
Injectivity and the Pre-Schwarzian Derivative

Denni s Stowe

Many basic theorems about conformal mapping involve the pre-Schwarzian de-
rivativef ′′/f ′. This paper studies the inner radius of injectivityτ(D) of a simply
connected domainD in the complex plane, other than the plane itself, with respect
to that operator. In answer to questions posed by Gehring [9], we show thatτ(D)

never exceeds 1/2 and that it equals 1/2 for some domains other than disks and
half-planes. We also show that every such domain is convex.

LetρD|dz| be the hyperbolic metric ofD. WhenD is the unit disk, for example,
ρD(z) equals 2/(1− |z|2), and whenD is the right half-planeρD(x + iy) equals
1/x. The inner radius of injectivityτ(D) is defined as the supremum of all num-
bersc ≥ 0 such that every analytic functionf inD satisfying the bound|f ′′/f ′| ≤
cρD is injective.

In the case of a disk or half-plane,τ is known to equal 1/2. One part of the ar-
gument is due to Becker [4], who proves thatτ ≥ 1/2 for the unit diskB. In fact,
he proves a stronger result: An analytic functionf in B is injective iff ′(0) 6= 0
and ∣∣∣∣z · f ′′f ′ (z)

∣∣∣∣ ≤ 1

1− |z|2 , z∈B.

A second ingredient is due to Becker and Pommerenke [5], who show thatτ ≤
1/2 for the right half-planeH. Citing an observation by Gehring, those authors
conclude that equality holds in both instances. Indeed, the general formula

(f B h)′′
(f B h)′ (z) =

h′′

h′
(z)+ h′(z) · f

′′

f ′
(h(z))

implies thatτ is invariant under affine transformations from one domain onto an-
other. Since any two points inH are contained in a disk that is in turn contained
in H, it follows from the Schwarz lemma thatτ(B) ≤ τ(H ). Both quantities
therefore equal 1/2, and the conclusion extends to any disk or half-plane.

Gehring points out many parallels betweenτ(D) and the inner radius of injectiv-
ity σ(D)with respect to the Schwarzian derivativeS(f ) = (f ′′/f ′)′ − (f ′′/f ′)2/2.
The latter is defined as the supremum of all numbersc ≥ 0 such that every ana-
lytic function f in D satisfying|S(f )| ≤ cρ2

D is injective. Both quantities are
positive for quasidisks and zero otherwise; Martio and Sarvas [14] and Astala
and Gehring [3] prove that result forτ, and Ahlfors [1] and Gehring [8] prove it
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for σ. Furthermore, both equal 1/2 for a disk or half-plane, forσ is invariant un-
der Möbius transformations and Nehari [15] and Hille [10] show thatσ(B) equals
1/2. The present paper establishes yet another parallel—thatτ, like σ, is bounded
by 1/2 (cf. Lehto [12, p. 127]). However, the extremal domains differ; whereas
Lehtinen [11] proves that disks and half-planes are the only domains for whichσ

equals 1/2, we demonstrate the following.

Theorem 1. If h is an analytic function in the unit diskB such thath′(0) 6= 0
and |z · h′′(z)/h′(z)| ≤ 1/2 for all z∈B, thenτ(h(B)) ≥ 1/2.

The hypotheses imply thath is injective and that the imageh(B) is convex
(Theorem 2.11 in [7]). On the other hand, there exist convex domains for whichτ

is less than 1/2. Consider the stripS = { x + iy : |y| < π/2 }, for example. The
functionft : z 7→ eitz is noninjective inS when t > 0, and |f ′′t /f ′t | = t. Since
ρS(x + iy) = secy ≥ 1, it follows that τ(S) ≤ t for all t > 0 and hence that
τ(S) vanishes. Using the same functions in a domainD ⊆ S, and using the in-
equalityρD ≥ ρS obtained from the Schwarz lemma, one sees thatτ = 0 for a
semi-infinite strip and thatτ ≤ 2/` for a rectangle of size(`π)× π.
Proof of Theorem 1.Let f be an analytic function in the imageD = h(B) such
that |f ′′/f ′| ≤ (1/2)ρD, and letg be the compositef B h. Since|h′(z)|ρD(hz) =
2/(1− |z|2),∣∣∣∣z · g ′′g ′ (z)

∣∣∣∣ = ∣∣∣∣z · h′′h′ (z)+ zh′(z) · f ′′f ′ (hz)
∣∣∣∣ ≤ 1

2
+ |z|

1− |z|2 <
1

1− |z|2 , z∈B.

