Length Functions and Outer Space
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1. Introduction

Let F, be the free group of rank #. The outer automorphism group of F,
acts on a certain contractible space called Outer Space which was intro-
duced in [CV1]. The role played by Outer Space in the study of the group of
outer automorphisms of F, is analogous to the role played by Teichmiiller
space in the study of the mapping class group of a surface. In [T] Thurston
constructs an embedding of Teichmiiller space into a finite-dimensionail
projective space by means of length functions. In this paper we show that a
similar construction for Quter Space is not possible.

We say a graph has genus » if its fundamental group is isomorphic to
F,. An R-graph is a graph which is a metric space where each edge is iso-
metric to an interval of R. Outer Space can be thought of as a normalized
collection of marked R-graphs of genus » with no free edges, where a mark-
ing on a graph is an identification of the fundamental group of the graph
with F,, and where two graphs are equivalent if there is an isometry between
them which preserves the marking. There are two methods of implementing
the normalization. Define the total length of a graph to be the sum of the
lengths of the edges. The first method of normalization is to consider only
graphs of total length 1. An alternative method of normalization is to con-
sider equivalence classes of graphs where two graphs are equivalent if there
is a homeomorphism preserving the marking taking one to the other which
multiplies lengths by a constant.

The term length function is used in two different ways in combinatorial
group theory. There are the length functions introduced by Lyndon (in [CM]
these are called “based length functions”) and there are the “hyperbolic length
functions” of [AB] which are called “translation length functions” in [CM].
In our context an element of Outer Space determines a hyperbolic length
function on F,,, where the length of g € F;, is the length of the shortest (un-
based) loop representing the homotopy class corresponding to g. (The defi-
nition of the Lyndon length function involves choosing a base point and
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considering the length of based loops.) Note that the hyperbolic length func-
tion is constant on conjugacy classes so it can be thought of as a function
on the set C of conjugacy classes in F,,. It is the hyperbolic length function
which is the analogue of the length function of Thurston. In what follows
we will concern ourselves only with hyperbolic length functions, which we
will refer to simply as “length functions”.

Instead of thinking of a length function as a function on € determined by
a marked graph, we can think of a length function as a function on the set
of marked graphs determined by an element of C. In this way length func-
tions give natural coordinates for the space of marked graphs. The set of all
length functions gives an embedding of the set of marked graphs into R®
(see [AB] or [CM]). If we consider Outer Space to be a set of marked graphs
with total length 1 then we get an embedding of Outer Space into R®. If
we use the second method of normalization we get an embedding of Outer
Space into the projective space P(R®).

The above construction mimics the construction of Thurston for Teich-
miiller space. In that situation, one can choose a finite set of conjugacy
classes whose length functions give an embedding of Teichmiiller space. In
this paper we are interested in the corresponding question for Outer Space
and for a deformation retract, which we now define.

In rank 2, Outer Space is homeomorphic to a disk with “fins” attached
(see [CV2]). The disk corresponds to the space of graphs with no discon-
necting edges. In this case we might suppose that Teichmiiller space is more
closely related to the disk than to the disk with fins. Let us call the subset
of Outer Space consisting of graphs with no disconnecting edges Reduced
Outer Space. In any rank there is an equivariant deformation retract from
Outer Space to Reduced Outer Space. In particular, Reduced Outer Space
is contractible.

It is shown in [CLS] that no finite set of length functions can be used
to embed the (unnormalized) space of marked graphs. That paper leaves
open two questions related to embedding Outer Space. First, the construc-
tion of [CLS] does not show that the restriction to marked graphs with
total length 1 is not an embedding. Second, the construction of [CLS] does
not answer the embedding question for Reduced Outer Space. In Section 2
of this paper we give a different construction that answers these questions
in rank 3. In Section 3 we show that embedding fails in any rank. Each
of the following theorems demonstrates a different aspect of the failure of
the embedding. Each is based on a modification of the construction in Sec-
tion 2.

Recall that a rose is a marked graph (g, G), where G is a graph with one
vertex and n edges. The first result shows that there exist families of marked
graphs which agree on a given finite set of words and which have arbitrarily
large diameter, in the sense that they include an arbitrarily large number of
different roses.
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THEOREM 1. Let F, be the free group of rank n> 2. Let T be a finite sub-
set of C. Then there is a 1-parameter family S of marked graphs, so that the
length of each element of ¥ is the same in every graph in S, and so that S
contains an arbitrarily large number of roses. Furthermore, each element
of S has total length 1 and has no separating edges.

The next result follows from the observation that the homeomorphism type
of the graph plays a relatively minor role in the construction of the previous
section.

