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1. Introduction

Forp ≥ 1, we letLp = Lp(D,A) denote the usual Lebesgue space of the open
unit diskD in the complex plane. Here, the letterA denotes the normalized area
measure onD. The harmonic Bergman spaceb2 is the subspace of the Lebesgue
spaceL2 consisting of all complex-valuedL2-harmonic functions onD. One can
check the relationb2 = L2

a + L2
a, whereL2

a denotes the holomorphic Bergman
space consisting of allL2-holomorphic functions onD. As is well known, the har-
monic Bergman spaceb2 is a closed subspace ofL2 and hence is a Hilbert space.
We will writeQ for the Hilbert space orthogonal projection fromL2 ontob2. Each
point evaluation is easily verified to be a bounded linear functional onb2. Hence,
for eachz ∈D, there exists a unique functionRz—called the harmonic Bergman
kernel—inb2 that has the following reproducing property:

u(z) = 〈u,Rz〉 (1)

for everyu ∈ b2. Here and elsewhere, the notation〈·, ·〉 denotes the usual inner
product inL2. Sinceb2 = L2

a + L2
a, there is a simple relation between the har-

monic Bergman kernelRz and the well-known (holomorphic) Bergman kernelKz:
Rz = Kz +Kz −1. Thus, the explicit formula ofRz is given by

Rz(w) = 1

(1− wz̄)2 +
1

(1− w̄z)2 −1 (w ∈D). (2)

The formulas (1) and (2) lead us to the following integral representation of the
projectionQ:

Qϕ(z) =
∫
D

(
1

(1− zw̄)2 +
1

(1− z̄w)2 −1

)
ϕ(w) dA(w) (z∈D) (3)

for functionsϕ ∈L2. See [ABR, Chap. 8] for more information and related facts.
Foru∈L2, theToeplitz operatorTu with symbolu is defined by

Tuf = Q(uf )
for functionsf ∈ b2. The operatorTu is densely defined and not bounded in
general.
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Here, we are concerned with the characterizing problem of harmonic symbols of
commuting Toeplitz operators acting onb2. For the holomorphic Bergman space,
the corresponding problem, as well as its essential version, has been studied by
several authors [ĂC; CL1; CL2; L1; L2; Z] and has been completely resolved in
case of holomorphic or harmonic symbols. The present harmonic case was first
studied by Ohno, who observed [O, Thm. 2.2] that, for a holomorphic symbolf on
D, Tf commutes withTz if and only iff is a polynomial of degree at most1. In this
paper we obtain complete descriptions for certain types of harmonic symbols of
commuting Toeplitz operators. All the results we obtained show that Toeplitz op-
erators can commute only in the obvious cases. However, we do not know whether
the same is true for general harmonic symbols.

In Section 2 we characterize holomorphic symbols of commuting Toeplitz op-
erators. Our result (Theorem 5) is:

For f, g ∈L2
a, Tf andTg commute onb2 if and only if a nontrivial linear

combination off andg is constant onD.

For this result, we consider more general symbols and derive a necessary condition
for those symbols to induce commuting Toeplitz operators (Theorem 4):

Letu, v ∈ b2, and suppose thatTu andTv commute onb2. If u andv are
both not antiholomorphic then there exists a constantα such that∂v =
α(∂u), where∂ = ∂/∂z.

This result also plays the key role in proving our results in the next section.
In Section 3 we consider two special types of symbols and prove characteriza-

tions for those symbols. We first consider a pair of symbols related to each other
by complex conjugation and give a characterization for those symbols. This might
be of some independent interest, because they are just symbols of normal Toeplitz
operators. Recall that a bounded linear operator on a Hilbert space is callednor-
mal if it commutes with its adjoint operator. Our characterization shows that only
obvious ones are normal. Then we consider a pair of symbols in case one of them
is a (harmonic) polynomial. Our results are as follows.

For u ∈ b2, Tu is normal onb2 if and only ifu(D) is contained in a
straight line(Theorem 8).

