Minimal Hypersurfaces Foliated by Spheres

WILLIAM C. JAGY

1. Introduction

Let M" be an n-dimensional submanifold of R”*!. If there is a 1-parameter
family of hyperplanes of R”*!whose intersections with A" are round spheres,
then we refer to M" as being foliated by spheres. If M" is an (open) sub-
set of N"CR"*! and the intersections with a family of planes are pieces of
round spheres, then we say that M" is foliated by pieces of spheres.

This article consists of two main results and a corollary. First, if M"C
R"*! (n=3) is a minimal submanifold and M" is foliated by spheres in par-
allel hyperplanes, then M" is rotationally symmetric about an axis contain-
ing the centers of all the spheres. Second, if M*<R"*! (n=3) is a minimal
submanifold and M " is foliated by pieces of spheres, then the hyperplanes
containing these spheres must be parallel. M" is not assumed complete. How-
ever, from our two main results, if such an M " is complete then it is a higher-
dimensional catenoid. The author would like to thank Richard Schoen for
helpful discussions.

In an 1867 article by Riemann and Hattendorff [12], it was shown that a
minimal surface in R? that is foliated by circles in parallel planes must be
either a piece of a catenoid or the example now called the “Riemann stair-
case.” In 1869, Enneper [4] showed that if a minimal surface is foliated by
circles or by circular arcs, then the planes containing the circles or circular
arcs must be parallel. A lengthier discussion of these results is available in
the new English edition of Nitsche’s book [9].

In 1956, Shiffman considered the related problem with boundaries [14]. If
a minimal surface M2 <R3 is bounded by convex curves in parallel planes,
and if M? is topologically an annulus, then the intersections of M? with all
other parallel planes are also convex curves. Similarly, if the boundaries are
circles in parallel planes then the intermediate cross-sections must be circles.

There is a conjecture of William Meeks that the topological assumption is
unnecessary in Shiffman’s results (cf. [6, p. 87]).

In 1983, Schoen [13] developed a version of Alexandrov reflection [1] that
applies to minimal submanifolds with boundary. In our first result we will
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be using Schoen’s methods to establish symmetries of the submanifolds in
question.

2. Notation and Methods

A submanifold is called minimal if its mean curvature vanishes identically.
In this study, our submanifolds will be expressed as level sets of smooth
functions. For a graph over R” the mean curvature is

S S O WS ¥/, > ’
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The mean curvature function was originally defined for parametrized sur-
faces in R?, therefore including graphs of functions. It is actually defined
for any locally two-sided hypersurface of a Riemannian manifold, and, up
to a sign change that follows a change in choice of unit normal, is an invari-
ant quantity.
If M"is a submanifold of R"*! that is given as the level set F=0 for some
function F, then the mean curvature of M is given by
n+1 n+1 ¥ 2
PR O
CIVF 2 72 | VF|
If one substitutes F = f(xy,...,X,)—Xp41, then a short calculation will
show that the mean curvature for the level surface /=0 is the same as that
given above for the graph x,, = f(xy, ..., X,). Meanwhile, some rearrange-
ment puts the above expression in the form of a quadratic form acting on
the gradient vector of F, that is,

1 n+1 n+1 )

H=— _ VFI25:.— F. F\F.:
nH = o 2 2 (VFPoy—FE)Fy,

) n+l n+1
H= AF|AF|?— F,;FF;),
= s (AFIAFP- S Ay i)

and
H= VF!.-B.-VF),

where B is the symmetric matrix
B=AF-I—Hess I or B;j=AFb;;—Fj;.

In another setting, suppose M"is a level set f'= 0 of some function f that
is expressed in a coordinate system {y‘} on R"*!. To check possible mini-
mality of M, we first construct the gradient vector field of f, defined thus:

,afaf
V=Sgl

The unit normal N to all the level sets of f is now the gradient vector of f
divided by its own length, deduced from



Minimal Hypersurfaces Foliated by Spheres 257
y o o
ayiays’

Meanwhile, for any vector field Y=Y a;(3/dy"), the divergence of y is given
by

V=X ¢

o1 ad
V-¥=— % o5 @e).
Altogether, M is minimal if and only if the divergence of the unit normal
field N is identically 0 on M.

For our first result, we will also need a result of Schoen [13] that is based
on the maximum principle for elliptic partial differential equations. Essen-
tially, we will need to show that since the boundary B of our minimal sub-
manifold M" in R"*! enjoys some reflection symmetries, so does the sub-
manifold M" itself.

