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1. Introduction

Let X be a Hilbert space and let V: X — X be a bounded linear operator. If V is
an isometry, then the well-known Wold decomposition theorem states that

e o]
X=XoPvx, (1)

n=0
where X; = X © VX is a wandering subspace and Xo = ()., V"X [4]. If X =
H? and V is the operator of multiplication by an inner function g, then the inter-
section (o V"H 2 = {0} and the decomposition (1) implies that an orthonormal
basis of H2 © gHZ, {S1,...,8q, ...}, is a g-basis of H?; that is, any function f €

H? can be written as

F@) =) 5u() fu(g(2). )
n=0

Any closed subspace M C H? that is invariant under multiplication by g could be
considered as X, and therefore a relation similiar to (2) holds. We write this rela-
tion in the following form. Given a subset A C H?, we denote by [A] ¢ the mini-
mal closed subspace of H? containing A that is invariant under multiplication by
g. In our case the relation (1) could be written in these terms as follows. If M is
invariant under multiplication by g, then

[MogMl, = M. 3)

It was shown in [5] that the relation (3) yields in this case some nice properties of
functions from M © gM and leads to a generalization of classical canonical factor-
ization. In general, (3) leads to description of multiplication invariant subspaces.
In the case of the Bergman space in the unit disk, the validity of (3) when g(z) =
z was proved in [1].

In this paper we investigate the question when (3) holds if g is not inner. More
precisely, let g be a bounded analytic function in the unit disk. We ask when (3)
holds for any subspace M C H? that is invariant under multiplication by g. Our
main result is the following.
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TueoREM. (i) Ifg € H*®, g(0) = 0, and (3) holds for any subspace M C H?
that is invariant under multiplication by g, then there is a simply connected do-
main 2 C C and an inner function h such that g = @gqoh, where @g, is a Riemann
mapping
Ya: A — Q.

(i) If, in addition, 2 satisfies the condition that ¢gq is a weak-x generator of
H® [7], then condition (i) is also sufficient: for any inner function h and any M C
H? that is invariant under multiplication by g = @gq o h, the relation (3) holds.

COROLLARY 1. Let g map the unit disc A onto itself. Then g is inner if and only
if any g-invariant subspace M satisfies (3).

An H?-function f is said to be g-2-inner [5] if || f||g2 = 1 and

2
f | f(e®)*(g(e”))*d6 =0
0
forallk =1,2,....

COROLLARY 2. If g maps the unit disc A onto a bounded domain <2 such that
the Riemann mapping ¢q is a weak-x generator of H* and any g-invariant sub-
space M satisfies (3), then the following equality holds for any g-2-inner function
f and any polynomial P:

1f () P(g) g2 = | P(g@)]l g2

This paper is organized as follows. Section 2 contains results that deal with per-
turbations of reproducing kernels. These results are used in Section 3 to establish
the theorem and corollaries just stated.

ACKNOWLEDGMENT. We would like to thank H. Bercovici for bringing to our
attention the weak-* generator condition, and T. H. MacGregor for useful discus-
sions. We would also like to thank the referee for very helpful comments concern-
ing the early versions of this paper.

2. Perturbation of Reproducing Kernels

PROPOSITION 1. Let f(z) be a holomorphic function in A,, the closed disk of
radius r centered at the origin. Let f(0) = 0 and |f'(z)| = A in A,. Then the
range f(A,) contains the disk of radius Ar centered at the origin.

Proof. The result is straightforward. Indeed, let wg be a point in d(f(A,)) clos-
est to the origin. Obviously, |wg| > 0 and the whole straight interval from O to
wy is in the range of f. Let y be a curve that originates at the origin, terminates
on the boundary of A,, and satisfies f(y) = [0, wp]. Then

ol = flf’(z)l ds(@) = AL(y) = Ar,
Y

where ds is the arc-length differential on y. O
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Recall that if Q2 is a bounded domain in C and if w is a finite, nonnegative measure
on €, then a point w is in bpe(w) if the point evaluation at w is an L?(u)-bounded
linear functional on the set of analytic polynomials. In this case the Riesz theorem
implies that there is an element K,,(z) such that

Fw) = fg FORa® du)

for any polynomial f. If w € interior (bpe(u)) and if point evaluations K,,(z) de-
pend antianalytically on w (and analytically on z) in a neighborhood of w, then
w € abpe(u). The following proposition can be found in [3, p. 63].