By Becker’s theorem,g is injective. Thereforef is injective, and Theorem 1
follows.

Becker proves his theorem by a Löwner argument, deformingf to the identity
through a family of mappings in which injectivity of any member implies injec-
tivity of its predecessors. Ahlfors [2] uses a direct method to show that a locally
injective analytic functionf in B is injective if there exist a complex numberc
and a real numberk such that|c| ≤ k < 1 and∣∣∣∣z · f ′′f ′ (z)+ c|z|2

1− |z|2
∣∣∣∣ ≤ k

1− |z|2 , z∈B.

Moreover, he proves thatf admits a(1+ k)/(1− k)-quasiconformal extension to
the Riemann sphere. One obtains Becker’s result as a corollary by takingc = 0
and considering the functionsz 7→ f(rz) for r < 1. Chuaqui [6] proves Becker’s
theorem in one step by applying a generalization of Nehari’s univalence crite-
rion, which involves theSchwarzianderivative, to the metric|f ′|ρB |dz| in B. The
same method also yields the sharp criterion|(f ′′/f ′)(x + iy)| ≤ (1/2)/x for uni-
valence in the right half-plane. Indeed, it applies to any (round) diskD in the Rie-
mann sphere and yields the following criterion: Iff is meromorphic and locally
injective inD, and iff −1{∞} = {∞} ∩D, thenf is injective if

|(ρz/ρ) · f ′′/f ′| ≤ (1/4)ρ2, ρ = ρD.
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The functionsw(z) appearing in the proofs that follow are extremal functions for
this criterion. Becker and Pommerenke’s function, used in the proof of Theorem 2,
is extremal for the right half-plane, and the functionsw(z) in the proof of Theorem
3 are extremal for the domain|z| > 1 in the sphere. Chuaqui’s paper provided the
motivation for considering such functions.

The remainder of this paper consists of proofs of the following theorems.

Theorem 2. If D is convex, thenτ(D) ≤ 1/2.

Theorem 3. If D is not convex, thenτ(D) < 1/2.

We begin with the proof of Theorem 2. Consider the functionw 7→ w+ log(w−1)
in C− (−∞,1], the branch of the logarithm being chosen so that|arg(w −1)| <
π. This function, introduced by Becker and Pommerenke, maps its domain con-
formally onto the plane less{ x ± iπ : x ≤ 0 }, taking the upper and lower halves
of a disk about the origin onto slit neighborhoods ofiπ and−iπ, respectively. Let
z 7→ w(z) be the inverse function, and forh∈C let Fh(z) = 1+ (w(z)−1)1+h.

Lemma 4. If x + iy ∈H, thenx|(F ′′h/F ′h)(x + iy)| ≤ 1/2+ 4|h|/3.

Proof. One computes that

F ′′h
F ′h
= w ′′

w ′
+ w ′ · h

w −1
= 1

w2
+ h

w
, w = w(z).

If z = x + iy andw(z) = u+ iv, then

x = u+ Re{log(w −1)} = u+ (1/2) log(r 2 − 2u+1), u2 + v2 = r 2.

Considerx as a function ofu, wherer is fixed. Whenr < 2, the maximum value
is r 2/2. It follows that if |w(x + iy)| = r < 2 then

x

∣∣∣∣F ′′hF ′h (x + iy)
∣∣∣∣ ≤ r 2

2

(
1

r 2
+ |h|

r

)
≤ 1/2+ |h|.

Whenr ≥ 2, the maximum value isr+ log(r−1),which is less than 4r/3. Hence,
if |w(x + iy)| = r ≥ 2, then

x

∣∣∣∣F ′′hF ′h (x + iy)
∣∣∣∣ ≤ r + log(r −1)

r 2
+ (4r/3)|h|

r
≤ 1/2+ 4|h|/3.

The lemma follows.

For distinct pointsz+, z− ∈H, let h = h(z+, z−) be the solution of

(1+ h){log(w(z+)−1)− log(w(z−)−1)} = 2πi.