We will simply repeat the definitions appropriate to Schoen’s Theorem 2.
Let p:R"*!' 5 7, be an orthogonal projection onto the hyperplane 7. A
subset N will be called a graph over = if the projection of N into =, is one-
to-one. If a graph N is the closure of a C? submanifold, N will be said to
have locally bounded slope if the vector that is normal to 7 is not tangent
to NV, except possibly at points in NN y. Finally, N is a digraph over w if
the intersection of N with either of the closed half-spaces that have ny as a
boundary is a graph with locally bounded slope.

Suppose that B is a digraph over a plane w,. Suppose further that B is
contained in the cylinder p~!(dQ), where Q C 7y is a bounded C? domain
and 99 has nonpositive mean curvature as a subset of my. Schoen’s Theo-
rem 2 states that if B is invariant under reflection through =, if M is a mini-
mal submanifold with dM = B, and if the interior of M is contained in the
interior of p~!(Q), then M is also invariant under reflection through =,. In
this paper, p ~!(dQ) will usually include pieces of other hyperplanes, with one
component of B in each. In fact, dM will usually have exactly two compo-
nents, and these will be compact subsets of hyperplanes, not always parallel.

In what follows, the word “plane” will be understood to mean “n-dimen-
sional affine subspace of R"*!1” and the word “sphere” will mean a round
S ”'13in such a plane. For example, if n=2, “sphere” would refer to a circle
in R,

3. First Result

THEOREM 1. If M" is a minimal submanifold in R"*' with n=3, and if
M is foliated by round spheres lying in parallel planes, then M is a hyper-
surface of revolution.

Proof. Pick two particular hyperplanes that intersect M in S"~"s. Then
move M by rigid motions to arrange that these planes, perhaps called 7, and
m, are parallel to the plane x,,,=0. Additionally, arrange that the centers
of both the spheres MN 7, and M N lie in the x;x,,; plane.
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We need to show that the center of every parallel spherical cross-section
lies in the x,x,,; plane. We may consider B = (roNM)U(7w;NM) to be the
boundary of the subset of M lying between the two planes ny and ;. B is
invariant under each of the reflections x, » —x,, ..., x, = —x,. By Schoen’s
Theorem 2, M itself inherits these reflection symmetries, at least between
the planes 7, and ;. Since the two planes could have been chosen as far
apart as desired, we conclude that all of M does indeed inherit the symme-
tries mentioned. In particular, the center of every spherical cross-section of
M lies in the same 2-plane, that where x,=0,...,x,=0.

It is now clear that M is the level set of a smooth function f. Let us re-
name the x,,, coordinate direction by 7 =x,,, ;. We need two functions of ¢,
r(t) and c(t), to denote (resp.) the radius and the x| coordinate of the cen-
ter of the sphere in hyperplane x,.;=¢. M is the set of points where

0=f=—r(t)’+(x;—c(t))*+ i x?.
i=2

To calculate the mean curvature of M, it is only necessary to calculate the
gradient and the matrix of second partials of f and combine them properly:

n
f==r(O)*+@x—c(t)>+ X x7;
i=2
IVf=(x1—¢, X3y eey Xy —(X7=C)C"—1r");
|AVf |2 =r2+(rr'+ (x;—c)c’)2

Defining a = (¢ —x;)c”+c'?>—r’2—rr’), we find that

(1 0 - 0 —c")
0 1 0 : 0
%Hessian(f )= 0O 1 0 o,
0 - 0 1 0
- 0 0 )
IAf=n—(x;—c)c"—rr"+c"?—r",
By defining
by=n—1—(x;—c)c"+c'>—rr'—r'?,
we have
(b, O 0 ¢ )
0 by 0 : 0
i 0 by O
0 0 by O
kC' o --- 0 n |

We may now evaluate the quadratic form B on the vector Vf, by forming
the matrix product %Vf -B-Vf'. Restricting to the submanifold M, that is,
requiring that
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(= (D) + 3 xP=r(t)?,
i=2

we conclude that the condition that M be minimal is that
0=r2b+n[—(x;—c)'—rr'1*+2¢(x;—c)[—(x;—c)c'—rr'].