ProrosiTiON A. Q2 C abpe(u) if and only if point evaluations are locally uni-
formly bounded in Q2. That is, for any w € 2 there is a number r > 0 such
that

sup{ | K; (L2, p : 1z —w| <1} < 00.

In the following two lemmas we assume that €2 and p satisfy the following con-
dition:

(a) © C abpe(u).

Note that if 2 and u satisfy the condition (a) and §,, is a point mass at w, where
w € Q, then Q and u' = u + A8, satisfy (a) for any positive constant A. Simi-
larly, if © and u satisfy (a), then Q and du’(z) = p(z)du(z) satisfy (a) for any
positive step function p(z) in  that takes only a finite number of values.

We denote by Lg (2, ) the closed subspace of P?(11) = the closure of analytic
polynomials in L2(u) (for a detailed description of P2() see [6; 8]), which con-
sists of analytic functions in Q. Thus the natural imbedding of L2(£2, u) into the
space of all holomorphic functions in €2 is injective. Let K, (z, w) stand for the
reproducing kernel of L2(S2, u). The kernel K, is analytic in z and antianalytic in
w.

LEMMA 1. Let 0 € 2, and let Q2 satisfy condition () with u continuous (i.e., the
measure of a point is zero). If there is a point T € supp(u) in the interior of 2,
then there exist Ty, To € supp(u) N2, a > 1, and oy, ap > 0 (] +ap = 1) such
that the kernel K, (z, 0) has zeros in 2, where p’ is the measure

1 1
w=—pu+ (1 — —)(0513r1 + a28;,)
a a

and 8, is the unit point mass at w.

Proof. If K, (z,0) has zerosin 2, thenseta = 1,01 =ap = 1/2,and 11 = 1p =
7. Otherwise, denote by i the following measure:

~ 1 1
p=—-p+{1—-]95.
a a

If f is a polynomial then
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f@) = fQ F) K, 2 dis(w)

1 S 1 —
= _/_ FWw) K (w, z) du(w) + (1 — —)f(r)K,z(r, z).
a Jo a

Thus, if f(r) = 0 we obtain

1 -
f@) =1 / F ) Ba(w,2) du(w)
aJg

The relation (4) yields

= /Q fw) K, (w, z) du(w).

Kj(z, w) = aK,(z, w) + A(w) K, (z, 7).

Since the kernel is antisymmetric, we can easily obtain

K;(z, w) =aK,(z,w) + 1K, (z, T) K, (t, w),

where A is a constant. An application of (5) to f(z) = 1 gives

and therefore

K;(z, w)

a

_ ala—1)
14+ (@a—-DK,(, 1)’

T 1+@-DEKu( 1)

Thus,

X [Ku(z,w) + (@ — D(Ku(z, w)Ku(z, ©) — Ku(z, T Ku(r, w)) ]

K;(z,0)

and

a

T 14 (a— DKu(7, 1)
X [Ku(z,0) + (@ — D(Kpu(z, 0) Ky (z, T) — Ku(z, 1) Kpu(t, 0))]

Further,

d

dz

Kp(z,0) =

Kup(z,0) =

aK . (z, 0)
14+ (a—DK,(z, 1)

a

1+ (@—1DK,(z, 1)

x[d

dz

d
K, (z,0) + (a — D(d_zK”(z’ 0K,(zr, 1)

d
— -‘-i—zKu(z, 7)K, (7, O))].