ThusFh(z+) = Fh(z−), andh approaches zero asz± → ±iπ. Consider a con-
vex domainD in the plane other than the plane itself. By means of an affine trans-
formation that maps a chosen pointz0 ∈ D to the positive real axis and maps a
nearest pointz ′ ∈ ∂D to the origin, one sees thatD is affinely equivalent to a con-
vex, open setD ′ that omits the origin but includes a disk{ z : |z− r| < r }. Since
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the rays through the origin that emanate from points in that disk exhaust the left
half-plane,D ′ is contained in the right half-planeH. Inflating by a positive scalar
multiplication if necessary, one can further assure thatD ′ contains distinct points
z+, z− such that the modulus ofh = h(z+, z−) is less than a prescribed number
ε. But then

τ(D) = τ(D ′) ≤ sup
D ′

|F ′′h/F ′h|
ρD ′

≤ sup
D ′

|F ′′h/F ′h|
ρH

≤ 1/2+ 4ε/3.

Sinceε was arbitrary,τ(D) ≤ 1/2. This argument proves Theorem 2.
The foregoing arguments apply to some nonconvex domains as well, but one

can only conclude thatτ ≤ 1/2. To obtain the stronger conclusion of Theorem 3,
we use a family of mappings parameterized by a numbera ≥ 1, which will ul-
timately be chosen to match a given nonconvex domain. For now, leta be fixed,
and consider the function

w 7→ z = a−a/(a+1)(w + a)a/(a+1)(w −1)1/(a+1), w ∈C− [−a,1].

Here the arguments ofw+a andw−1 are to be chosen so as to differ by less than
π; the result is then well-defined. By examining behavior on either side of the slit
[−a,1], one sees that the mappingw 7→ z takesC− [−a,1] conformally onto the
plane less the radial segments [0, e±iπ/(a+1)],mapping the upper and lower halves
of a disk about the origin to slit neighborhoods ofeiπ/(a+1) ande−iπ/(a+1), respec-
tively. The mappingsza so defined are related to the one used to prove Theorem 2
in that

lim
a→∞(a +1)(za(w)−1) = w + log(w −1), w ∈C− (−∞,1],

the convergence being uniform on compact sets.
Let z 7→ w(z) be the inverse function, and letE be the planar domain|z| > 1.

The following lemma is the key to Theorem 3.

Lemma 5. If z∈E, then ∣∣∣∣z · w ′′w ′ (z)
∣∣∣∣ ≤ 1

|z|2 −1
.

Proof. A computation shows that

zw ′ = (w + a)(w −1)

w
, z · w

′′

w ′
= a

w2
. (1)

Viewing z as a function ofu = Re(w) on a circle|w| = r, one has

1

|z|2 ·
d|z|2
du
= 2(a −1)r 2 − 4au

(r 2 + 2au+ a2)(r 2 − 2u+1)
.

If a = 1, or if a > 1 andr < 2a/(a − 1), then|z|2 attains a maximum atu =
(a − 1)r 2/(2a), and the maximum value is 1+ r 2/a. If r ≥ 2a/(a − 1), then the
maximum occurs atu = r and the maximum valuez(r)2 is bounded by 1+ r 2/a,
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for those two quantities are equal whenr = 2a/(a − 1) and their ratio decreases
thereafter. This analysis shows that

|z|2 ≤ 1+ |w(z)|2/a, z∈C− [0, e±iπ/(a+1)]. (2)

The lemma then follows from the second equation in (1).

The presence of the factorz in Lemma 5 will allow us to establish our next result.

Theorem 6. If z+, z− ∈E are sufficiently close toe±iπ/(a+1), respectively, then
there is an analytic functionF in E such thatF(z+) = F(z−) and

sup
z∈E

∣∣∣∣F ′′F ′ (z)
∣∣∣∣(|z|2 −1) < 1.

Before proving this result, we deduce Theorem 3. LetD be a nonconvex domain
in the plane. IfD is dense, thenτ(D) = 0 by Astala and Gehring’s theorem. As-
sume, then, thatD is not dense. As noted by Martin and Osgood (Lemma 3.14 in
[13]), the complement ofD contains a disk whose boundary intersects∂D in at
least two points. It follows thatD is affinely equivalent to a domainD ′ ⊆ E whose
closure includes the pointse±iπ/(a+1) for somea ≥ 1. By the Schwarz lemma,

ρD ′(z) ≥ ρE(z) = 1

|z| · log|z| >
2

|z|2 −1
, z∈D ′.

