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Dedicated to Clifford Earle on the occasion of his sixtieth birthday

1. Introduction

Hyperbolic 3-space is the set
H® = { (x1, %2, x3) € R’ 1 x3 > 0}

endowed with the complete Riemannian metric ds = |dx|/x3 of constant curva-
ture equal to —1. A Kleinian group G is a discrete nonelementary subgroup of
Isom* (H?), where Isom™ (H?) is the group of orientation preserving isometries.
In this setting, nonelementary means that the group G is not virtually abelian.
Finally a hyperbolic 3-orbifold Q is the orbit space of a Kleinian group G,

Q =H%/G. (L.1)

The orbit space is a hyperbolic 3-manifold if the group G is torsion-free. For the
general facts about hyperbolic geometry and Kleinian groups we refer the reader
to the monographs [2], [16], [21], and [23].

This paper is concerned with the length of intersecting and nonsimple closed
geodesics in hyperbolic 3-manifolds and 3-orbifolds. By a geodesic « we mean a
complete geodesic in the induced metric of constant curvature —1; we denote by
£(x) the hyperbolic length of . A closed geodesic « is simple if it is embedded or
a power of a closed embedded geodesic; otherwise, « is nonsimple. If @ is non-
simple, then any points of self intersection are transverse. The same is true at the
points of intersection of two distinct geodesics that are not both powers of some
primitive geodesic (see e.g. [21]).

Here are our two main results. They are motivated by a beautiful result due to
Beardon, Theorem 11.6.8 in [2], which gives sharp estimates for the case of closed
geodesics on Riemann surfaces. For related results see also [11], [19], and [20] as
well as [1] and [15].

THEOREM 1.2. If oy and o are closed geodesics in a hyperbolic 3-fold that
intersect at an angle ¢ where 0 < ¢ < m, then
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sinh(£(et1)) sinh(€(e2)) sin*/3(¢) > £2, (1.3)
where 0.121 < £;. The exponent of sin(¢) in (1.3) cannot be replaced by any
constant greater than 4/3.

THEOREM 1.4. If « is a closed geodesic in a hyperbolic 3-fold with a self-
intersection of angle ¢ where 0 < ¢ < m, then

sinh(£(a)) sin(¢) > £,, (1.5)
where 0.122 < £,. The exponent of sin(¢) in (1.5) cannot be replaced by any

constant greater than 1.

Theorems 1.2 and 1.4 are 3-dimensional analogs of the following theorem of Bear-
don’s mentioned before.

THEOREM 1.6. If oy and o, are closed geodesics in a Riemann surface S that
intersect at an angle ¢ where 0 < ¢ < 7, then

sinh(£(a1)/2) sinh(£(e2)/2) sin(p) > €2, (1.7)
where £ > 0.471.... The exponent of sin(¢) in (1.7) cannot be replaced by any

constant greater than 1.

We shall now reformulate and prove more precise versions of these results in the
language of Kleinian groups.

2. A Reformulation of the Problem

Let M denote the group of all Mobius transformations of the extended complex
plane C = C U {oo}. We associate with each Mbius transformation

az+b
f:

eM, ad-—-bc=1,
cz+d

the matrix

A= (‘C’ Z) € SL(2, C)

and set tr(f) = tr(A), where tr(A) = a + d denotes the trace of the matrix A.
Next, for each f and g in M we let [ f, g] denote the multiplicative commutator
fgflg~1. We call the three complex numbers

y(fre) =u(lf, gD -2, BN =u’(f)—4 Bl@=tu’-4 Q1

the parameters of the two-generator group { f, g). These parameters are indepen-
dent of the choice of matrix representations for f and g in SL(2, C), and they
determine ( f, g) uniquely up to conjugacy whenever y (f, g) # 0.
The elements of f of M, other than the identity, fall into three types.
(1) Elliptic: B(f) € [—4,0) and f is conjugate to z — uz where || = 1.
(2) Loxodromic: B(f) & [—4, 0] and f is conjugate to z — uz where || > 1;
f is hyperbolic if, in addition, © > 0.
(B) Parabolic: B(f) =0 and f is conjugate to z — z + 1.
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Each M&bius transformation of C = dH? extends uniquely via the Poincaré ex-
tension [2] to an orientation-preserving isometry of hyperbolic 3-space H>. In this
way we identify Kleinian groups with discrete Mdbius groups.