C)

)

(6)

(7

®)



Wandering Property in the Hardy Space 601

If
d d
—K, (2,0 K,(t,7) — —K,(z, K,(z,0) #0, 9
1z u(z )Z=r u(T, T) iz w(2, 7) . u(t,0) # )
then it follows from (8) that there is a neighborhood O, () where
d
d—K,;(z,O) —> 00 as a —> oo (10)
Z
uniformly in O,(7). Note that, by (7), we have
K,(t,0
Ki(z,0) — ﬁ as a — 00, 1)

Now Proposition 1, (10), and (11) together imply that, if thereis a T € supp(u)N <2
such that (9) holds, then K (z, 0) has zeros in €2 if a is sufficiently large. In this
case we set .y = 1, A, = 0, and p’ = fi. Finally, suppose that

d

d
EK,J,(Z, 0 Ku(r,7)— d—ZK,L(Z, 7)

K, (t,0)=0 (12)

=T =T

for all T € supp(u) N 2. Let us show that there are v, T € supp(u) N €2 such that
the measure i = % u+ 5’—;—16‘, satisfies (9) for some b > 1; that is,

d

—K;(z,0)

d
dz Kﬁ,(l’, ‘C)—d—ZKﬁ(Z, ‘E)

K;(z,0) #0. (13)

=T =

Suppose that (13) does not hold. To simplify the notation let us write K (z, w) for
K, (z,w) and K, (u, w) for dizK# (z, w)|z=u. We also denote by D the constant
D= b
1+ (G- DKW, v)’

By (6) we have
Ki(z,w) = D[K(z,w) + (b — D(K(z, w)K(v, v) — K(z, V) K(v, w))].

A direct computation shows that (12) yields

d d
0= EK[L(Z,O) tK,;('c, r)—d—zK,;(z,r) K;i(z,0)

= D*{(b — D[K(®, 0)(K.(r, ) K(z,v) — K,(z, ) K (7, 7))

= =T

— K(v, 1)(K (7, 0)K(t, v) — K, (7, v)K(z, 0))]
+ (b — D*K@, KW, 0)(K, (z, T)K(z,v) — K (z, V) K(z, 7))
— K@, 1)(K,(r,0)K(r,v) — K, (z, V) K(z, 0))]}.
Since b > 1 is arbitrary, the last relation implies that
K@, 0)(K,(z, 1)K (r,v) — K,(z, v)K(z, 7))
— K, )(K.(r,0)K(z,v) — K. (z,vV)K(z,0)) =0, (14)
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and (14) holds for all t, v € supp(u) N 2. By (12) we have
K,(t,0)K(t, 1)
K.(1,7) = = 15
(7, T) K(z,0) (15)
(recall that we assumed K{(z, 0) does not vanish in €2). Now (14) and (15) yield
(K.(zr,0)K(t,v) — K, (7, v)K(z, 0))

x (K(z, 1) K(v,0) — K(v, ©)K(7,0)) = 0. (16)

If
K(z, ) Kv,0) — K(v,1)K(z,0) =0 )

then
K(v, 1) =AK(v,0), (18)

where A is independent of v. Fix 7. If (17) holds for infinitely many v € O,(t)
then, by the uniqueness theorem, (18) implies

K(z,t) =AK(z,0), z€;

for any polynomial P we would then have

P(z) — AP(0) = fg P(2)(K(z,7) — AK(z,0)) du(z) =0, (19)
a contradiction. Therefore, we conclude by (16) and the last argument that
K, (t,0)K(z,v) — K, (7, v)K(z,0) =0
for all 7, v € supp(u) N 2. This implies
d ( K(z,v) )
dz\ K(z,0) /|,—,
Fix v. Because K(z,v)/K(z,0) is analytic, we obtain K(z,v) = AK(z,0) for

some constant A. The same argument with the integral (19) leads to a contradic-
tion. [

=0 forall 7,vesupp(u)N Q.

LEMMA 2. Let u be a continuous probability measure such that Q2 and | sat-
isfy condition (a). Suppose that there is a point T € supp{(it) N 2. Then there is a
positive step function p(z) in Q that takes a finite number of values and satisfies
the following condition: the reproducing kernel K,/ (z, 0) has zeros in 2, where

du'(z) = p(2) du(z).