Theorem 6 then provides a noninjective functionF inD ′ such that the supremum
of |F ′′/F ′|/ρD ′ is less than 1/2. Thereforeτ(D) = τ(D ′) < 1/2, and the proof
of Theorem 3 is complete.

Let� = w(E); this is the exterior of a figure eight that crosses itself at the ori-
gin. We prove Theorem 6 by deforming the inclusion of� into the plane in two
independent ways. The result is a family{ft,β} of analytic functions in�, param-
eterized by complex pairs(t, β) near(0,1); the functionsFt,β : z 7→ ft,β(w(z))

in E constitute a two-parameter deformation ofw. Whent is small and positive,
there is a valueβ(t) such thatFt,β(t) mapsE onto the exterior of another fig-
ure eight; furthermore, this mapping, and all mappings obtained from nearby pa-
rameter values, satisfy better bounds than didw. One fulfills the conditions of
Theorem 6 by choosingF from among those nearby functions.

Let m > 0 be the infimum of|(w + a)(w − 1)| in �. For t ∈ C such that
(a +1)|t | < m/2, let

ft (w) = w + t log

(
w + a
w −1

)
, w ∈�,

the branch of the logarithm being chosen so that the second term vanishes at in-
finity. One then has

f ′t (w) = 1− t (a +1)

(w + a)(w −1)
, f ′′t (w) =

t (a +1)(2w + a −1)

(w + a)2(w −1)2
,

and the restriction ont implies that|f ′t −1| < 1/2.
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Forβ ∈C such that|β −1| < 1, defineft,β : �→ C andFt,β : E→ C by

ft,β(w) = w +
∫ w

∞

(
f ′t (ζ)

β · (1+ a/ζ)(β−1)/(a+1)(1−1/ζ)a(β−1)/(a+1) −1
)
dζ,

Ft,β(z) = ft,β(w(z)).
Here the path of integration is to lie in�, and in each exponential expression the
logarithm of the base is that which vanishes at infinity. Because the integrand is
O(|ζ |−2) asζ → ∞, the integral is well defined, andft,1 equalsft . As in the
proof of Lemma 9 to follow, one also sees thatft,β(w) depends holomorphically
upon its three arguments. Note that

f ′t,β(w) = f ′t (w)β
(
(w + a)1/(a+1)(w −1)a/(a+1)

w

)β−1

= f ′t (w)β
(
(w + a)(w −1)

aa/(a+1)zw

)β−1

.

Therefore, by equation (1),

F ′t,β(z) = f ′t,β(w) · w ′ = a−a(β−1)/(a+1)f ′t (w)
β(w ′)β = a−a(β−1)/(a+1) · F ′t,1(z)β.

It follows that the pre-Schwarzian derivative ofFt,β is β times that ofFt,1.
The conditions(a+1)|t | < m/2 and|β−1| < 1 are implicit in all that follows.

Lemma 7. (a)There is a numberM, independent oft andβ, such that∣∣∣∣z · F ′′t,βF ′t,β
(z)

∣∣∣∣ ≤ |β| · a

|w|2 (1+M|t |), z∈E, w = w(z).

(b) If (a +1)|t | < min{m/2, a/6}, then∣∣∣∣z · F ′′t,βF ′t,β
(z)

∣∣∣∣ ≤ |β| · a

|w|2
(

1+ a +1

4a
|t |
)
, z∈E, |w| = |w(z)| < 1/6.

Proof. Consider the equation

z · F
′′
t,β

F ′t,β
(z) = z · β F

′′
t,1

F ′t,1
(z) = β

(
z
w ′′

w ′
+ zw ′ · f

′′
t

f ′t
(w)

)

= β

w2

(
a + t (a +1)(2w + a −1)w

(w + a)(w −1)− t (a +1)

)
. (3)

In view of the definition ofm, the second term in the final expression is bounded
by a constant times|t |, and assertion (a) follows.

Suppose that(a + 1)|t | < a/6. If w is any complex number of modulus less
than 1/6, then straightforward estimates show that

|(2w + a −1)w| < a/6, |(w + a)(w −1)− t (a +1)| > 2a/3.