The functions r,c,r’,c’,r”, c” are functions of ¢ =x,, only, or (more to
the point) have constant values on any fixed plane x,,,; = f. We may therefore
examine the values of these functions at different locations in M and find
equations that hold simultaneously. In particular, if we evaluate the equa-
tion that describes minimality along the three subsets of M wherein (i) x;=
c(t)+r(t), (ii) x;=c—r, and (iii) x; = ¢, we get the following three (slightly
rearranged) equations:

r(r'+c”y=n—-1)(1+"+c")?);
r(r’—c”)y=m-1)1+"—c")?);
rr”=(n—-1D(1+r? +c’2,
Taking half the sum of the first two equations, we have
rr’=(n—1)(1+r24+c"?).

Subtracting the third equation, we finally obtain

(n—2)c’?=0.
Since n = 3, we conclude that c(#) is constant and hence M is a hypersurface
of revolution. This completes the proof of Theorem 1. ]

REMARK 1. Notice that our method gives no conclusion when n =2, and
in fact, for the Riemann staircase, ¢’ is not zero.

REMARK 2. In keeping with our next results, we might instead complete
this proof by an argument based on considering the minimality equation as
a polynomial in x;—c. The coordinate x,, restricted to M, takes all values
from c(¢)—r(t) to c(¢)+r(t), so x;—c ranges from —r to r. Rearranging
the equation for minimality gives us

rirr'+(x,—c)c”) =r¥(n—1+c'*—r'?)
+(rr'+ (x,=c)c’Y(nrr’'+(n—2)(x;—c)c’).
Regarding this as an equation between polynomials in x, —c, we find that the
highest-degree term present is the quadratic term (x;—c)c’-(n—2)(x;—c)c’,

or (n—2)c’?-(x;—c)? The equality of the polynomials gives us that the
quadratic coefficient is zero, or (n1—2)c’?=0.

4. Second Result

THEOREM 2. If M" is a minimal submanifold in R"*! with n=3, and if
M is foliated by pieces of round spheres lying in a 1-parameter family of
planes, then the planes in the family are actually parallel.
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Given a family of hyperplanes in R”*, we wish to construct a coordinate
system on an open subset of R”*! that respects foliation. The first construct
is the unit vector field that is normal to the hyperplanes, named N,. Next,
pick a particular integral curve v of the field NV, parametrized by arc length.
Then a hyperplane is labelled w, precisely when the point y(¢) lies in the
hyperplane. Equivalently, the function ¢ which is arc length along -~y is ex-
tended to be constant on each plane in the family. It is important to notice
that the gradient vector field V¢ is not assumed to have constant length.

Next, we construct a moving frame that respects the foliation. As in the
Frenet frame for a space curve, we construct the vector N; by requiring that

NO = KONI ’
where the dot in N, means dN,/d¢. N, is constructed by requiring that

Nl=—K0N0+K1N2.
Forl<i=n-1,
N;=—k;_(Ni_1+ &Ny,
while
Np=—k,_1Ny_y.

To save space, we will cease writing out the separate cases that apply for the
subscripts 1 and #. From now on, all summations will be written with the
understanding that

K._]=O, K,,=O, UO=0, vn+l=0’ Nn+l=0-

We now extend the Frenet frame by requiring that each of the fields M, re-
main constant on each hyperplane =,. Accordingly, we will be able to per-
form all necessary calculations by using the vectors N; and the various cur-
vature functions «; just as these are defined on . While a different choice of
v would make for different values of the «’s, it is nevertheless true that the
planes 7, must be parallel if «q is equal to 0.

The hypothesis of our main theorem is that each hyperplane intersects the
submanifold in a geometrically round sphere, or at least in an open subset
of such a sphere. Each hyperplane thus contains the center of its sphere, and
we will call this center c¢(¢) in w,. We introduce some functions a;(¢) and
«;(t) by equating

n

() =v(1)+ 3 ai(t)N; and ¢= 3 aN,.
i=1 k=0

We define a map X from R"*!to R"*! by

n
X(t,0y=c(t)+r(t) X v;N;,
i=1
where r(¢) is the radius of the appropriate sphere. To check where this will
provide alocal coordinate system, we will check that the determinant of the
inner- product matrlx gij is nonzero. We will write go; for the inner product
of 8X/8¢t and 0X/dv;, and gy, for the squared length of 3.X X/0t. Then
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. OX n n
X=—=°¢+7rF ;
at j=1 j=1
n
= (ao—rUIKo)N0+ Z](aj-i—i‘v—i-rvj_lxj_l—rvj+lxj)1\/j;
J':
X
—=rN,.
avi !