Proof. By Lemma 1, there exist 71, 73 € supp(u) N 2 and a pair of nonnegative
numbers Aj, A, such that K;(z, 0) has zeros in £2, where
0&‘ =K + )\-larl + A'ZS‘Q-

Letg, — Oasn — oo. Write

() =1+ X0, () (2) + X0, (r2)(2),

A1 Ao
P (O, (t1)) (O, (12))
dpn(z) = pn(2)du(z),
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where x4 stands for the characteristic function of a set A. Note that €2 is in both
abpe(/t) and abpe(u,,). This follows from the following simple fact: Q C abpe(u)
and p > 0 imply that u, = @ + u; satisfies  C abpe(u,). Moreover, for every
w € Q2 we have

N Ky (2o W20, 1) < 1Ku(z, w12, 0 (20)
where the kernels in (20) are considered as functions of z. Further, the direct
application of (20) yields

K, (ti,w) — —— Ku,,(z W) Xo,, ) (2) du(z)
(i)

((98,,

Ky, (ti,w) — Ky, (z, w) | x0,, ) (@) du(z)

——
(O, (1) Ja

< sup
2€ O, (1)

<&,C(w) ”K,u,,(zs w)”Lz(Q,,un)

< enCW) | Ky (2, W)l 120,y = €nC1(w), (21)

K,un(ri, w) — K,u,,(Z, w)| <&, sup

2€ O, (13)

0
-a_ZKAu'n(Z’ 'LU)‘

where i = 1,2 and C(w), Ci(w) are constants that depend only on the distance
from w to 3Q2. For any function f that is analytic in €2, we have

‘M(O—(T) / Ko (2, w) X0, (@) f(2) dp(2)

% / K, (2, w) X0, @) (2) di(2)

where, as in (21), the constant C,(w) depends only on the distance from w to 2.
Finally, (20), (21), and (22) yield

< e, Co(W f 2@,y (22)

| (Kate.w) = Ky e )) F@ dii)

_ ‘f K, (z, w) f(@)([du,(2) — dii(2))

‘m / K1 (2, W) X0, (21) (2) F(2) dp(2)

m / K1, (2 w) X0, () [ () A (2)

— A Ky, (1, w) f(11) — 2K, (T2, w) f(72)

< Ml f (@) | Ky, (11, w) —

f K, (z, w)xo,,) () du(z)

M(Os,,('fl))

+ A2l (@) Ky, (T2, w) —

f Ky, (z, w) Xo,, (12 (2) dp(z)

M(Oan (t2))
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+ en(A1 + 22) Co(WH || fll 1202, 1y
< el F @D+ 22l F (@) ) C1(w) + (A1 + 2D Co W) fll 122, 1))
< enCs(W [l 122, )- (23)
Now, (23) implies that
1Ky, (z, w) — Kip(z, Wl 20,5 —> 0 as n— o0 (24)

for all w. Therefore, K, (z,w) — K;(z, w) uniformly on compacta. Since
K (z, 0) has zeros in €2, the same is true for K, (z, 0) if n is sufficiently large.
O

3. Proof of the Main Theorem

To prove statement (i) of the theorem, it is enough to show that even the weaker
property
[/l ©8lfL]), = [f)y forall feH? (25)
implies g = @q o h, where # is inner and ¢g is a Riemann mapping of the unit
disc onto a simply connected domain 2. (Recall that [ f], is the minimal closed
subspace of H? that contains f and is invariant under multiplication by g.)
Suppose that (25) holds for all f € H?. Let g map the unit disc A onto a do-
main Q. Denote by  the pullback measure on €2 that is generated by g in the fol-
lowing way. Since g is bounded, it has boundary values almost everywhere with
respect to the normalized Lebesgue measure m on the unit circle. We denote the
boundary values by the same letter g. If A is a Borel subset of Q, define 11(A) by

n(A) =m({zeT: gx) e A}), (26)

where T stands for the unit circle. It is easy to see that €2 and u satisfy condition
(a) of the previous section. Indeed, let f be a polynomial and w € Q. If T € A is
a preimage of w under g, then we have

1
[ f(w)] = [f(g(T)] < \/T—_Wllfogllaz

1/2
= If(g(z))lzdm(z)>
V11— |t|2 (f
12
_ ﬁ_—ﬁ(/ |If@I? du(z))
1
\/—1——_——W||f||1,2(sz,u)-

Since g is an open mapping, the last estimate is locally uniform. This shows that
Q2 C abpe(u).