THEOREM 2. Let F, be the free group of rank n> 2. Let X be a finite sub-
set of C, and let (g, G) be any marked graph of genus n such that G has no
separating edges. Then there is a different marked graph (g’, G’), with G
isometric to G', such that the length of each element of T is the same in
(g,G) and in (g’, G').

A further modification shows that one can find an open set of marked graphs
which agree on a given finite set of words and which has fairly large di-
mension.

THEOREM 3. Let F, be the free group of rank n>2. Let L be a finite sub-
set of C. Then there is a (2n—5)-parameter family S of marked graphs so
that the length of each element of ¥ is the same in every graph in S. Fur-
thermore, each element of S has total length 1 and has no separating edges.

REMARK. Note that these theorems are all false in rank 2. In this case it is
possible to find a set ¥ consisting of five words so that the lengths of words
in £ embed Reduced Outer Space in a 2-dimensional linear subspace of R’
[CV2]. ’

If we use the second method of normalization then the set of length functions
gives an embedding in an infinite-dimensional projective space. By [CM],
the closure of the image of this embedding is compact (with respect to the
finite-open topology) and the frontier is called the boundary of Outer Space.
When this construction is made for surface groups the resulting boundary
is Thurston’s compactification of Teichmiiller space, and Thurston shows
that it is finite-dimensional (see [H]). In fact, the lengths of a finite set of
conjugacy classes embed the boundary in a finite-dimensional projective
space. The following result shows that the analogous statement is not true
for free groups.

THEOREM 4. Let X C F,, be any finite set of words. Then thereisa (2n—S5)-
parameter family S, of points contained in the boundary of Outer Space
so that the corresponding embedding into the projective space P(R¥) maps
S« 10 a point.



488 JOHN SMILLIE & KAREN VOGTMANN

2. Construction in Rank 3

In this section we describe the basic construction in detail for rank 3. The
first step in the construction involves choosing a basis for Fj so that all the
elements of ¥ will have a special form when written as words in that basis.

We start with an arbitrary basis {a, b, ¢}, and write the elements of ¥ as
words in a, b, and c. Since conjugate elements of F,, have the same length in
any marked graph, we may assume that the words in X are cyclically re-
duced. Let M be the maximum over all we £ of |k| where ¢* occurs in w.
Define an automorphism ¢ as follows: ¢a=c™ac™, ¢b= b and ¢c=c,
where m is chosen to be greater than M.

CLAIM. Each reduced word in ¢X has the property that a appears only
with exponent +1, and whenever a does appear, it is both immediately pre-
ceded and immediately followed (in the cyclic sense) by a nonzero power

of c.

Proof. Let w be a word in X. If a does not appear in w then a does not
appear in ¢w.

Now assume that a appears in w. By cyclically reordering the letters we may
assume that w begins with a. Write w so that a only occurs with exponent
+1, so that w is a concatenation of segments of the form a*'u, where u is a
(possibly empty) reduced word in &’s and ¢’s. Then ¢w is cyclically equivalent
to a concatenation of segments of the form a*'c*™uc*™ or atlc*™yc*m,
We want to show that some power of ¢ remains to the right and (cyclic) left
of a when ¢w is reduced. If u is empty then successive occurrences of a have
the same exponent, so the reduced segment is a*'c*?™, If u =c’ with r#0,
then a“c*—’"uci’" reduces to a*lc*2m*7 and a“ci’"uc*”’ reduces to a*lc’,
If u= c vc!, where v begins and ends with a power of & and s, ¢ can be 0,
then a* ci’"ucim reduces to a*lc*+Syc*m+t and a*lc*™yc ™™ reduces to
a*tletm+sycF M+ Our assumptions on m and r imply that the exponents
+2m, x2m+r, r, £m+s, and xm+t of ¢ are nonzero, proving our claim.

O
Now, by replacing the basis {a, b, c} by the basis {¢'a, ¢~ !b, ¢~ Ic] and
relabelling this basis as {a, b, ¢}, we may assume that the words in X have
the property that any occurrence of a*! is preceded and followed (in the
cyclic sense) by a nonzero power of c.

We now apply the automorphism v to X, where v is defined by ya=
b*ab~*, with k>0, yb=b, and yc=c. Each segment ¢’a*!c’ of a word
we X is replaced by c¢"b*a*'b~%cs. This introduces no opportunities for
cancellation into the word w.

The words in yX now have the following property:

(¥) Any occurrence of a*! is immediately preceded (in the cyclic sense) by
b and followed by »~!; furthermore, any two occurrences of @ or a™!
are separated by a nonzero power of c.
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Figure 1

As before, replace the basis by its image under v~! and relabel, so we may
assume that the words in ¥ have property (*) with respect to the basis a, b,
and c.