For i, j =1, g;;=8;r* Next,

n n .
g0,=<c+r E vij+r E UJNI)'(I'M)
Jj=1 j=1

n
=ra;+rivi+r? Y v;N;N;
j=1

= ro;+rivi+ri(v_ 1 Ki—— Vi K;).

We will repeatedly use the simplifications resulting from the equation

n n n 2
> 8oiVi=r Y aui+rt Y v
=1

i=1 i= i=1

Introducing the common notations

n n
av=3 aiv; and |v]P=v-v=7 v
i=l1 i=1

we may write
n
> goivi =rl(a-v)+F|v]?].

i=1

Also,
2

n n
goo = c+r 2 vjj\c."i'r 2 UJN/
j=1 j=1

n 2

n n
= zla,-]\/',--i- EII'UJN/‘f‘r Z] Uj(_Kj—lj\/j—l+KjM+l)
J= J= J=

n
2 : 2
= (ao—rU,‘K()) + 2 (aj+rvj—rvj+,:<j+rvj_,rcj_l)
j=1

1 n
= (g~ rviko)’+— 2 &b;-
r j=1
Altogether, the inner product matrix is the following, given the guantities
goo and gy; as calculated:

e N

oo 8oi 802 °°° 8on
gy r* 0 -~ 0
G = g02 O r2 :

LgOn 0 T 0 r?
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Expanding by minors, we find that the determinant g of this matrix is
given by
n
g=det(G)= rz”“z(rzgoo— > g&-)-
i=1
However,
n n . .
r’goo— 2 &6i=r|X|*—r? T (X-N;)’r’(X-Np)?
j=1 j=1
=r2(ag—rvgkg)>.
Therefore,
g=det(G) = r2"(ag—ruvxy)>.

At this point, we may pause to consider the effect of the case g =0, when X
ceases to be an immersion. Since v, is free to take all values from —1to 1,
the condition g =0 implies that both ay=0 and rky=0, or with nonzero
radius that ko =0. In turn, this would imply that the map X that we defined
is simply a peculiar parametrization for a single hyperplane in R**!. Such a
hyperplane is a perfectly legal minimal submanifold, since it is totally geo-
desic. Meanwhile, we will begin to assume that for a small ¢ interval and
a small v, interval, g can be required to be nonzero. This allows us to use
(¢, vy, ..., v,) as a coordinate system on an open subset of R”*!. We will
eventually show that the minimality of M " implies that ky = 0, meaning that
the planes =, are parallel.

Our submanifold M" is described as the level set of a function, namely,

0=f(t,v1,...,0,) =0+ +02—1.

In a general Riemannian manifold, the condition that a level set be a mini-
mal submanifold is that the divergence of the unit normal field Vf/|Vf| be 0
when restricted to the submanifold in question. The gradient and divergence
are defined as follows: for some function f,

af K2
U
and af af
2____ ij v
|Vf| 2 ayl ayJ .
For a vector field Y=3 a’(3/8y"),
—E
With f(¢, vy, ...,0,) =08+ +02—1,
of of _
a0 gy

d d
—Vf g v+ g%;—.
121 121 av; §1 at
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However, since the indices in g;; range from 0 to n, we notice that

Ogijgjk=5ik

n
J:

and
n ) ]
) 8ij8” =8 —giog"™.
J:
Altogether, for the particular function f above,
1 n o n
SIVfP=% 3 g'vv;.
4 i=1j=1
Thus M" is minimal if and only if it satisfies the following equation:
9 n_ o0k, nog n_ ik,
0=—-(\/§ o8 £ )+2 (\/E i1 : )
ot i X g ey ) iS00\ T 2R 2 g vy,

It will not be necessary to explicitly calculate the entries g% of the matrix
G !, because these are always summed against other quantities. Instead, we
introduce the auxiliary functions w’, defined by

n
i ik
w'=> g’u.
k=1

These functions obey the rules
n n
Y guw'=0 and ¥ gyw'=v;.
1=0 1=0

If i=1then g;; = r26,-j, so the second sum above gives

giow+riwi=vy;,
or w'=r"2(v;— go;w°). Substituting these values into 37, go;w' =0, we find
that

n
gooW’+ X goir T2 (v;—goiw°) = 0.
i=1
Continuing,

n n
(goo—r_2 > gg'i)WO: —r%Y goiv;,
and from our earlier calculation of the determinant g of G, we know that
2 2 2
goo—r " 2 80i=(ag—rvkg)”.
i=1

While calculating the metric coefficients gy;, we also noted that

n
goi Vi =rl(a-v)+r|v|?].
i=1

Taken together, these show that
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0 ~(a-v)+7]v]?)
r(o—rvgo)?

