, xo, . . ., x,, or equivalently of the set of indices]:= {1, 2, ..., n}.
Given a square-free monomialin A, define itssupportas

suppm) ;= {i €[n] : m is divisible byx; }.

and let maxm) be the maximum element of su@p). By identifying a square-free
monomial with its support, we will intentionally make no distinction between sub-
sets of ;] and square-free monomials ih Given a linear ordering., define the
lexicographicorder induced byA on k-subsets as followsS <iex T if S contains
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the A-smallest element of the symmetric differer®®T := (S — T) U (T — S).
Define thecolexicographicorder byS <coex T if T contains theA-largest ele-
ment of SAT. In the remaining definitions it will be assumed that a fixed linear
orderingA on [z] has been chosen.

A square-free monomial idedl is square-free lexsegmeiftthe square-free
monomials in/ of degreek form an initial segment in the lexicographic order on
k-subsets off]. Equivalently,/ is square-free lexsegment if, for every minimal
generatorn of I and every square-free monomial <, m, one hasn’ e I.

A square-free monomial idedl is square-free 0-Borel fixef?] if, for every
minimal generatom of I and forj ¢ suppm) andi € supgm) with j < i, one
has(x;/x;)m € I. A square-free monomial idedl is square-free stabl¢?] if,
for every minimal generatorn of I and forj ¢ supgm) with j < max(m), one
has (x;/xmaxmy))m € 1. A square-free monomial idedl is square-free weakly
stable[1] if, for every minimal generatorn of I and for j ¢ supgm) with
Jj < max(supgm) — {max(m)}), there exists € supfm) such that > j and
(xj/xiymel.

It is easy to see that, for a square-free monomial ideal

square-free lexsegmens
square-free 0-Borel fixegs
square-free stable>

square-free weakly stable

We wish to relate these to some combinatorial notions about simplicial com-
plexes. Given a linear orde¥ on [1], a simplicial complex on a vertex set][is
said to becompressedf, for eachi, its faces of dimensiohform an initial seg-
ment in colex order induced on thig+ 1) subsets off]. A simplicial complex
is shiftedif, wheneverF forms a face and ¢ F but j <, i € F, one has that
(F —{i}) uU{j} also forms a face. Given a simplicial compl&xand faceF of A,
its link, star anddeletionin A are defined as follows

stan F :={GeA:GUFeA};
linkn, F:={GeA:GUFeA,GNF=0};
delh, F:={GeA:GNF =0}

A simplicial complexA is anear-cone over the vertexe [n] if every faceF has
the property that — {i} lies in stap v for everyi € F. Equivalently, one must
check that this properties holds on the maximal faEexf A.

A simplicial complexA is calledvertex-decomposablgeither (a) A is a sim-
plex orA = {@} or (b) there is a vertex such that linlg(v) and dej(v) are vertex
decomposable and no facet of lixt) is a facet of del(v). In this case, the ver-
tex v is called ashedding vertexand the sequence of shedding vertices that are
deleted in reducing\ to a simplex or empty face is callecshedding sequence.

Itis not hard to check (or see [6] for proofs of some of these implications) that,
for a simplicial complexA on vertex seti],
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compressee=

shifted=

every faceF € A has linky F a near-cone on the vertex ni[n] — F) =
shellable.

It is also shown in [6, Sec. 11] that being shifted implies that it is vertex-
decomposable with shedding ordem — 1, . ... Furthermore, it is shown there
that vertex decomposability implies both the lexicographic and colexicographic
orders induced from the shedding order given by shelling orders on the facets
of A.

We can now relate the stability propertiesiafto combinatorial properties of
the Eagon complex®.

ProposITION 13. 14 is a square-free lexsegment ideal with respecaite: - - - <
x, if and only if A* is compressed with respectio<, --- <5 1

Proof. The definition ofA* states thaf is a face ofA* if and only if [n] — F is
the support of a monomial if. Therefore, the crucial point (which is easy to
check) is thatS < S’ in the lexicographic order on subsets induced frora 1

- < nifandonlyif [n] — S <coex [2] — S’ in the colexicographic order on sub-
setsinduced by <, --- <5 1 OJ

ProposITION 14. [, is square-fred-Borel-fixed with respectto; < --- < x,, if
and only if A* is shifted with respectte <, --- <5 1.

Proof. Similarly straightforward; the crucial point is that

L

F =supgm) and F'= sup;(ﬁm> with j < i
X
if and only if
[n] — F' = ([n] = F') = {(j) U {i} with i <, . O

ProrosITION 15. I, is square-free stable with respecttp < --- < x,, if and
only if A* haslink o« F a near-cone ovemax([n] — F) for each faceF e A*.

