Injectivity and the Pre-Schwarzian Derivative

DENNIS STOWE

Many basic theorems about conformal mapping involve the pre-Schwarzian de-
rivative f”/f’. This paper studies the inner radius of injectivityD) of a simply
connected domaif in the complex plane, other than the plane itself, with respect
to that operator. In answer to questions posed by Gehring [9], we show(that
never exceeds/? and that it equals/2 for some domains other than disks and
half-planes. We also show that every such domain is convex.

Let pp|dz| be the hyperbolic metric @@. WhenD is the unit disk, for example,
op(2) equals 2(1 — |z]?), and whenD is the right half-planep (x + iy) equals
1/x. The inner radius of injectivity (D) is defined as the supremum of all num-
bersc > 0 such that every analytic functighin D satisfying the boundf”/f’| <
cpp IS injective.

In the case of a disk or half-planejs known to equal A2. One part of the ar-
gument is due to Becker [4], who proves that 1/2 for the unit diskB. In fact,
he proves a stronger result: An analytic functipin B is injective if f(0) # 0
and

A second ingredient is due to Becker and Pommerenke [5], who show that
1/2 for the right half-planeH. Citing an observation by Gehring, those authors
conclude that equality holds in both instances. Indeed, the general formula

(f I} h)// h// , f//

(fohy (2) W (2) + 1 (2) 7 (h(z))
implies thatr is invariant under affine transformations from one domain onto an-
other. Since any two points iH are contained in a disk that is in turn contained
in H, it follows from the Schwarz lemma that(B) < t(H). Both quantities
therefore equal/R2, and the conclusion extends to any disk or half-plane.

Gehring points out many parallels betwed®) and the inner radius of injectiv-

ity o (D) with respect to the Schwarzian derivatisef) = (f"/f") — (f"/f)?%/2.
The latter is defined as the supremum of all numlazers 0 such that every ana-
lytic function f in D satisfying|S(f)| < cp? is injective. Both quantities are
positive for quasidisks and zero otherwise; Martio and Sarvas [14] and Astala
and Gehring [3] prove that result fat and Ahlfors [1] and Gehring [8] prove it
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for o. Furthermore, both equaj 2 for a disk or half-plane, fos is invariant un-

der Mdbius transformations and Nehari [15] and Hille [10] show #h@) equals
1/2. The present paper establishes yet another parallel-=tliké o, is bounded

by 1/2 (cf. Lehto [12, p. 127]). However, the extremal domains differ; whereas
Lehtinen [11] proves that disks and half-planes are the only domains for which
equals 12, we demonstrate the following.

TueoreM 1. If & is an analytic function in the unit disk such thath’(0) # 0
and|z-h"(z)/h'(z)| < 1/2 forall z € B, thent(h(B)) > 1/2.

The hypotheses imply thdt is injective and that the imagk(B) is convex
(Theorem 2.11in [7]). On the other hand, there exist convex domains for which
is less than 22. Consider the stri§ = { x + iy : |y| < w/2}, for example. The
function f;: z > €'’* is noninjective inS whent > 0, and|f//f/| = t. Since
ps(x +iy) = secy > 1, it follows thatz(S) < ¢ for all + > 0 and hence that
7(§) vanishes. Using the same functions in a dom@iic S, and using the in-
equalitypp > ps obtained from the Schwarz lemma, one seesthat 0 for a
semi-infinite strip and that < 2/¢ for a rectangle of sizé&/xw) x .

Proof of Theorem 1Let f be an analytic function in the image = i (B) such
that| f"/f'| < (1/2)pp, and letg be the compositg o h. Since|h'(z)|pp(hz) =
2/(1—|z/%).
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By Becker’'s theoremyg is injective. Thereforef is injective, and Theorem 1

follows. O

Becker proves his theorem by a Lowner argument, defornfinig the identity
through a family of mappings in which injectivity of any member implies injec-
tivity of its predecessors. Ahlfors [2] uses a direct method to show that a locally
injective analytic functionf in B is injective if there exist a complex number
and a real numbeér such thatc| < k < 1and
f// C|Z|2 k