Remembering that w'=r ~2(v;—go;w°), we also find that

n
i -2 —2,.-2
wi=r (Ui+g01(a0_rviK0) r EngUj>
Jj=1 ,
and

n . ‘ n 2
)X W‘v,-=r_2<|v|2+(Ofo—"UlKo)—zr—z< ) ngvf) >’
i=1 J=1

while again using X 7. go;Vi = r[(a-v)+r‘|v|2] gives us finally that

n .
3 wioy=r3 | v+ (ag—rvgke) "2 ((a-v) +F|v]?)?],
i=1
or
o 200,12 1 52 21,012
2wy =rTo v +r(ag—rvikg) (w)°].
i=1
Recalling the definitions of the functions w’, we find that
n n n
D g'vivi=% kak-
i=1j=1 k=1

We may now rewrite the equation that would demonstrate minimality for

M as
d

0 n i
w 0 w
0=— + .
ot <@V22=1wkvk ) i§1 ov; <@V22=1wkvk )
We had previously found that vg = r"(ag—rv k) and w'=r~2(v; — go; w°),
so minimality for M depends on the truth of the equation

0=—a—<r”+l(a0—f<0v1r) WO )
ot N (W-0) +r2(og— kovyr)2(w0)>
v;— 8o’
VW 0) +r2(cg— kovy 1) 2 (W0)2 )

Because r(og— regv;)>w® = —(a- v+ F(v-v)) and r(ag— reovy ) (w
(a-v+F(v-v))?, we can multiply through and obtain

4.1

o 0 n—1
+'2] . (” (g—Kovi7)
1= 1

0)2 —

-2 ety gy w! )
4.2) ot (oo —rigv)2(v-v) +r2(og— kv r )4 (w0)?
+§n; i(,mﬂ r(og—reov)2(v;— goiw®) )
i=1 0U; (g —rrguy)2(v-v) +r2(ag— kv r)H(w0)2
7 0=i(r” —(a-v+7(v-v)) )
@.3) N\ f(ag—rrou)2(v-v)+(a-v+F(v-v))?
+§n; _a_<rn—2 r(ag—rrgy) v+ (a-v+#{v-v))goi )
/=1 9v; V(o= rrov)?(v-0) + (e v+F(v-0))>
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Given the above equation which must be satisfied, we will define the ab-
breviations
D = (ag—rkovy)2(v-0) + (- v+ 7 (v-0))?,
To=—r"(a-v+F(v-v)),
and
Ti=r""YWoapg—reov) v+ r""Ha-v+7(v-v))gg.

Repeating Y7, v;g0; =r(a-v+7(v-v)) with the above gives us

S 0T = r"=1[ (ctg—riov)2(0-0) + (- v+ #((0- )]
i=1
or

n
S o Ti=r""'D.
i=1
We now get the shortest looking version of the minimality condition for M",
that the following equation should be true on M:

a/ T, "9/ T;
4.4 0=—(—+« ——=).
@9 5 (35)* 2 0 (75)
If we multiply the above equation by 2D32 we get
a7, oD aT; aD
4.5 0=(2—D-T, 2—D-T,
(4.5) ( a1 06t> E( av; av,)
We then define P by
a7, oD aT; oD
P=(2—D-T, 2—D-T,
( at 0 3¢ ) ,21< v, au,->

To complete our theorem, we regard the preceding equation as a polynomial
equation P =0 in the variables v;, with coeflicients that are functions of the
independent variable . We will postpone the details of the calculation of the
leading coeflicients of P until the appendix, and simply present the coeffi-
cients themselves now. Restricting P to M” will be effected by reducing the
polynomial modulo (v-v)—1=0, after performing all the differentiations
required. The polynomial is eventually seen to have degree exactly four, with
the highest-degree terms being given by

n+l 2

2nr " vi(r2kdvt + (- v)?).