Proof. We begin by proving the forward implication. Assumgeis square-free
stable with respectte, < - - - < x,,. This translates into the condition axi that,
for every maximal facé” andj € F with j < max([n] — F), one has

(F = {j) U{max[n] — F)} € A".

Given any facer’ of A*, a maximal faces of link o« F, andj € G, we must now
show thatG — {} is in stafink . r(Max([n] — F)). In other words, we must show
thatG — {j} lies in some face of link: F containingi := max([n] — F). If i € G,
then we are done sinag is such a face. If ¢ G, theni = max([n] — (F U G)).
Therefore, sincg € F U G andF U G is a maximal face oiA* (note thatG is a
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maximal face of link- F), we conclude from stability that U (G — {j}) liesin
some face’ of A* containing. HenceG — {j} liesin the faceF’ — F of link o« F
that containg, as desired.

For the backward implication, assume ljalé” a near-cone over mépz] — F)
for each faceF’ € A*. We need to show that, for every maximal fa@eandj € G
with j < max([rn] — G), one hasG — {j} U {max([rn] — F)} € A. To see this, use
the fact that link: (G —{j}) is a near-cone over the vertex nig{ — (GU{j})) =
max([n] — G) =: i. Because&; is a maximal face of\*, we have tha{;} is a max-
imal face of linkx« (G — {j}); hence must also be a face of link(G —{j}), since
i is the near-cone vertex. Thu6 — {j}) U {i} is a face ofA*, as desired. O

Finally, we deal with square-free weakly stable iddals

THEOREM 16. If I, is square-free weakly stable with respectio< - -- < x,,
then A* is vertex decomposable with shedding orle?, . . .. ConsequentlyA*
is shellable and hench, is componentwise linear independent of the figld

Proof. Assume that, is square-free weakly stable. This translates into the fol-
lowing condition.

(x) For every maximal fac& of A* andj € F with

J <max(([n] — F) — {max([n] — F)}),
there exists € [n] — F such that > j and(F — {j}) U {i} € A"

We will show that a simplicial complex satisfyir(g) is vertex-decomposable.
Clearly, if A* satisfies(x) then so do link-(1) and dek: (1) as simplicial com-
plexes on the ground set][— {1}. Let F be a facet of link:(1). If F =[n] — {1}
thenA* is the full simplex and so is clearly vertex-decomposablé. # [n] — {1}
then condition(x) is satisfied inA* for j = 1andF U {1}. Hence there is ah> 1
such thatF' U {i} in A* andF is not a facet of deal-(1). O

The implication 7 square-free weakly stable impliéomponentwise linear for

all fields K from the previous theorem can also be deduced algebraically, but first
we require the following result, which characterizes componentwise linear ideals
in terms of regularity.

THEOREM 17. Let/ be a monomial ideal. Thehis componentwise linear over
K if and only if reg(I<;) < k for all k.

Proof. First, assume thd}, is componentwise linear. Fix somh@nd setl = I4.
Sincel.; is componentwise linear, [13, Prop. 1.3] implies

dim]( TOI'[?A(I, K)i+j = dlmK ToriA((ng)(j), K) —dlmK Tor?(m(lik)(j_l), K).
If j > k, then(I<p)(jy = m(I<x)(j—1. Therefore, Tof (I, K); = 0 for j > k.
This implies regl/;) < k.

Now assume that r¢d-,) < k for all k. We show by induction orj that 7,
has a linear resolution. From the exact sequence
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0—> 11— I<; — Lj/mlj_y — 0
we obtain an exact sequence
oo = Tor (1<, K)iyyr — TOrA Iy /ml i1y, K)igr
— Tor? j(I<j-1, K)igr — -+
By hypothesis, the Tg(-, K);, of I-; andI-;_; vanish forr > j. Hence,
Tor/ (I;)/mlI(j-1), K)iv; =0

forr > j. Now consider the exact sequence

0— mljj 1) — Iy = Iy/mljg — 0
and the associated long exact sequence

- — Tor(mljy, K)iy, — Tor ((I;;—1y, K)iyr
— Tor (I jy/mI -1y, K)itr — -

By induction, hypothesig ;_1 has alinear resolution. Then, by Lemmad,;_,,
has a linear resolution. Therefore, for j,

Tor(mi(j—y, K)itr = Tor) (Iy/ml(j—y)isr = O.
It follows that Tor* (1, K )i+, = O forr > j. For trivial reasons,
Tori(Ijy, K)iqr =0 forr < j.

We conclude thal(;, has a linear resolution. O

With this result, the proof that a weakly stable idé#& componentwise linear for
all fields K is as follows. First, by Theorem 17,is componentwise linear if and
only if reg(/<x) < k for all k. On the other hand] weakly stable implies red)

is the same as the degree of a maximal generatof toy [1, Thm. 1.4], and/
weakly stable trivially implied, is weakly stable for alt. Hence it implied is
componentwise linear.
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