Letu be a(harmonic) polynomial. Forv ∈ b2, Tu andTv commute on
b2 if and only if a nontrivial linear combination ofu andv is constant
onD (Theorem 10).

2. Holomorphic Symbols

In this section we give a characterization of holomorphic symbols of commuting
Toeplitz operators (Theorem 5). For that purpose, we consider somewhat more
general symbols having nonconstant holomorphic parts and derive a necessary
condition (Theorem 4). This necessary condition is also the key to the proofs of
results in the next section.
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Before proceeding, let us recall the well-known Bergman projectionP. For each
z∈D, the explicit formula for the Bergman kernelKz is given by

Kz(w) = 1

(1− wz̄)2 (w ∈D),

and the Bergman projectionP is the integral operator

Pu(z) = 〈u,Kz〉 =
∫
D

u(w)

(1− zw̄)2 dA(w),

taking L1-functionsu into the space of all holomorphic functions. As is well
known (see e.g. [Zh, Chap. 4]), the Bergman projectionP, when restricted toL2,

is the Hilbert space orthogonal projection fromL2 ontoL2
a. Moreover,P has the

reproducing property
Pf = f and Pf̄ = f(0) (4)

for all holomorphicL1-functionsf.
We start with some simple properties of the Bergman projection that will be

useful in the proofs.

Lemma 1. Letf ∈L2
a. Then the following statements hold for allz∈D.

(a) d
dz
{z2P [(1− |w|2)f ]} = zf(z).

(b) d
dz
{z2P [(1− |w|2)f̄ ]} = zf(0).

(c) P(|w|2f )(z) = f(z)− 1
z2

∫ z
0 ζf(ζ) dζ.

(d) P(|w|2f̄ ) = P(|w|2f )(0) = 1
2f(0).

Proof. Forψ = f orψ = f̄ , let g = P [(1− |w|2)ψ ]. That is,

g(z) =
∫
D

ψ(w)

(1− zw̄)2 (1− |w|
2) dA(w) (z∈D).

Then, by differentiating under the integral sign, we have

g ′(z) = 2
∫
D

ψ(w)w̄

(1− zw̄)3 (1− |w|
2) dA(w),

so that
d

dz
{z2g(z)} = 2zg(z)+ z2g ′(z)

= 2z
∫
D

ψ(w)(1− |w|2)
(1− zw̄)3 dA(w)

for all z∈D. Now, (a) and (b) follow from Theorem 1 of [C].
Note from (4) that

z2P [(1− |w|2)f ](z) = z2f(z)− z2P(|w|2f )(z)
for all z∈D. Thus, integrating both sides of (a), we have

z2f(z)− z2P(|w|2f )(z) =
∫ z

0
ζf(ζ) dζ (z ∈D),
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which implies (c). Also, by (4) we have

z2P [(1− |w|2)f̄ ] = z2P(f̄ )− z2P(|w|2f̄ ) = z2f(0)− z2P(|w|2f̄ );
thus, integrating both sides of (b) shows that

P(|w|2f̄ ) = 1
2f(0).

Since

P(|w|2f )(0) =
∫
D

f(w)|w|2 dA(w) = f(0)
∫
D

|w|2 dA(w) = 1

2
f(0),

we also have
P(|w|2f )(0) = 1

2f(0).

This proves (d), completing the proof of Lemma 1.

The next two lemmas will much simplify our arguments in the proofs to follow.

Lemma 2. Let f ∈ L2
a and supposef(0) = 0. Then the following statements

hold for all z∈D.
(a) P(w̄f )(z) = 1

z
f(z)− 1

z2

∫ z
0 f(ζ) dζ.

(b) P(wf̄ )(z) = P(w̄f )(0) = 1
2f
′(0).

Proof. Sincef(0) = 0, there is a holomorphic functiong onD such thatf(z) =
zg(z). One can easily check thatg is inL2

a. Now, by Lemma 1, we have

P(w̄f )(z) = P(|w|2g)(z) = g(z)− 1

z2

∫ z

0
ζg(ζ) dζ (z∈D),

which gives (a). Similarly, we have

P(wf̄ ) = P(|w|2ḡ) = P(|w|2g)(0) = 1
2g(0).