Assertion (b) follows directly from equation (3) and these bounds.
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Lemma 8. If |t | is sufficiently small and|β| < 1− (a +1)|t |/(2a), then

sup
z∈E

∣∣∣∣F ′′t,βF ′t,β
(z)

∣∣∣∣(|z|2 −1) ≤ 1− a +1

4a
|t |.

Proof. Letϕ(z) be the ratio of|z|2−1 to |z| · |w(z)|2/a for z∈E. By equation (2),
that ratio is less than unity, and it approaches zero asz→∞. It also approaches
zero asz approaches any point in the unit circle other thane±iπ/(a+1). Since nei-
ther of the latter points is in the closure of the setS = { z ∈ E : |w(z)| ≥ 1/6},
the supremum ofϕ in S is a numbers < 1.

Suppose that(a + 1)|t | < min{m/2, a/6} and|β| < 1− (a + 1)|t |/(2a). By
part (a) of Lemma 7,

sup
z∈S

∣∣∣∣F ′′t,βF ′t,β
(z)

∣∣∣∣(|z|2 −1) = sup
z∈S

ϕ(z)

∣∣∣∣z · F ′′t,βF ′t,β
(z)

∣∣∣∣ · |w(z)|2a
≤ s(1+M|t |).

The latter, in turn, is less than 1−(a+1)|t |/(4a) when|t | is small. IfS ′ =E−S,
then equation (2) and part (b) of Lemma 7 imply that

sup
z∈S ′

∣∣∣∣F ′′t,βF ′t,β
(z)

∣∣∣∣(|z|2 −1) ≤ sup
z∈S ′

∣∣∣∣F ′′t,βF ′t,β
(z)

∣∣∣∣ · |w(z)|2a
≤ sup

z∈S ′

∣∣∣∣z · F ′′t,βF ′t,β
(z)

∣∣∣∣ · |w(z)|2a

≤ |β|
(

1+ a +1

4a
|t |
)
≤ 1− a +1

4a
|t |.

The lemma follows.

Lemma 9. Suppose that(a + 1)|t0| < m/2 and |β0 − 1| < 1. As t → t0 and
β → β0, and asw ∈� approaches the origin through either the upper or lower
half-plane,ft,β(w) approaches limitsg±(t0, β0), respectively. The functionsg±

are holomorphic, and

∂g±

∂t
(0,1) = loga ∓ iπ, ∂g±

∂β
(0,1) = a

a +1
(loga ∓ iπ).

Proof. Becauseft,β(w̄) = ft̄,β̄ (w), it is enough to prove the assertions aboutg+.
The main step in the proof is to bound the integrandIt,β in the definition offt,β .

We show that there are positive numbersC andC ′ such that, whenever(a+1)|t | <
m/2, |β −1| < 1, andw ∈�,

|It,β(w)| ≤ C|w|−2 if |w| ≥ 2a, (4)

|It,β(w)+1| ≤ C ′|w|1−Re(β) if |w| ≤ 2a. (5)

In the derivation that follows, any assertion about bounds means that the bounds
are uniform: they hold for all sucht, β, andw as long asw satisfies certain explicit
restrictions.

Recall thatIt,β(w) equalsf ′t (w)
βb(w)β−1−1, where

b(w) = (1+ a/w)1/(a+1)(1−1/w)a/(a+1).
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From the formula forf ′t , one sees that|f ′t (w)−1| is bounded by a constant times
|w|−2 when|w| ≥ 2a. Since|f ′t (w) − 1| is always less than 1/2, Taylor’s theo-
rem then implies that the logarithm off ′t (w) is also bounded by a constant times
|w|−2 in that domain. In turn, since

|β log(f ′t (w))| ≤ 2|log(1/2)| = log 4, w ∈�,
another application of Taylor’s theorem yields a bound

|f ′t (w)β −1| = |eβ log(f ′t (w)) −1| ≤ C1|w|−2, |w| ≥ 2a. (6)

For the same values ofw, Taylor’s theorem provides bounds

|log(1+ a/w)− a/w| ≤ C2|w|−2, |log(1−1/w)+1/w| ≤ C3|w|−2.

It follows that|logb(w)| is no greater than a constant times|w|−2, and hence that

|b(w)β−1−1| ≤ C4|w|−2, |w| ≥ 2a.