If f € M is nonparabolic, then f fixes two points of C and the closed hyper-
bolic line joining these two fixed points is called the axis of f, denoted by ax(f).
In this case f translates along ax(f) by an amount t(f) > 0, the translation
length of f, f rotates about ax(f) by an angle 8(f) € (—m, ], and

B(S) =4sinh2(r(f)_;i9(f)). (2.2)
It then follows from (2.2) that

cote(y = PO+ 0
and 1B) +41 — 1BC)]

cos(o (/) = LLTHZIPY @.4)

(ct. (15), (17), and (18) in [9]).
If f, g € M are nonparabolic and if « is the hyperbolic line in H? that is orthog-
onal to ax(f) and ax(g), then

Av{J.8)
BB

where § is the hyperbolic distance between ax( f) and ax(g) and where ¢ € [0, ]
is the angle between the hyperplanes in H? that contain ax(f) U« and ax(g) Ua,
respectively (see [8, Lemma 4.2]). In particular, if ax(f) and ax(g) intersect at an

angle ¢ € (0, 7) then
4y(f.8) _

BB

The following two numbers, associated with the (2, 3, 7) triangle group, will
occur frequently in what follows:

c =2(cos(2nm/7) +cos(x/T7) — 1) = 1.048...,
d =21 —cos(/7)) =0.198....

We show how one may establish the Kleinian group form of Theorem 1.6 from
(2.2), (2.6), and the following sharp inequality (see Cor. in [22]).

= sinh?(S + i¢), (2.5)

— sin%(¢). (2.6)

Lemma 2.7. If {f, g) is a Fuchsian group, then
ly(f,g)l=>d=0.198.... (2.8)

THEOREM 2.9. If (f, g) is a Kleinian group, if f and g are hyperbolics, and if
ax(f) and ax(g) intersect at an angle 0 < ¢ < m, then

sinh(z (f)/2) sinh(z (g)/2) sin(¢) > A2, (2.10)

where A = 0.471.... The constant A is sharp and the exponent of sin(¢) cannot
be replaced by a constant greater than 1.
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Proof. Let S be the hyperplane in H3 determined by ax(f) and ax(g). Then S is
invariant under G, F = G| is conjugate to a Fuchsian group and

lv(f,g)| =d=0.198... (2.11)
by Lemma 2.7. Next, since f and g are hyperbolic, 6(f) = 68(g) = 0 and

|B()| = 4sinh®(z(£)/2), |B(8)] = 4sinh*(z(g)/2) (2.12)
by (2.2). Thus,

16 sinh®(z (f)/2) sinh*(t(g)/2) sin’(¢) = | B(F)I| B(g)| sin* ()
=4y (f, &I
> 4d = 161*
by (2.6), (2.11), and (2.12), and we obtain (2.10).

Inequality (2.10) holds with equality if f and g are hyperbolic generators for
the (2, 3, 7) triangle group with

par({f, g)) = (—d, c,c) = (—0.198...,1.048...,1.048...).

We give an example in Section 4 to show that the exponent 1 of sin(¢) cannot be
increased. O

We want now to modify the above argument in order to establish the two Kleinian
group or 3-dimensional forms of Theorem 2.9 that correspond to Theorems 1.2
and 1.4. There are two difficulties to circumvent.

(1) Weneed an inequality similar to (2.11) for the commutator parameter y (f, g)
when (f, g) is a Kleinian group.

(2) We need a relation similar to (2.12) involving only the trace parameter 8( f)
and the translation length 7 (f) when f is a loxodromic element.

An example due to Jgrgensen [13] shows that there exists no absolute lower
bound for |y (f, g)| when (f, g) is a Kleinian group. However, the following re-
sult, established in [14] and [7] and with the sharp constant by Cao in [3], will
serve as a substitute for inequality (2.11).