ST el R e
Moreover, he proves that admits a1+ k)/(1— k)-quasiconformal extension to
the Riemann sphere. One obtains Becker’s result as a corollary by taking
and considering the functions— f(rz) for r < 1. Chuaqui [6] proves Becker’s
theorem in one step by applying a generalization of Nehari’s univalence crite-
rion, which involves th&chwarziarderivative, to the metri¢f’|pg|dz| in B. The
same method also yields the sharp critetfiofi’/f")(x + iy)| < (1/2)/x for uni-
valence in the right half-plane. Indeed, it applies to any (round) Bigkthe Rie-
mann sphere and yields the following criterion:flfis meromorphic and locally
injective in D, and if f 1{oo} = {o0} N D, then f is injective if

I(p2/p) - f1f'1 < (YBp?,  p = pp.
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The functionsw(z) appearing in the proofs that follow are extremal functions for
this criterion. Becker and Pommerenke’s function, used in the proof of Theorem 2,
is extremal for the right half-plane, and the functiang) in the proof of Theorem
3 are extremal for the domajn| > 1in the sphere. Chuaqui’s paper provided the
motivation for considering such functions.

The remainder of this paper consists of proofs of the following theorems.

THeOREM 2. If D is convex, thern(D) < 1/2.
THEOREM 3. If D is not convex, thea(D) < 1/2.

We begin with the proof of Theorem 2. Consider the functior> w +log(w —1)

in C — (—o0, 1], the branch of the logarithm being chosen so the(w — 1)| <

7. This function, introduced by Becker and Pommerenke, maps its domain con-
formally onto the plane ledsx +in : x < 0}, taking the upper and lower halves

of a disk about the origin onto slit neighborhoodsefand—in, respectively. Let

z — w(z) be the inverse function, and fare C let F, (z) = 1+ (w(z) — D",

LemMa 4. If x +iy € H, thenx|(F;"/F;))(x +iy)| <1/244|h|/3.

Proof. One computes that
Fw” h 1 h
Fh’ZWer'w——l_ﬁJr_ w = w(z).
If z=x+iyandw(z) = u + iv, then
x =u+Reflogw — D} = u + (1/2) log(r®> — 2u + 1), u?®+v%=r2
Considerx as a function of:, wherer is fixed. Whernr < 2, the maximum value
is 2/ 2. It follows that if |w(x + iy)| = r < 2 then

//

||
< —( =+ — <12+h
F/ 2( >—/ Il

Whenr > 2, the maximum value is+log(r — 1), whichis less than#/ 3. Hence,
if Jw(x +iy)| =r > 2, then

r+logr —1) (4r/3)|h|
> +
r r

<1/2+4|h|/3.

F/
The lemma follows. O
For distinct pointg ™, z~ € H, leth = h(z*, z7) be the solution of

@A+ n){logwiz") —1) —logw(z™) — 1)} = 27i.

ThusF,(z*) = F,(z~), andh approaches zero a3 — +in. Consider a con-
vex domainD in the plane other than the plane itself. By means of an affine trans-
formation that maps a chosen poigte D to the positive real axis and maps a
nearest point’ € aD to the origin, one sees thak is affinely equivalent to a con-
vex, open seD’ that omits the origin but includes a digk : |z — r| < r }. Since
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the rays through the origin that emanate from points in that disk exhaust the left
half-plane,D’ is contained in the right half-plang. Inflating by a positive scalar
multiplication if necessary, one can further assure thatontains distinct points
z*, z~ such that the modulus &f = i(z", z7) is less than a prescribed number
e. Butthen
" ’ " /
(D) =1(D’) < SU|0M < SU|OM
o’ Pp’ D’ PH
Sincee was arbitraryz (D) < 1/2. This argument proves Theorem 2.

The foregoing arguments apply to some nonconvex domains as well, but one
can only conclude that < 1/2. To obtain the stronger conclusion of Theorem 3,
we use a family of mappings parameterized by a nunaber 1, which will ul-
timately be chosen to match a given nonconvex domain. For now,Hetfixed,
and consider the function

< 1/2+4¢/3.

w >z =a D + o) D -V e C —[—a,1].

Here the arguments af + a andw — 1 are to be chosen so as to differ by less than
7; the resultis then well-defined. By examining behavior on either side of the slit
[—a, 1], one sees that the mapping— z takesC — [—a, 1] conformally onto the
plane less the radial segments &/ @+Y], mapping the upper and lower halves
of a disk about the origin to slit neighborhoodsedt “*L ande=/@+Y | respec-
tively. The mappings, so defined are related to the one used to prove Theorem 2
in that

Iim (@ + D, (w) —1) =w+logw —1), weC— (—o0,1],

the convergence being uniform on compact sets.
Let z — w(z) be the inverse function, and &t be the planar domaip| > 1.
The following lemma is the key to Theorem 3.