Suppose that g maps some subset A C T of positive linear measure into 2.
Then there is a point 7 € supp(u) N 2. By Lemma 2, there is a positive step func-
tion p(z) such that K,/ (z, 0) has zeros in 2. Define the function f(z) in the unit
disc by
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1 2 eif) +z :
f@ =exp{— fo o log V(g(e) de}. @27)

27

Then f € H* and, for boundary values of f, we have

| £()] = Vi (g(e?)).

Now, if ¢; = fP;(g), where P; are polynomials (i = 1, 2), then
1 2 ) - .
102 = 5 f P1(g(e)) Pa(g @) £ () do
0
1 27 ) - ]
= / P(g(e*)) P2 (g @) p(g(c™®)) db
T Jo

1 e
TJQ

Thus, [f], © gl[f]; is spanned by the function ¢ = f - R(g), where R is in
L2(R2, 1) and orthogonal to all functions that vanish at the origin. This implies
that R(z) = K,/ (z, 0). Since this kernel has zeros in €2, this yields that the closed
subspace of H? spanned by {f(z)K,/(g(z),0)g(2)*, k = 0, 1,...} consists of
functions that have zeros in A and hence cannot contain f, a contradiction. There-
fore, the (linear Lebesgue) measure of the set of points of the unit circle that are
mapped by g into the interior of €2 is equal to zero. Moreover, the preceding ar-
gument shows that there are no points in supp(u) that are in the interior of the
component of abpe(u) containing 2 (we denote this component by €2). Indeed,
any function from Lg (€2, @) can be analytically extended to Q. Apply the same
argument as before to Lg (Q, (). We obtain that there is an invertible function f €
H? given by (27) such that the reproducing kernel for the measure x’ on <2 asso-
ciated with f has zeros in €2. This implies that K,/ (z, 0) is not a cyclic element of
Lz (fl, w). In particular, a constant function is not in the z-invariant subspace of
L2 («, p) generated by K,/(z, 0). This is equivalent to the fact that f is not in the
closed subspace of H? spanned by {f(z) K,v(g(z),0)g(2)*, k=0,1,...}.

Let goSTzl be the inverse Riemann mapping that maps  onto the unit disc A. The
foregoing argument shows that the composition mapping

h=gaf;log:A—>A

is bounded and that || = 1 a.e. on the unit circle. Since g is not a constant, / is
an inner function and g = @gq o k. The statement (i) is proved.

To prove (ii) we suppose that g = ¢gq o h, where A is inner, 2(0) = 0, and
va: A — € is the Riemann mapping, ¢o(0) = 0. If pq is a weak-x generator of
H® then it is easily seen that, for any subset M C H?, [M] ¢ = [M]}. In partic-
ular, any g-invariant subspace of H? is h-invariant. Moreover, gL = hL for any
g-invariant subspace L of H?. Thus, for any g-invariant subspace L, we have

[LogLll,=[LegLly=[LehL]y=1L,

where the last equality follows from the validity of (3) for inner functions. O
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REMARK 1. Bercovici [2] asked whether the above weak-* generator of H™
condition is also necessary: if the wandering property (3) holds, and g = ¢q o A,
then ¢, is a weak-x generator of H°°. We know of no counterexamples to this
conjecture.

REMARK 2. It follows from the proof just given that the condition g(0) = 0 in
the statement of the main theorem could be replaced with “zero is in the range of
g”’. This remark makes Corollary 1 straightforward.

To prove Corollary 2 we note that, if ¢ is a weak-* generator of H°°, then any g-
2-inner function is A-2-inner. Further, for any polynomial in g there is a bounded
analytic function F in the unit disk such that P(g(z)) = F(h(z)), z € A. Now
Corollary 2 follows from the similar property for inner functions [5, Prop. 8].
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