LeEMMA 2.13. If {f, g) is a Kleinian group and if either

BN =c=1048... or B(f)=B(g), (2.14)

then
lv(f,g)l>d=0.198.... (2.15)

This result is sharp under either assumption in (2.14).

The following extension of a lemma due to Zagier [18] will serve as a substitute
for (2.12).

LEMMA 2.16. For each loxodromic Mobius transformation f there exists an in-
teger m > 1 such that
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IB(f™)] < smh(r(f )). 2.17)

f

The coefficient of sinh(z (f)) in (2.17) cannot be replaced by smaller constant.

Proof. This is an immediate consequence of [4, Cor. 3.25] and the fact that

n(t(f) +i9(f))).

BU™ = 4sinh2( .

We will also need the following variant of [8, Thm. 3.4] in what follows.

LEMMA 2.18. If (f, g) is a Kleinian group, if f is elliptic of order n > 3, and if
g is not of order 2, then

ly(f, &)l = a(n), (2.19)

where
2cos(2r /7y —1=0.246... if n =3,

2cos(2m/5) =0.618... if n=4,5, (2.20)
a(n) = 2 cos(27/6) = 1 if n=6, -

2cos(2n/n) —1>0.246... if n>17.
Proof. Since (f, g) is nonelementary,

fix(f)Nfix(g) =9, y(f, 8 #0.
If y(f, g) # B(f), then (2.19) follows from [8, Thm. 3.4]. Otherwise,

y(f,efe ) =v (£, v (f,e) — BN =0, fix(f) Nglhix(f)) # 9,

g maps one fixed point of f onto the other and f is of order 3, 4, or 6 by [17,
Prop. 1]. Hence

ly(f; ) =1B(N=1=a@)
and we again obtain (2.19). 1

3. Main Results

We establish here the Kleinian group analogs of Theorem 2.9 that correspond to
the estimates for hyperbolic geodesics in Theorems 1.2 and 1.4. We begin with
the following key inequality.

Lemma 3.1. If (f, g) is discrete and if f and g are loxodromics with axes that
intersect at an angle ¢ where 0 < ¢ < 7, then

|B(f)B(&)|sin*>(¢) > b, (3.2)
where 0.777 < b < 0.884.
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Proof. By (2.5),
|B(F)B(2)]sin*(@) = |4y (£, &)I. (3.3)

We want to find a lower bound for

u = |B(f)B(g)| sin*>(¢).

By relabeling, we may assume that | 8(f)| < |8(2)].
If [y(f, &) = d = 0.198... then, by (3.3),

u > |B(f)B(g)sin*(@) = |4y (f, g)| = 4d = 0.792....

Next, if | B(f)| < ¢ = 1.048... then y (f, g) # 0, by (3.3), and (f, g) is Kleinian.
Thus |y (f, g)| = d by Lemma 2.13, and

u>4d =0.792...
as before. Finally, if | 8(f)| > c and |y (f, g)| < d, then
v(f,8fe D =v(f, 0 (f. &) =B #0 34
and (f, gfg~!) is Kleinian. Hence
2w’ + 4157 = | B(f) B()PPc ™ sin*(9) + 41 B(/) B(&)I*? sin’ (@)

> |B(f) B())* sin(¢) + 4| B(f) B(g)| sin®($)| B(Sf)]

> 161y (f, &)I* + 161y (f, 1B

> 16]y(f, gfg~ "l = 16d = 3.168...
by (3.4) and Lemma 2.13, and we obtain

u>0.771.

Thus (3.2) follows with b > 0.777.
If (f, g) is the (2, 3, 7) triangle group with

par({f, g)) = (—d, ¢, ¢) = (—0.198..., 1.048..., 1.048...),

then
u = sin*?(¢)| B(F) B(g)| = (4dc)*? < 0.884

and this implies that b < 0.884. O

If we combine Lemma 2.16 and Lemma 3.1, we obtain an inequality for Kleinian
groups that corresponds to Theorem 1.2.