Thus (b) holds, and the proof is complete.

Lemma 3. Letf, g ∈L2
a. Then the following statements hold.

(a) P
(
f̄P (w̄g)

)
(z) = P(f̄w̄g)(z) for eachz∈D.

(b) P
(
fP (w̄g)

)
(0) = P(fwḡ)(0).

Proof. Since the Bergman projectionP is the orthogonal projection fromL2 onto
L2
a, we see from (4) that

P
(
f̄P (w̄g)

)
(z) = 〈f̄P (w̄g),Kz〉 = 〈P(w̄g), fKz〉
= 〈w̄g, fKz〉 = P(f̄w̄g)(z)

for eachz∈D, so we have (a). By a similar argument, one can also see that

P
(
fP (w̄g)

)
(0) =

∫
D

fP (w̄g) dA = 〈f, P (w̄g)〉 = 〈f, w̄g〉 = P(fwḡ)(0),

so (b) holds. The proof is complete.
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Because

Pϕ(0) =
∫
D

ϕ dA

for functionsϕ ∈L2, we see from (3) that the projectionQ can be rewritten as

Qϕ = P(ϕ)+ P(ϕ̄)− P(ϕ)(0) (5)

for functionsϕ ∈L2. Now, we prove the following.

Theorem 4. Let u, v ∈ b2, and suppose thatTu andTv commute onb2. If ∂u
and∂v are both not identically zero, then there exists a constantα such that∂v =
α(∂u).

For holomorphic functionsf andg, we will use the fact thatf + ḡ ∈ b2 implies
f, g ∈ L2

a. A proof is given here for the reader’s convenience. Assumeg(0) = 0
for simplicity. Putu = f + ḡ and letur(z) = u(rz) for z∈D and 0< r < 1. By
(4), we haveP(ur) = fr . SinceP is bounded onL2, taking the limitr → 1, we
haveP(u) = f ∈L2

a and thusg = ū− f̄ ∈L2
a. In fact, a little bit more is true: If

f andg are holomorphic functions such thatf + ḡ ∈ Lp for p ≥ 1, thenf, g ∈
Lp. See the proof of Theorem7.1.5 of [R].

Proof. By the foregoing remark, there are functionsf, g, h, k in L2
a such that

u = f + ḡ andv = h + k̄. Without loss of generality, we may assumef(0) =
g(0) = h(0) = k(0) = 0. By assumption,f andh are nonconstant. We need to
showh = αf for some constantα.

By (5) and Lemma 2, we have

Th(w̄) = Q(w̄h)
= P(w̄h)+ P(wh̄)− P(w̄h)(0)
= P(w̄h)+ P(w̄h)(0)− P(w̄h)(0)
= P(w̄h) (6)

and hence
Tf Th(w̄) = fP (w̄h).

Also, sinceQ(w̄k̄) = w̄k̄, we have

Tf Tk̄(w̄) = Q[fQ(w̄k̄)]

= Q(fw̄k̄)
= P(fw̄k̄)+ P(f̄wk)− P(fw̄k̄)(0).

Next, by (6) and Lemma 3, we have

TḡTh(w̄) = Q[ ḡP (w̄h)]

= P [ ḡP (w̄h)] + P [gP (w̄h)] − P [ ḡP (w̄h)](0)

= P(ḡw̄h)+ P [gP (w̄h)] − P(ḡw̄h)(0);
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finally note that
TḡTk̄(w̄) = ḡw̄k̄.

It follows that

Tf+ḡTh+k̄(w̄) = Tf Th(w̄)+ Tf Tk̄(w̄)+ TḡTh(w̄)+ TḡTk̄(w̄)
= fP (w̄h)+ P(fw̄k̄)+ P(f̄wk)− P(fw̄k̄)(0)
+ P(ḡw̄h)+ P [gP (w̄h)] − P(ḡw̄h)(0)+ ḡw̄k̄.