LEmMmA 5. If z€ E, then

w//() - 1
Z w )| = |Z|2—1.

Proof. A computation shows that

w=@FOW=D W e M
w w w
Viewing z as a function oft = Re(w) on a circlejw| = r, one has
1 djz? 2(a —Dr? — dau

W. du  (r?4+2au+a®>r?-2u+1’

If a =1 orifa > 1andr < 2a/(a — 1), then|z|? attains a maximum at =
(a — )r?/(2a), and the maximum value is& r?/a. If r > 2a/(a — 1), then the
maximum occurs ai = r and the maximum valug(r)? is bounded by ¥ r?/a,
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for those two quantities are equal whee:= 2a/(a — 1) and their ratio decreases
thereafter. This analysis shows that

1212 < 1+ |w(2)|%a, ze€C -0,/ @], )

The lemma then follows from the second equation in (1). O
The presence of the factgin Lemma 5 will allow us to establish our next result.

THEOREM 6. If T, z~ € E are sufficiently close te*/“@+D  respectively, then
there is an analytic functiod in E such thatF(z™) = F(z™) and

"

F
—(2)

= @[ =1 <1

sup
zeE

Before proving this result, we deduce Theorem 3. Ddte a nonconvex domain

in the plane. IfD is dense, them (D) = 0 by Astala and Gehring’s theorem. As-
sume, then, thab is not dense. As noted by Martin and Osgood (Lemma 3.14 in
[13]), the complement oD contains a disk whose boundary interseifsin at
least two points. It follows thab is affinely equivalentto adomaid’ C E whose
closure includes the points ™/ @+ for somea > 1. By the Schwarz lemma,

1 2
>
lz| -loglz| ~ |z2—1

Theorem 6 then provides a noninjective functiéin D’ such that the supremum
of |F"/F'|/pp- is less than A2. Thereforer (D) = t(D’) < 1/2, and the proof
of Theorem 3 is complete.

Let Q2 = w(E); this is the exterior of a figure eight that crosses itself at the ori-
gin. We prove Theorem 6 by deforming the inclusiortdfnto the plane in two
independent ways. The resultis a fanfil 4} of analytic functions ir2, param-
eterized by complex pairg, ) near(0, 1); the functionsF; z: z — fi g(w(z))
in E constitute a two-parameter deformatioruaf Whenr is small and positive,
there is a valugs(r) such thatF; g,y mapsE onto the exterior of another fig-
ure eight; furthermore, this mapping, and all mappings obtained from nearby pa-
rameter values, satisfy better bounds thanwidOne fulfills the conditions of
Theorem 6 by choosing from among those nearby functions.

Letm > 0 be the infimum of((w + a)(w — 1)| in Q. Fort € C such that
(@a+ Dt <m/2, let

pp(z) > pe(z) = , zeD'.

fi(w) =w +tlog<w—+cll>, weQ,

w —

the branch of the logarithm being chosen so that the second term vanishes at in-
finity. One then has

ta+1
w+a)(w-1"
and the restriction onimplies that| f/ — 1| < 1/2.

ta+1H2w+a-—-12

fiw)y=1-= (0 + a)2(w — 12

t//(w) —

9
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Forg e Csuchthalip —1| <1, definef; s: @ — CandF; g: E — C by

w

frpw) =w+ / (f/(©F - A+ a/p) P~V @D 1/g) =D/ _ 1) qe,

Fip(2) = fr.p(w(2)).

Here the path of integration is to lie @, and in each exponential expression the
logarithm of the base is that which vanishes at infinity. Because the integrand is
0(|z]7?) as¢ — oo, the integral is well defined, ang ; equalsf;. As in the
proof of Lemma 9 to follow, one also sees thak (w) depends holomorphically
upon its three arguments. Note that

(w+ a)l/(a+1)(w _ 1)a/(u+1) >/31
w

frpt) = i’
B-1
o W+ a)(w—1)
= f;(w) <—a“/(“+l)zw .
Therefore, by equation (1),
Ft,,ﬁ(z) — ft/ﬂ(w) w = a*a(ﬁfl)/(aJrl)f[’(w)ﬂ(w/)ﬂ — g~ 9(B=D/(a+) | F,/_l(Z)ﬁ-

It follows that the pre-Schwarzian derivative Bf 4 is  times that ofF; ;.
The conditionga +1)|¢t| < m/2 and|g — 1] < 1are implicitin all that follows.