THEOREM 3.5. If (f, g) isdiscrete, if f and g are loxodromics, and if ax(f) and
ax(g) intersect at an angle ¢ where 0 < ¢ < m, then

sinh(z (f)) sinh(z (g)) sin**(¢) > A3, (3.6)
where 0.121 < Ay < 0.265. In particular,
max(z(f), 1(g)) = u1, 3.7

where 0.121 < py < 0.308. The exponent of sin(¢) in inequality (3.6) cannot be
replaced by a constant greater than 4/3.
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Proof. By Lemma 2.16 we can choose integers m, n > 1 such that
4
< -

1B(f™) = 7

Then (f™, g”) is Kleinian and we obtain

4
sinh(z(£)), Iﬁ(g")ls—%sinh(r(g))- (3.8)

4 \? |
(7%) sinh(z (f)) sinh(z(g)) sin*>(¢) > |B(f™) B(g")|sin"*($) = b

by (3.8) and (3.2). This implies (3.6) and (3.7) with

v/3b
A > e > 0.1215, p; > arcsinh(Ag) > 0.121.

Next, the polynomial p(z) = z* + 62> + 1222 + 9z + 1 is monic with a pair of
complex conjugate roots y, ¥, where
y = —1.541.6066...

and with two real roots in (—3, 0). Then, by either [5, Thm. 5.14] or [8, Sec. 8],
there exist elliptics f and g of orders 3 and 2 such that ( f, g} is Kleinian with

Hence (fg, g) is Kleinian with
par({fg,g) =(v,y — 1, —4).

Let & denote the Lie product of the loxodromic fg and g, that is, the M&bius trans-
formation of order 2 that interchanges the endpoints of fg and interchanges the
endpoints of g (see [12] or [8]). Then ( fg, fh) is Kleinian with

par((fg, fA) =(-Ly—-1,-y-4Hh=(Ly—-1Ly-D
by [12, Sec. 4]. Next, fg and fh are loxodromic with

T(fg) = arccosh(ly + 31 : ly — 1l

and T (fh) = 7(fg) by (2.3), and ax( fg) and ax( fh) intersect at an angle ¢ where

) = 0.3074... 3.9

¢ = arcsin( ) = 0.8905...

ly — 1}
by (2.6). Thus

sinh(t (fg)) sinh(z (fh)) sin*?(¢) = 0.06975... (3.10)

and we have
A1 < 0.265, m1 <0.308

by (3.10) and (3.9), respectively.
We will give in Section 4 an example to show that the exponent 4/3 of sin(g)
in (3.6) cannot be increased. O

Next, Lemmas 2.13 and 2.16 yield the following inequality for Kleinian groups
that corresponds to Theorem 1.4.
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THEOREM 3.11. If (f, g) is discrete, if f and g are loxodromics with B(f) =
B(g), and if ax(f) and ax(g) intersect at an angle ¢ where 0 < ¢ < 7, then

sinh(z(f)) sin(¢) > A,, (3.12)
where 0.122 < Ay < 0.435. In particular,
T(f) = pa, (3.13)

where 0.122 < py < 0.492. The exponent of sin(¢) in (3.12) cannot be replaced
by a constant greater than 1.

Proof. By Lemma 2.16 we can choose an integer m > 1 such that
BU™I < 2 sinh(e (1) (3.14)
=75 . .

Then (f™, g™) is Kleinian with 8(f™) = B(g™) and we obtain

4
7—7; sinh(z(f)) sin(¢)) > (I1B(f™) B(g™)| sin’*(p))"/?

= @y (", g™mD'"? = 2vd
from (2.17), (2.6), and (2.15). This implies (3.12) and (3.13) with

A/3d

If f and g are elliptic of order 3 and 2 with
y = y(f, g) = —4cos*(w/7) = —3.2469...,

then (f, g) is a Zy-extension of the (2, 3, 7)-triangle group obtained by adjoining
the Lie product of the generators of orders 2 and 3 (see [12] or [8]). Next,

Bgf)=B(fe) =y —1

and
ly +3l+ 1y — 1]

4

t(gf) =1(fg) = arccosh( ) = 0.4919...

by (2.3). Then

v(fe.ef) =v(fAef)=v(f eHNBAH+D=y(f,8) =7,

and we see from (2.5) and (2.6) that ax(fg) and ax(gf) meet at the angle ¢ €
(0, m) where
4y

517 = 07200....

sin®(¢) = —

Hence
A <0435..., wy <0.491....