Let G be the graph pictured in Figure 1. We choose a basis for its funda-
mental group 7(G, p) as follows:

a=ee e, b=e e e,, c=e,.

The words in ¥ are represented by reduced edge paths which are loops in
G. Observe that the reduced edge path representing any word w € X passes
through p. This is clear if w involves the letter ¢, and the only words that
can be in ¥ which do not involve ¢ are powers of b, which also pass through
p. Thus we can compute the lengths of w by dividing the reduced edge path
representing w into loops which begin and end at p.

CLAIM. A reduced edge path representing a word in X does not make the
turns e,e,, €,¢€,, €,ey,, and eye,. In other words, if we express the word as a
reduced sequence of edges then the sequences e,e,, €,8,, €,e;,, and e,e, do
not occur.

Proof. Any occurrence of @ or a~! in a word we X is preceded (cyclically)
by ¢’b* and followed by b~ %c*, with r, s 0. The sequence c¢"b¥ab~*c* is
represented by the loop

k = = =k
e.(ejepey) ee,e,(e,2,e)"e?,
which reduces to

kp » 5 5(5.5 5 -1
el(eieper)fe e,8,2/(2,8,28) s
No further cancellations are possible. The sequence c"b*a~'b~*¢* reduces to
Kp o 5 5(5.5 5 k-1
e (ejeye;) e e,2,8,(8,8,2) €.

No other sequences in the word w involve the edge e, at all, so the turns
e,e,, 8,8,, €,¢e,, and &, e, do not occur. O
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We now change the lengths on the edges of G as follows. We increase the
lengths of the edges e, and e, by a small constant e and decrease the length
of the edge e, by 2¢. Call the resulting graph G.. By the observation above,
we may calculate the edge-path length of a path representing a word we &
by dividing it into subpaths which begin and end at p. If w doesn’t involve
the letter g, its length in G, is clearly the same as its length in G, since the
circle e e, e, has not changed length. Now suppose that a occurs in w. By
the above claim, when the reduced edge path representing w traverses the
edge e,, it must be preceded by the edge e; and followed by the edges &,¢;;
thus the total length of this segment of the edge path is unchanged. Simi-
larly, if the reduced edge path representing w traverses &,, it must be pre-
ceded by the edges e;e, and followed by &, and the total length is again
unchanged.

Varying e gives us a 1-parameter family of marked graphs. We have just
shown that the words in X have the same length in all of the marked graphs
represented by this family. On the other hand, these marked graphs are not
the same; for instance, the word a has different length in each marked graph.

3. Proof of the Theorems

We begin with the proof of Theorem 1, which states that Outer Space con-
tains 1-parameter families of marked graphs which all agree on a given finite
set X of cyclic words in F,, and which contain arbitrarily many roses.

Proof of Theorem 1 for n=3. We refer to the basic construction given in
the previous section and to Figure 1. As we vary the parameter e in the
basic construction, the endpoints of the edge e, move around the circle C, =
e epe, in opposite directions. It is useful to picture this in the cover of G
which is obtained by unwrapping Cj; in this cover b has a translation axis
A,. The condition that a path representing a word in X never makes the
turns e, e,, €,€,, €,€,, and €,e, means that a lift of such a path to the cover
never turns from e, or g, onto A, in the translation direction of b. The fact
that any occurrence of @ in a word of I is preceded by b* and followed by
b~*% means that a lifted path representing that word travels k& units along
Ay, in the translation direction of b, before it crosses a lift of e,, and then
travels at least k£ units in the opposite direction along A,. Therefore, if we
move the endpoints of e, less than k units, the lifted path still has the prop-
erty that it never turns from e, or &, onto A, in the direction of b, and the
length of a path representing a word in X does not change.

In the graph G in Figure 1, suppose that length(e;) =length(e,). If we
move the endpoints of e, equal amounts in opposite directions, they will at
times coincide at the point p; that is, the graph will be a rose at those times.
By the above remarks, the lengths of words in X will not change as long as
the total distance each endpoint is moved is less than k. By choosing & suffi-
ciently large, we can thus get a path of length functions which agree on X,
and which pass through an arbitrarily large number of roses. Ul
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We now pause to prove Theorem 2. The proof of Theorem 1 for rank greater
than 3 will follow this proof.

Proof of Theorem 2. In order to prove this theorem, we note that the ho-
meomorphism type of the graph plays a relatively minor role in the basic
construction. If we fix n=3, ¥ CF,, and any graph G of genus n with no
separating edges, then we can find two elements of Outer Space homeo-
morphic to G which have the same lengths for all words in X. We proceed
as before. We find: an embedded loop (playing the role of b), a single edge
e, with both endpoints on that loop, and another loop in the graph which
does not involve e, (playing the role of c¢). The following proposition shows
that this is always possible.