What is the effect of requiring that equation (4.5) hold on the set M where
(v-v)—1=0?If n=2, (4.5) can be rewritten with v, =cos 8, v,=sinf, and a
trigonometric polynomial results from the right-hand side of (4.5). The trig-
onometric polynomial can be uniquely written as a finite Fourier series, and
the resulting Fourier coefficients set to 0.

If n =3, we cannot readily rewrite the resulting polynomial equation as a
Fourier series equation. However, it is still possible to work out some linear
basis for the equivalence classes of polynomials modulo (v-v)—1=0. In
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particular, such a basis can be arranged entirely of homogeneous polyno-
mials, allowing us to separately require that the highest-degree part of our
polynomial, 2nr"t'3v2(r2k3v?+ (a-v)?), reduce to the zero polynomial
modulo (v-v)—1=0. Furthermore, the polynomials that vanish on the unit
sphere 37_, v? make up a prime ideal in the ring of polynomials in the vari-
ables v;. Since our homogeneous polynomial 2nr" ' «2vZ(r2k3v + (a-v)?) is
already factored, we find that setting it to the zero polynomial gives either
Ko = O or

4.6) rictvi+ (o v)?=0.

If n =2, this last condition will not be enough to provide the desired con-
clusion x¢=0. Since (v-v)—1=0, a basis for the quadratic polynomials is
v,0, and vZ—v3. We therefore may only conclude that

riki+at+02=0 and 204a,=0.

This does show that at least one of the «’s is 0. If we knew that specifically
o, =0, it would then follow that r2k%+«af =0, or both k=0 and o;=0.
However, this just shows that we can only assume «; =0, with o, = *rkg,
and the status of & still uncertain.

If n= 3, these degree-4 homogeneous parts of our polynomial do provide
enough information to conclude that xy= 0. For example, for n= 3, we get
exactly five equations from the quadratic polynomial (4.6):

aja, =0, aja3=0, ayou3=0,
o2—a?=0, and rik¢+ot—ai=0.

The mixed terms «;«; = 0 tell us that no more than one of the «;’s is not 0.
The the fourth equation improves that to give that both o3 and «, are 0. The
fifth equation finally shows that, indeed, k,=0.

The situation for all n =3 is quite similar to the above description of the
case n = 3. In setting

rigvi+(a-v)?=0

modulo (v-v)—1=0, we have only to consider a single further relation hold-
ing among the variables v;, and this can be fixed as the substitution

vi=1—vi—---—0v2_,.
This results in the following equations:
(i) oyo;=0forall 1=i#j=<n,

(ii) af—af=0forall2<j=<n-1, and

(iii) r2k¢+af—a?=0.

The equations listed as (i) and (ii) show that «, =0, ..., a, =0. Equation
(iii) now reads

rikd+ai=0.

Since the radius r is strictly positive, and the squared terms are in any case
nonnegative, this forces «; and finally &, to be 0. This completes the proof
of Theorem 3. O
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REMARK. At this point, we may redo our first result using only local as-
sumptions. Since ko= 0, the fourth-degree terms in P vanish. Further calcu-
lation shows that the third-degree terms all cancel, and the quadratic terms
are exactly those in (2n—4)a3r"'(a-v)> Since M is assumed nonplanar,
o is not zero. Since n is not 2 (else we would allow the Riemann staircase),
2n—4is not zero. After applying the condition v-v =1, an argument similar
to the end of our second main result shows that all the other «’s are zero,
and the pieces of spheres in M are coaxial. Using uniqueness of continuation
by the maximum principle, we obtain the following corollary.

COROLLARY. If M" is a minimal submanifold in R"™! with n=3, M is
complete and nonplanar, and an open subset of M is foliated by pieces of
spheres, then M is a higher-dimensional catenoid.

5. Appendix

We still need to confirm the assertion that the polynomial given by

0T, oD n d7; oD
P=(2"p-T7,° 2 \+3 (2% D-T;°=
( at 0 6t> j§]< aU,' 6v,~)

has the specified degree-4 coefficients, and that these are the highest-degree
coefficients remaining when P is restricted to M. The various symbols have
already been defined as follows:

D = (ag—rkov))2(v-v) + (- v+ F(v-0))?,
To=—r"(a-v+r(v-v)),
T; =r""Nowo—reovy Y2 ui+r" (- v+ (v- ) goi
8oi = ro+ rivi+r’(v_ k1 — V1),
with the understanding that
k_1=0, k,=0, v9=0, v,4,1=0, N, =0.