The example in Section 4 shows that the exponent of sin(¢) in (3.12) cannot ex-
ceed 1. =
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Finally, we consider what can be said about the translation length of a loxodromic
f whose axis intersects the axis of an elliptic g.

THEOREM 3.15. If (f, g) is discrete, if f is loxodromic and g is elliptic of order
n > 3, and if ax(f) and ax(g) meet at an angle ¢ where 0 < ¢ < m, then

sinh(z (f)) sin®(/n) sin®(¢) > A3, (3.16)
where 0.184 < A3 < 0.568. Moreover,
©(f) > us, (3.17)

where 0.141 < u3 < 0.832.

Proof. We shall prove a stronger result by exhibiting, for each n > 3, constants
depending on n for the left-hand sides of (3.16) and (3.17).

We may assume without loss of generality that g is a primitive elliptic. Next,
by Lemma 2.16 we can choose an integer m > 1 such that

4
™| < —= sinh(z (f)).
1B(f™)I 73 f
Then (f™, g) is Kleinian and f™ is not of order 2, so we obtain
4

V3

from (2.6) and Lemma 2.18, where a(n) is as in (2.20). Inequality (3.18) then

yields (3.16) with
A3 > +/v/3a(3) /4w > 0.184....

Next, (3.18) implies that

sinh(z(f)) sin’(7/n) sin*(@) = |y (f", &)| = a(n) (3.18)

T(f) = U3 (3.19)

for n > 4, where
0.141... if n=3,

0.169... if n =4,

H3n=10244... if n=5, (3.20)
0.526... if n=6,
and =
L3, = a.rcsinh(‘/§ 1 —4sin (”/")) > 0.179... 3.21)
' 4w sin®(w/n)
forn >17.

To obtain (3.19) when n = 3, we apply Theorem 3.11 to the two loxodromic
elements f and 4 = gfg~! whose axes intersect. The dihedral angle between the
hyperbolic plane containing ax(g) and ax(f) and that containing ax(g) and ax(h)
is /3. Then spherical trigonometry implies that the angle 8 between the axes of
f and h is given by

sin(0/2) = sin(w/6) sin(¢) < sin(w/6).
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Thus @ < 7/3 and Theorem 3.11 implies (3.19) for n = 3 and (3.17) with u3 =

3,3,
The following result yields upper bounds for A3 and w3 (cf. [5]).

LemMA 3.22. If f and g are elliptics of orders 4 and 2 with y(f, g) # 0, then
f%g is nonparabolic, ax(f?g) meets ax(f) at angle 7 /2, and

T(f’g) = arccosh(W(f’ 8) +22|+ v/, g)l)_ (3.23)
Proof. Since g is of order 2,
B =v(f5e)—B(UfH—4
=y (f, 8) —BUMNMB)+4) -4
=2(y(f,8)+2)—4
=2y(f, 8 =2y(f*¢, /) #0.
Hence f2g is nonparabolic,
4v(f’8 ) __,
B(f28)B(f) ’
and ax(f2g) meets ax(f) at angle 7 /2 by (2.5). 1

If f and g are primitive elliptics of orders 8 and 2 with

v(f,e)=v2-1,  y(f%e =2,

then (f, g) is the (2, 3, 8)-triangle group. Hence ax(f*g) meets ax(f) at angle

¢ = JT/Z’
t(f*g) = arccosh(v/2 + 1) = 1.528...,

and
A3 < sinh(z(f*g)) sin(7r/8) sin®(¢) = 0.322...
by Lemma 3.22.
Similarly, if f and g are primitive elliptics of orders 4 and 2 with
—1+i/3
y(f, 8 = 5

then (f, g) is Kleinian by [8, Thm. 8.23], ax(f2g) meets ax(f) at angle ¢ = 7 /2,
and
ns < t(f’g) =0.831...,

again by Lemma 3.22. O

Theorem 3.15 holds only when g is an elliptic of order » > 3. Theorem 3.11 yields
the following counterpart of Theorem 3.15 for the case when g is of order 2.