LemMA 7. (a)There is a numbeM, independent aof and 8, such that

a
< |ﬁ|'W(l+M|t|)’ 7€ E, w=w().

Z-

Ft//
B

(2)
F t/, B

(b) If (a +1)|t| < min{m/2, a/6}, then

Z-

a a—+1
§|ﬂ|~W<1+ 2a |t|>, z€E, |lw| =|w(z)| < 1/6.

F//
F’;’g ()
t,pB

Proof. Consider the equation

Fly Fly w s/
2@ =z-p ’(z)=ﬂ<z—+zw/-—’(w))

Fip Ft/,l w’ 1

B n ta@a+1D)2w+a—Dw
= —\|\a .

w2 (w+a)(w—-21) —t@+1
In view of the definition ofxn, the second term in the final expression is bounded
by a constant timeg|, and assertion (a) follows.

Suppose thate + 1)|¢t| < a/6. If w is any complex number of modulus less
than 16, then straightforward estimates show that

|Cw +a —Dw| < a/6b, [(w+a)(w—1) —t(@a+ 1| > 2a/3.

®3)

Assertion (b) follows directly from equation (3) and these bounds. O
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LemmMma 8. If [¢] is sufficiently small and8| < 1— (a + D) |t|/(2a), then

;){F""()
sup ——(z
k| F,

a+1
(2 =D = 1= ——ll.

Proof. Letg(z) be the ratio ofz|? —1to|z| - |w(z)|?/a for z € E. By equation (2),
that ratio is less than unity, and it approaches zerp-as co. It also approaches
zero as; approaches any point in the unit circle other th&ff/“*+Y . Since nei-
ther of the latter points is in the closure of the et {z € E : |w(z)| > 1/6},
the supremum op in S is a numbes < 1

Suppose thata + 1)|t| < min{m/2,a/6} and|B8| < 1— (a + D)|t|/(2a). By
part (a) of Lemma 7,

Iw(Z)I2

(1212 = 1) = supp(2)|z - <s@+ Mit]).

zesS

“L(2)
B
The latter, in turn, is less than(a +1)|t|/(4a) when|t]issmall. IfS'=E— S,
then equation (2) and part (b) of Lemma 7 imply that

sup
zes§

F/ lw(z)| )12 F Iw(Z)I2
S“pp/% (1P~ 1) = sup 22 o) - P < suplz- o))
zeS8’ zes' 1 ' g a zes’ 1B
a—+ a+1
< |ﬁ|<1+ |t|) <1- Lty
a
The lemma follows. 0

LemMma 9. Suppose thata + 1)|zg] < m/2and |Bo — 1] < 1L Ast — 1o and
B — Bo, and asw € Q approaches the origin through either the upper or lower
half-plane, f; s(w) approaches limitg*(to, o), respectively. The functions"
are holomorphic, and

+

E(0 D=lo i a—(O D= —(Io iTT).
al’ ’ - ga:Fl ’ aﬂ ga:Fl

Proof. Becausef; s(w) = f; 5(w), itis enough to prove the assertions abgtit

The main step in the proof is to bound the integréngin the definition off; .
We show that there are positive numbérandC’ such that, whenevén +1)|7| <
m/2, | —1 <1, andw € Q,

1, p(w)| < Clw|™? if Jw| > 2a, (4)
[l p(w) +1 < C'lw|*"R*Pif Jw| < 2a. (5)

In the derivation that follows, any assertion about bounds means that the bounds
are uniform: they hold for all such 8, andw as long asv satisfies certain explicit
restrictions.