By exactly the same way,

Th+k̄Tf+ḡ(w̄) = hP (w̄f )+ P(hw̄ḡ)+ P(h̄wg)− P(hw̄ḡ)(0)
+ P(k̄w̄f )+ P [kP (w̄f )] − P(k̄w̄f )(0)+ k̄w̄ḡ.

BecauseTf+ḡTh+k̄ = Th+k̄Tf+ḡ onb2 (by assumption), we haveTf+ḡTh+k̄(w̄) =
Th+k̄Tf+ḡ(w̄) in particular and so

fP (w̄h)+ P(f̄wk)+ P [gP (w̄h)] = hP (w̄f )+ P(h̄wg)+ P [kP (w̄f )].

Recall thatf(0) = h(0) = 0. Hence, taking the holomorphic part on both sides
of the preceding equation, we obtain

fP (w̄h) = hP (w̄f ). (7)

It follows from Lemma 2 that

f(z)

{
1

z
h(z)− 1

z2

∫ z

0
h(ζ) dζ

}
= h(z)

{
1

z
f(z)− 1

z2

∫ z

0
f(ζ) dζ

}
for all z∈D. Consequently, letting

H(z) =
∫ z

0
h(ζ) dζ and F(z) =

∫ z

0
f(ζ) dζ,

we havefH = hF onD. HenceF ′H = H ′F becauseH ′ = h andF ′ = f.

Now, sincef andh are nonconstant, we see thatH = αF for some constantα.
Consequently, we haveh = αf for some constantα, as desired. This completes
the proof.

As an immediate consequence of Theorem 4, we obtain a complete description of
holomorphic symbols of commuting Toeplitz operators.

Theorem 5. Let f, g ∈ L2
a be nonconstant functions. ThenTf Tg = TgTf on b2

if and only ifg = αf + β for some constantsα andβ.

Proof. This is immediate from Theorem 4.

3. Two Special Cases

In this section we give characterizations for a pair of symbols of special type to
induce commuting Toeplitz operators. We consider two types. One is a pair of
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symbols related to each other by complex conjugation. The other is a pair of sym-
bols for which at least one is a polynomial. Our results (Theorem 8 and Theorem
10) show that such symbols must be related in an obvious way, as expected.

We begin with an integral identity taken from [C].

Lemma 6. For f, g ∈L2
a, we have∫

D

f(w)g(w) dA(w) =
∫
D

f(w)[2g(w)+ wg ′(w)](1− |w|2) dA(w).

Proof. See Theorem 12 of [C], where the lemma is stated for slightly different
pairs off andg.

The following lemma will be useful for our purposes.

Lemma 7. Let f, g ∈ L2
a and assumef(0) = g(0) = 0. If Tf andTḡ commute

onb2, then∫
D

f(w)G(w)wk(1− |w|2) dA(w) = 0 (k = 0,1,2, . . . ),

where

G(w) = 1

w

∫ w

0
g(ζ) dζ.

Proof. SinceTf Tḡ = TḡTf , we haveTgTf̄ = Tf̄ Tg by taking adjoints. In particu-
lar, we haveTgTf̄ (w̄) = Tf̄ Tg(w̄). Now, repeating exactly the same argument as
in the proof of Theorem 4 yields

P [fP (gw̄)] = P(fwḡ),
so that

〈f, P (gw̄)wk+1〉 = 〈P [fP (gw̄)], wk+1〉 = 〈P(fwḡ), wk+1〉 = 〈fw, gwk+1〉
for all k ≥ 0. Rearranging this expression by using Lemma 2, we have∫

D

f(w)g(w)wk(1− |w|2) dA(w) =
∫
D

f(w)G(w)wk dA(w). (8)

On the other hand, by Lemma 6,∫
D

f(w)G(w)wk dA(w)

=
∫
D

f(w)[G′(w)w + (k + 2)G(w)] w̄k(1− |w|2) dA(w)

=
∫
D

f(w)[g(w)+ (k +1)G(w)] w̄k(1− |w|2) dA(w);
thus, by (8), ∫

D

f(w)G(w)wk(1− |w|2) dA(w) = 0

for all k ≥ 0. The proof is complete.
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We turn to characterizing the harmonic symbols of normal Toeplitz operators. This
will show that only harmonic symbols of normal Toeplitz operators are obvious
ones.