THEOREM 3.24. If (f, g) is discrete, if f is loxodromic and g ellipticyof order 2,
and if ax(f) and ax(g) intersect at an angle ¢ where 0 < ¢ < /2, then
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sinh(z(f)) sin(2¢) > A, (3.25)
and
(f) = ua, (3.26)

where Ao and |1y are as in Theorem 3.11.

Proof. Let h = gfg~L. Then (f, h) is discrete, B(f) = B(h), and the axes of f
and & meet at the angle 2¢. Hence (3.26) and (3.27) follow from (3.12) and (3.13).
The example exhibited in the proof of Theorem 3.11 yields the same upper bounds
for A, and . O

4. An Example

We present here an example due to Jgrgensen to show that the exponents of sin(¢)
in Theorems 2.9, 3.5, and 3.11 cannot be increased.
Fora > 2, let

@+a?Hz-2
2z —(@%+a?)’

f@@) =—-a*, g@=

Then, by [13], (f, g) is Kleinian with

y(f,8)=4a—-a"? B(fHl=—@+a")?, Bg)=—4
Hence (fg, f) and (fg, gf) are Kleinian with

V(fg, f) = y(f’ g) = 4(a - a—l)—2’
y(fg, gf) = v(fg, f3) = v(fg. HB) +4) = —4,
B(fe) =v(fie)—B(f)—4=4a—a ) +(@—-a ")

Because

1 rUe )
BB
we see from (2.5) and (2.6) that ax( fg) and ax(f) intersect at an angle ¢; € (0, )

where by (Fe. F) 6a=2 16
1a2 — _ |AVEL ~ a _
W)= B Gos() " et
as a — oo. Next, B(fg) = B(gf) > 4,

- 4y (fg, &f)
AL 15-L RN |
B(fg)B(gf)

and ax(fg) and ax(gf) intersect at an angle ¢, € (0, ), where
_4y(fe.8f) 16

. 2 _
) = B GG @
as a — oo. By (2.3),
2
cosh(z(f)) = LU +4i+ 1B _ -
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and
4 2
cosh(z(fg)) = |B(fg) + JHﬂ(fg)l N %
whence
4
sinh(7 (fg)) sinh(z(f)) ~ cosh(z(fg)) cosh(z(f)) ~ %
and

2

sinh(z (fg)) ~ cosh(z(fg)) ~ 5, sinh(z(fg)/2) ~ 5

as a — 0o. Thus

sinh(z(fg)) sinh(z (f)) sin*(¢;) ~ 4 1a*™* 4.1)

asa — 00, and the left-hand side of (4.1) is bounded away from O only if s < 4/3.
Thus the exponent of sin(¢) in Theorem 3.5 cannot be greater than 4/3. Next, fg
and g f are hyperbolic with t(fg) = t(gf) and with

sinh(t(fg)) sin®(¢,) ~ 2> 1g?2s 4.2)

and
sinh(z(fg)/2) sinh(z(gf)/2) sin*(¢2) ~ 4 1a®>72 (4.3)

as a — oo, and the left-hand sides of (4.2) and (4.3) are bounded away from 0
only if s < 1. Hence the exponents of sin(¢)) in Theorems 2.9 and 3.11 cannot
exceed 1.

5. Final Remarks

The theorems in Section 1 concerning geodesics in hyperbolic 3-folds now fol-
low from the corresponding theorems in Sections 2 and 3. For if Q@ = H?/G is
a hyperbolic 3-orbifold, then a closed geodesic in Q lifts to a hyperbolic line sta-
bilized by a loxodromic transformation f € G with £(a) = 7(f). If o is not a
simple geodesic and has an angle of self-intersection ¢, then there is a conjugate
g of f in G such that the axes of f and g meet at the angle ¢; the angle is pre-
served because the projection map from H? to the quotient Q is locally confor-
mal. A similar situation arises for two different geodesics meeting at an angle ¢.
In particular, Theorem 1.2 is implied by Theorem 3.5, Theorem 1.4 is implied by
Theorem 3.12, and Theorem 1.6 follows from Theorem 2.9.
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