Recall thatl, 5(w) equalsf,(w)?fb(w)#~t — 1, where

b(w) = A+ a/w)YDA - 1/w)*/@+D,
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From the formula forf;, one sees thaif,(w) — 1| is bounded by a constant times
|lw|~2 when|w| > 2a. Since| f/(w) — 1] is always less than/2, Taylor’s theo-
rem then implies that the logarithm ¢f(w) is also bounded by a constant times
|w|~2 in that domain. In turn, since
|Blog(f/(w))| < 2llog(1/2)] =log4, weg,
another application of Taylor’s theorem yields a bound
|fl )P =1 = [eP9S) 1] < Cojw| 2, |w]| = 2a. (6)
For the same values af, Taylor’s theorem provides bounds
llog(1+ a/w) — a/w| < Calw| ™2, llog1 — 1/w) + 1/w| < Calw| .
It follows that|logb(w)| is no greater than a constant tinjeg =2, and hence that
bw)P =1 < Calw| %, |w| > 2a.

Inequality (4) is a consequence of this bound and (6).

To obtain (5), one need only bouhdw)?~1 by a constant timeigv |*~R# when
|lw| < 2a, for | f/(w)?| < 4. In that domain|w - b(w)| is bounded above and
below by positive constants. Since the arguments -6fd/w and 1— 1/w are
betweentz, so too is the argument éfw). Therefore

Ib(w)P7Y < ™MD |p(w)|REAT < Cylw|FREP) | |w| < 24,

and (5) follows.
The positive imaginary axis is containedsn Integrating along that axis, let

0
g, B) = / (f,/(f)ﬁ(l—i‘ a/é')(ﬁ_l)/(a-"_l)(l— 1/;-)a(/3—1)/(u+1) _ 1) dc.

Inequalities (4) and (5) imply that the integral exists. In fact, for each positive
numbere, they provide an integrable functia¥ (¢) that bounds the integrand of
g(t, B) whenever Ré3) < 2 — ¢. By the dominated convergence theorem, it fol-
lows thatg is holomorphic and that differentiation under the integral sign is valid,
for Cauchy’s integral formula shows that a boupi< M on an analytic function

in a disk|z — zo| < r implies a bound

$O = 0G0 _ ia)| < 2Mlz — zol/r? 1z — 20l < 172,
Z—720
Differentiating under the integral sign yields the values
g . g a .
—=(0,1) =loga — in, —=(0,1) = ——(loga — in).
az( ) ga —im 8/3( ) a—i—l( ga —im)

It remains to show thaf; s (w) converges t@ (to, Bo) ast — to, B — Bo, and
w — 0 through the upper half-plane. Fbe (0, 1], the intersection of2 with the
upper half of the circléw| = § is a single arc. By integratingj[/’/S along a subarc
and applying the bound (5), one finds that

| fip(w) — fi.5G8)| < (7/2)C'8* RP | weQ, Imw) >0, |w =8 (0,1].



Injectivity and the Pre-Schwarzian Derivative 545

One also has
C's2—Re(B)
2—-ReB)

Let ¢ be a positive number less than2Re(8y). If B is near enough t@, that
& < 2—Re(B), then the previous estimates imply that

1

&

8
</ C't'ReP) gt =
0

is
| fi.p(i8) — g(t, B)| = UO flp®)dg

| fi,p(w) — g(t, B)I < (% + )C'SS, weQ, Imw) >0, |w=35€e(0,1].
By the continuity ofg, it follows that f; s (w) approacheg(to, Bo) as(t, 8, w) —
(to, Bo, 0). This completes the proof of Lemma 9. O

Sincegt — g~ vanishes at0, 1) and its partial derivative with respect fodoes
not, the implicit function theorem provides an analytic function> B(zr), de-
fined fort near zero, such that(0) = 1 and(g™ — ¢7)(¢, B(t)) = 0. Using
the formulas from Lemma 9, one sees tga0) = —(a + 1)/a. It follows that
|B(1)] < 1— (a + Dt/(2a) whenr is small and positive. Fix such a valugfirst
reducing it if necessary so that Lemma 8 applies and so that the furictién—

g¥(t, B) — g~ (¢, B) is not constant. By Lemma ,is a locally uniform limit of
the functions

B Fpz)— Fp()

asz*, z~ € E approacte*™/@+D respectively. It follows that the displayed func-
tion has a zer@(z*,z7) ~ B(r) whenz* are neare™/@+D; thus the func-
tion F = F, g+~ mapszt andz~ to the same image. When those points are
sufficiently neare®/(@*+0 | emma 8 implies that

" 1
suf — (@) (- =1- T =1 <1
zeE F a
This argument proves Theorem 6.
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