The omnipresent simplifications are

n
Vi8oi=r(a-v+r(v-v))
i=1

and

3 v;Ti=r""(ag—reeu)*(v-v) + (- v+7(v-v))*],
i=1

or %_,v;T;=r""'D. Furthermore, when restricted to M",
(v-v)—1=0.

Perhaps the first step is to show that the ¢ derivative terms have degree no
higher than 3, and can thus be ignored. Specifically,

D= (ag—rrov)*+((a-v)+r)?,
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which is evidently of degree 2 in the v,’s. Further,
Tolm=—r"((a-v)+r),

which is linear in the v,’s. Differentiation by ¢ does not affect the degree of
these polynomials, so dD/dt and a7, /dt have degrees 2 and 1, respectively.

We conclude that
aT, aD
—D—-T,
( ot 0 at )

is only of degree 3 when restricted to M.
The next task is to examine

” a7T; a7;
21!
i§1< 31),- D) or 2D 2 (avl )

We already know that D |,, has degree 2, so we need only search among the
terms 97;/dv; for degree-2 coeflicients:

a7,

3 r" o —riguy)*+2r" Yoo — regvy) (—rig)dy;v;
i

r" 2o+ 270;) goi + 1" (o v+ (v V)) gvo:

i

After reducing modulo (v-v)—1=0, the remaining quadratic terms are
rCol(14-26,;) +2r"2rv; go;.
Combining X 7_; v;go; = r(a-v+7(v-v)) with (v-v)—1=0shows that the sum

" oT;
P s

i=1 6v,
has quadratic terms equal to

I1+1 21)2 2(1+261,)—(n+2)r”+1 2 2
i=1

and so X7_,(2(dT;/dv;)D) has quartic coefficients identical with those of
(2n+4)r"+1x0vi"D

It remains only to show that the quartic terms in (X7_,(aD/0v;)T;) |y do
actually amount to those in 4r”*'k3vZD, when both are restricted to the
sphere v-v =1. From the definition D = (ccg—rrov;)*(v-v) + (a-v +F(v-v))?,
we find partial derivatives

oD
F 2(ag—rKovy)(—rrg)dy; (v-v) +2(ag—reovy)*y;

+2(a-v+F(v-v))a;+2Fy;).
Reducing this mod (v-v)—1=0 gives us
oD

— | =2(ag—rkov;)(—rKg)8yi+2(ag—rrgvy)?v;
aU,' M

+2(a-v+F)(a;+2Fy;).
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Including the above values gives

(£37)

Examining this in light of

()

we find that the possible degree-4 terms in (X 7=,(dD/dv;)T;) | »s are found in

n
=2(atg—rrou)(—rrg) Ty +2(cg—regvy)* 3 v;T;
M i=1

n n
+2(a-v+F) Y a;Ti+4(a-v+F)F Y v T

i=1 i=1

= r"Y(r2k}v? + (a-v)?)+lower-degree terms,

M

n
2r2kgo T+ 2(ag—rrgv) 2r " (r2kdvi 4+ (- v)?) + 2(a-0) Y o;T;.
i=1
Remembering 7; = r" Yoy —riovy)2v;+r" "2 (cc- v+ (v )) gy, SO that
T; | pr = r"kdviv; +lower-degree terms,

we find the cubic terms in

(iél o ﬂ)

Emphasizing that

= r"*fvi(a-v)+lower-degree terms.

M

Ty |y =r""kdvi +lower-degree terms,
the quartic terms in (X7_,(dD/0dv;)T;) |, are found among
2r2kdo r ko + 2r2kdoir N (r ko + (o v)2) + 2(a-0)r kot - (a-v).
This simplifies to

2r"3dof 4+ 2r v (r2kdvi 4 (a-v)?) + 2r" kdvi(a - v)?
or

(Za")

To sum up, we have shown that the degree-4 terms of the polynomial

aT, oT; aD
P= (——QD T03D>+2(2—D T-—)

=4r" Qv (ricdvi+ (a-v)?) +lower-degree terms.

M

at at i=1 aU, 6v,-
when P is restricted modulo (v-v)—1=0, are precisely given by
2nr" o (r2eguvi+ (a-v)?). O
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