Inequality (4) is a consequence of this bound and (6).
To obtain (5), one need only boundb(w)β−1 by a constant times|w|1−Re(β) when
|w| ≤ 2a, for |f ′t (w)β | ≤ 4. In that domain,|w · b(w)| is bounded above and
below by positive constants. Since the arguments of 1+ a/w and 1− 1/w are
between±π, so too is the argument ofb(w). Therefore

|b(w)β−1| < eπ|Im(β)| · |b(w)|Re(β)−1 ≤ C5|w|1−Re(β), |w| ≤ 2a,

and (5) follows.
The positive imaginary axis is contained in�. Integrating along that axis, let

g(t, β) =
∫ 0

∞

(
f ′t (ζ)

β(1+ a/ζ)(β−1)/(a+1)(1−1/ζ)a(β−1)/(a+1) −1
)
dζ.

Inequalities (4) and (5) imply that the integral exists. In fact, for each positive
numberε, they provide an integrable functionM(ζ) that bounds the integrand of
g(t, β) whenever Re(β) < 2− ε. By the dominated convergence theorem, it fol-
lows thatg is holomorphic and that differentiation under the integral sign is valid,
for Cauchy’s integral formula shows that a bound|ϕ| ≤ M on an analytic function
in a disk|z− z0| ≤ r implies a bound∣∣∣∣ϕ(z)− ϕ(z0)

z− z0
− ϕ ′(z0)

∣∣∣∣ ≤ 2M|z− z0|/r 2, |z− z0| < r/2.

Differentiating under the integral sign yields the values

∂g

∂t
(0,1) = loga − iπ, ∂g

∂β
(0,1) = a

a +1
(loga − iπ).

It remains to show thatft,β(w) converges tog(t0, β0) ast → t0, β → β0, and
w→ 0 through the upper half-plane. Forδ ∈ (0,1], the intersection of� with the
upper half of the circle|w| = δ is a single arc. By integratingf ′t,β along a subarc
and applying the bound (5), one finds that

|ft,β(w)− ft,β(iδ)| < (π/2)C ′δ2−Re(β), w ∈�, Im(w) > 0, |w| = δ ∈ (0,1].
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One also has

|ft,β(iδ)− g(t, β)| =
∣∣∣∣∫ iδ

0
f ′t,β(ζ) dζ

∣∣∣∣ ≤ ∫ δ

0
C ′t1−Re(β) dt = C ′δ2−Re(β)

2− Re(β)
.

Let ε be a positive number less than 2− Re(β0). If β is near enough toβ0 that
ε < 2− Re(β), then the previous estimates imply that

|ft,β(w)− g(t, β)| ≤
(
π

2
+ 1

ε

)
C ′δε, w ∈�, Im(w) > 0, |w| = δ ∈ (0,1].

By the continuity ofg, it follows thatft,β(w) approachesg(t0, β0) as(t, β,w)→
(t0, β0,0). This completes the proof of Lemma 9.

Sinceg+ − g− vanishes at(0,1) and its partial derivative with respect toβ does
not, the implicit function theorem provides an analytic functiont 7→ β(t), de-
fined for t near zero, such thatβ(0) = 1 and(g+ − g−)(t, β(t)) = 0. Using
the formulas from Lemma 9, one sees thatβ ′(0) = −(a + 1)/a. It follows that
|β(t)| < 1− (a + 1)t/(2a) whent is small and positive. Fix such a valuet, first
reducing it if necessary so that Lemma 8 applies and so that the functionh : β 7→
g+(t, β)− g−(t, β) is not constant. By Lemma 9,h is a locally uniform limit of
the functions

β 7→ Ft,β(z
+)− Ft,β(z−)

asz+, z− ∈E approache±iπ/(a+1), respectively. It follows that the displayed func-
tion has a zeroβ(z+, z−) ≈ β(t) when z± are neare±iπ/(a+1); thus the func-
tion F = Ft,β(z+,z− ) mapsz+ andz− to the same image. When those points are
sufficiently neare±iπ/(a+1), Lemma 8 implies that

sup
z∈E

∣∣∣∣F ′′F ′ (z)
∣∣∣∣(|z|2 −1) ≤ 1− a +1

4a
t < 1.

This argument proves Theorem 6.
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