Theorem 8. Letu∈ b2. ThenTu is normal onb2 if and only ifu(D) is contained
in a straight line. In particular, forf ∈L2

a, Tf is normal onb2 if and only iff is
constant.

Proof. Throughout the proof we assumeu(0) = 0 without loss of generality. Sup-
poseu(D) is contained in a straight line. Then there exists a holomorphic function
f ∈ L2 such thatu = α(f + f̄ ) for some constantα. Now one can easily check
thatTu is normal.

Conversely, assumeTu is normal. First consider the case whenu is holomor-
phic and use the temporary notationu = f. Since the adjoint operator of Toeplitz
operatorTf is Tf̄ , we haveTf Tf̄ = Tf̄ Tf . Thus, setting

F(w) = 1

w

∫ w

0
f(ζ) dζ,

we see from Lemma 7 that

0=
∫
D

f(w)F(w)(1− |w|2) dA(w)

=
∞∑
n=1

f (n)(0)

n!
· F

(n)(0)

n!

∫
D

|w|2n(1− |w|2) dA(w). (9)

Note that

F (n)(0) = f (n)(0)

n+1
(n = 1,2, . . . ).

Insert these into (9) to obtain
∞∑
n=1

∣∣∣∣f (n)(0)n!

∣∣∣∣2 · 1

n+1

∫
D

|w|2n(1− |w|2) dA(w) = 0,

which means thatf (n)(0) = 0 for all n ≥ 1. Thusf is identically 0, as desired.
Now, consider generalu = f + ḡ, wheref, g ∈ L2

a are nonconstant functions
with f(0) = g(0) = 0. Then, by Theorem 4, there is a constantα such thatg =
αf. Now, normality ofTu is equivalent to

(1− |α|2)(Tf Tf̄ − Tf̄ Tf) = 0.

Sincef is nonconstant,Tf is not normal by the previous case; thus, the preceding
equality yields|α| = 1. Consequently,̄u = αu so that

√
αu is real-valued. This

completes the proof.

Before characterizing harmonic symbols of commuting Toeplitz operators (having
one or more polynomial symbols), we first prove the following special case.

Lemma 9. Letf, g ∈L2
a and suppose one of them is a polynomial. IfTf andTḡ

commute onb2, then eitherf or g is constant.
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Proof. We assume that bothf andg are nonconstant and proceed to derive a con-
tradiction. Note that the adjoint operatorsTf̄ andTg also commute. Thus, with-
out loss of generality, we may assume thatf is a polynomial of degreen ≥ 1. We
may further assumef(0) = g(0) = 0. Sinceg is nonconstant, there is a function
h∈L2

a, h(0) 6= 0, such thatg = wkh for some positive integerk.
Consider the casek ≤ n. DenoteG for the function associated withg as in

Lemma 7. It then follows from the lemma that

0=
∫
D

f(w)G(w)wn−k(1− |w|2) dA(w)

= f (n)(0)

n!
· G

(k)(0)

k!

∫
D

|w|2n(1− |w|2) dA(w),
so that

h(0) = g(k)(0)

k!
= (k +1) · G

(k)(0)

k!
= 0,

a contradiction.
Consider the casek ≥ n+1. SinceTf andTḡ commute, we haveTf Tḡ(w̄n+1) =

TḡTf (w̄
n+1). Before calculating these, note that

P(w̄iwj ) =
{

0 for i > j,

j+1−i
j+1 w

j−i for i ≤ j,
(10)

wherei, j are nonnegative integers. This is easily verified by a straightforward
calculation. Sincef is a polynomial of degreen, it follows from (10) that

P(fḡw̄n+1) = P(fw̄n+1) = 0.