Recall that a graph G is minimal if it is connected and has no free edges
or bivalent vertices.

PROPOSITION. Let G be a minimal graph of genus greater than or equal
to 2 with no separating edges. Then there is an embedded loop o in G with
the property that some component of G— o is a single edge with both end-
points on o.

Proof. Note that G has an embedded loop, since G is not a tree. If 7 is an
embedded loop of G, we denote by c(7) the smallest number of edges in any
single connected component of G— 7. Let ¢(G) denote the minimum value
of ¢(7) over all embedded loops 7 in G. Since G has no free edges, the con-
clusion of the theorem is equivalent to the statement that c(G)=1.

Let ¢ be an embedded loop with ¢(0) =c(G), and let C be a connected
component of G— o with ¢(G) edges. Suppose that the closure C of C in G
intersects o in at least two points. Choose two such points p and g which are
adjacent on o; that is, there is a subarc « of ¢ joining p to g which doesn’t
contain any other points of CNo. Choose an embedded path 8 in C joining
p to q. By replacing the subarc « of o by 3, we obtain a new embedded loop
¢’; the component C of G— o breaks up into a union of components of
G — o', and none of these components contains any of the edges of 8. If C
consists of more than one edge (i.e. if ¢(G)>1) then one of these compo-
nents is nonempty and contains fewer edges than C, contradicting our mini-
mality assumptions.

Now suppose that C intersects o in a single point v. Then v is a separating
vertex. If the closure C is a graph of genus 2 or more, we can use induction on
the genus to find an embedded loop and single edge with endpoints on that
edge in C C G, contradicting the minimality of C. Thus C has genus 1. Since
G has no separating edges, C must be a single loop, that is, ¢(G) =1. O

To finish the proof of Theorem 2, we need to apply the observations made
in the proof of Theorem 1; if & is large enough, we can move the endpoints
of e, all the way around the embedded loop representing b until they return
to their original positions. The end result is a graph G’ isometric to G; we
have changed the marking, and therefore the length function, but not the
lengths of elements in X. O
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Figure 2

To complete the proof of Theorem 1 for n > 3, and to prove Theorems 3 and
4, we refer to Figure 2.

Proof of Theorem 1 for n> 3. If n> 3, consider the graph shown in Figure
2. Replace the automorphism ¢ in the basic construction by an automor-
phism sending a; to c™ia;c™ for some m;>my>--->m,_,>>0, and
replace v by an automorphism sending a; to b*a;b~* for some k> 0. By
varying the lengths of the edges e;, we obtain an (n —2)-parameter family of
length functions which all agree on X. The proof of Theorem 1 in the case
n =13 generalizes to show that this family can be extended to include arbi-
trarily many roses by choosing & large enough. J

Recall that Theorem 3 asserts the existence of a large-dimensional family
of normalized marked graphs so that the length of each element of X is the
same in every graph in the family.

Proof of Theorem 3. In order to obtain a (2n— 5)-dimensional family, per-
form only the first automorphism, which sends g; to ¢™a;c™i for some m; >
my>> -+ >>m,_,>>0. The reduced paths representing the words in £ have
the property that they never make the turns &; . e, or e, e,,_3_; or their in-
verses. For i=1,...,n—2, we may now identify a small initial segment of
eg; With an initial segment of ¢;,;, and a small terminal segment of e, with a
terminal segment of e,,,_4_; without changing the length of any word in X.
Note that the total length of the graph is changed by each identification (in
contrast with the previous construction). If we want to preserve the total
length of the graph, the amount of the last identification is determined; thus
we have a (2n—4)—1=(2n—5)-parameter family of length functions which
agree on X. ' O

We now turn our attention to the boundary of Outer Space. The univer-
sal cover of an R-graph is a (simplicial) R-tree. A marked graph gives an
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action of F;, on the universal cover of the graph. In fact, the space of marked
graphs can be identified with the space of free actions of F;, on discrete R-
trees. The boundary of Outer Space consists of actions of F, on R-trees
which are limits of free actions on discrete R-trees in the appropriate sense.
(See [CM] for more information on R-trees and on the boundary of Outer
Space.)

Proof of Theorem 4. To construct a family S, of length functions in the
boundary of Outer Space which all agree on X, we need only shrink the
edge e, in the graph in Figure 2 to a point. This produces a family of actions
of F, on R-trees which is not free: p has the group generated by c as sta-
bilizer. This completes the proof. 1
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