Now, as in the proof of Theorem 4, we have

Tf Tḡ(w̄
n+1) = P(fḡw̄n+1)+ P(f̄gwn+1)− P(fḡw̄n+1)(0)

= P(f̄gwn+1)

and

TḡTf (w̄
n+1) = TḡQ(fw̄n+1)

= Tḡ[P(fw̄n+1)+ P(f̄wn+1)− P(fw̄n+1)(0)]

= Tḡ[P(f̄wn+1)]

= gP (f̄wn+1),

so that
P(f̄gwn+1) = gP (f̄wn+1).

In particular, we have

〈P(f̄gwn+1), wk+1〉 = 〈gP (f̄wn+1), wk+1〉.
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On one hand, sincefwk+1 is a polynomial of degreen+ k +1, we see that

〈P(f̄gwn+1), wk+1〉 = 〈f̄gwn+1, wk+1〉
= 〈hwn+k+1, fwk+1〉

= h(0) · f
(n)(0)

n!

∫
D

|w|2(n+k+1) dA(w)

= h(0) · f (n)(0)

n!(n+ k + 2)
.

On the other hand, since

P(ḡwk+1) = P(h̄w̄kwk+1)

= h(0)P (w̄kwk+1)+ h′(0)P (|w|2(k+1))

= 1

k + 2
[2h(0)w + h′(0)],

by (10) and
〈f̄wn+1,1〉 = 〈wn+1, f 〉 = 0,

〈f̄wn+1, w〉 = 〈wn+1, fw〉 = f (n)(0)

n!(n+ 2)
it follows that

〈gP (f̄wn+1), wk+1〉 = 〈P(f̄wn+1), ḡwk+1〉
= 〈f̄wn+1, P (ḡwk+1)〉

= 2h(0)

k + 2
· f

(n)(0)

n!(n+ 2)
.

In summary, we have

h(0)

2
· f (n)(0)

n+ k + 2
= h(0)

k + 2
· f

(n)(0)

n+ 2
.

One can check that this also is impossible, so the proof is complete.

The following characterization shows that Toeplitz operators can commute only
in the obvious cases if at least one of their symbols is a polynomial.

Theorem 10. Letu, v ∈ b2 be nonconstant functions and suppose one of them is
a polynomial. ThenTu andTv commute onb2 if and only ifv = αu+ β for some
constantsα, β.

Proof. The sufficiency is trivial. For the proof of necessity, assume (without loss
of generality) thatu(0) = v(0) = 0. We split the proof into cases. Since the ad-
joint operatorsTū andTv̄ also commute, we may assume thatu is a polynomial and
thus need only consider two cases as follows. (The remaining cases are contained
in Theorem 5 and Lemma 9.)
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Case 1(u holomorphic,v not antiholomorphic). In this case, by Theorem 4
there is a constantα such that∂v = α(∂u). Accordingly, we may writeu = f and
v = αf+ḡ for somef, g ∈L2

a. Thus, the assumptionTuTv = TvTu is equivalent to

Tf Tḡ − TḡTf = 0;
that is,Tf andTḡ commute. Sincef is nonconstant, it follows from Lemma 9 that
g must be constant (identically 0) and thusv = αu.

Case 2(u, v are neither holomorphic nor antiholomorphic). In this case, by
Theorem 4 there are constantsα, β such that∂v = α(∂u) and ∂̄v = β(∂̄u).

Accordingly, we may writeu = f + ḡ andv = αf + βḡ for some noncon-
stantf, g ∈ L2

a with f(0) = g(0) = 0. Thus, the assumptionTuTv = TvTu is
equivalent to

(α − β)(Tf Tḡ − TḡTf) = 0.

Sincef andg are nonconstant, it follows from Lemma 9 thatα = β and hence
v = αu. The proof is complete.

In view of theorems proved in this paper, one may naturally ask whether the same
is true for general harmonic symbols. Hence, we close the paper with a ques-
tion. To be more precise, letu, v ∈ b2 be nonconstant functions. We do not know
whetherTuTv = TvTu impliesv = αu + β for some constantsα, β. As we have
seen in the proof of Theorem 10, this problem reduces to the following special
case.

Problem. Let f, g ∈L2
a and supposeTf andTḡ commute onb2. Does it follow

that eitherf or g is constant?
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