LOCAL INVARIANTS OF FOLIATIONS
BY REAL HYPERSURFACES

James J. Faran, V

0. Introduction. In this paper we present complete local invariants under bi-
holomorphic mappings of foliations of complex space by nondegenerate real hy-
persurfaces. Perhaps the most notable of these invariants is an intrinsic normal
direction. Flow along this normal direction provides a map from leaf to leaf
which is a contact transformation but, in general, not a CR isomorphism of the
leaves of the foliation.

This study of local invariants is intentionally imitative of the work of Chern
and Moser [1] — the local invariants of a foliation by real hypersurfaces should
be similar to the local invariants of a single real hypersurface. One difference is
the existence of an intrinsic normal direction to a foliation. Another involves the
fourth-order curvature tensor Sa./'ga. For a single real hypersurface, this hastrace
zero; that is, the Ricci tensor S.;=S,,% =0. This is not true for foliations. For
example, while the foliation by hyperquadrics {Im z,,,;— ¥ |z;|*>= constant} has
curvature zero, the foliation by spheres {X |zj|2=constant} has positive Ricci
curvature. It is natural to ask whether every real hypersurface exists as the leaf
of a foliation with vanishing Ricci curvature S.;. We provide examples showing
that this is not true.

It should be noted that Graham and Lee have studied similar objects. In [2]
they examine the geometry of a foliation by real hypersurfaces together with a
defining function. The local invariants they obtain are quite similar to those ob-
tained here.

1. Local invariants. Let F be a foliation by real hypersurfaces of a neighbor-
hood of a point in C**1, n=1. We assume that F is given as the level sets of a
C® real-valued function r(z,z) with dr 0. The function r may be replaced by
r*(z,2)=f(r(z,Z)), where f is any function of one variable with nonzero deriv-
ative. In this section, we consider the local equivalence problem for such folia-
tions, to wit: if & is a foliation in a neighborhood of a point p and G is a foliation
in a neighborhood of a point g, does there exist a biholomorphic mapping of a
neighborhood of p taking p to g and taking the leaves of F to the leaves of G?
Our solution is obtained via Cartan’s Method of Equivalence. This method may
be described as follows.

First, we restate the problem as one of equivalence of G-structures. (A G-
structure may be viewed as a coframe — a basis for the cotangent space — well-
defined up to the action of the group G.) Second, using conditions on the exte-
rior derivatives of the elements of the coframe, we reduce the group to a smaller
group. Third, we lift to the principal bundle of all such coframes obtaining a
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new G-structure. This G-structure, we shall find, can be reduced to the identity
G-structure. Any equivalence of the original G-structure induces an equivalence
of the final {e}-structure and vice versa. Thus, for example, the coefficients ob-
tained when the exterior derivatives of the elements of the coframe are expressed
in terms of elements of the coframe are local invariants and must be preserved
by any equivalence.

We start by setting 8 =i dr. Suppose (by changing coordinates if necessary)
that ar/dz"*! #0; if we set % =dz® then {8, %} is a basis for the (1,0) forms at
any point. (We shall, in general, take the indices «, 3, v, etc. to range over the
integers from 1 to n.) This is our coframe, which depends on our choice of coor-
dinates and our choice of r. If we start with different coordinates and a different

r, we get a different coframe {0*, 0“*} satisfying
@D 0 =ub*,
' 0°‘=v"‘f)+u3"‘63*,

where u # 0 is real, v* is complex, and the matrix ug* is complex and invertible.
The G-structure (1.1) depends only on the foliation F; moreover, ¥ can be ob-
tained from this G-structure — the leaves of & are the submanifolds along which
the ideal of differential forms generated by 8 —@ (an invariant of the G-structure)
vanishes.

The next step is to examine the exterior derivatives of # and 6%, about which
we know two things. First, since the almost complex structure is integrable,

(1.2) do=do*=0 mod(,9").

Second, since the distribution {§ —0 =0} is integrable (with integral manifolds
the leaves of &),

1.3) d(@—0)=0 mod(0—0).
Equation (1.2) implies that
1.4) di=0Aq+0%An,
for some 1-forms 5, n,. Equation (1.3) then becomes
(1.5) OAN+0°An,—OAT—0PAgz=0 mod(0—7).
It follows that

Ta=1i8e30° +Au0° +B,0 mod(0—0),
n—7=B,0%—Bz0°+iC mod(8—7),
where 4,3 =Ag,, C€R, and

(1.6)

1.7) 8af = 8Ba-
Thus
(1.8) d0=ig,50°NOP +h, 0% NG+ONp

for some functions #, and some 1-form ¢.
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The matrix (g,z) is the Levi form of the leaves of §. We assume the Levi form
is nondegenerate. (If (g,z) is definite, by replacing 6 by —0 if necessary we may
assume (g,z) is positive definite, in which case the change of frame (1.1) should
satisfy the additional condition # >0.) Let g%? be the inverse of g4

(1.9) g*%g,5=06,%
Making the substitution (1.1) we have, modulo (6),
(1.10) dO =ig.,;u, uz?0%* NOP* + (uh u,Y +iug, su, vP)0%* NG,
Thus
(1.11) gaf* =V 85U, Ug’,
(1.12) ho*=h,u, +ig, zu, vP.

If we make a specific choice of g,5, we may then require that the transforma-
tion (1.1) preserve that particular choice:

(113) ga[?:u—lg'yﬁua’yuﬁa;

that is, (#5”) is conformal unitary with respect to (g,3). We assume that we have
made such a choice of g3, either by using (1.11) to normalize g,z (e.g., if g,z is
positive definite, we may take g, = 6,4), or by some more arbitrary method (e.g.,
the g,z that appears during a calculation (cf. [1, §6])).

Because g,z is invertible, we can choose vz in (1.12) so that /4,*=0. We then
restrict our attention to coframes with #, =0, that is, those satisfying

(1.14) df=ig,50°A0° mod(9).
By (1.12), the change of coframe (1.1) taking one coframe to another then satisfies
(1.15) v*=0.

The set Y of all such coframes is a principal bundle over C"*! with group the
group of transformations (1.1) satisfying (1.13) and (1.15). Having chosen an arbi-
trary reference coframe {6, *}, we can take u = i7 and ug* as fiber coordinates on
Y. The forms

w=ub,
(1.16)
w*= uﬁ"‘BB

are intrinsically defined on Y. Abstractly — for example, if 7: Y— C"*!is a pro-
jection — then p={0,0%} is a point of ¥, X e€TY,, and w(p)(X)=0(7.X).
Differentiating (1.16), we find

(1.17) dw=ig,50* NP +wAp

for some 1-form ¢. It follows from (1.3) that d(w—&)=0 mod(w—&). Thus
(1.18) O=wA(p—¢) mod(w—a).

Therefore

(1.19) p—p=Aw—A&
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for some A. Replacing ¢ by ¢ —Aw, we still have (1.17) and also have
(1.20) po=4¢.

This condition defines ¢ uniquely.
Differentiating the second equation of (1.16), using (1.2) we find that

(1.21) dw*= wBN g+ h GNP+ kWA G

for some 1-forms ¢4* and some functions 2“3 and k. The functions 7%z and £
are well defined and depend on the 3-jet of the defining function (i.e., may be cal-
culated at a point using only the 3-jet of the defining function at the point). The
form ¢z* is well defined up to a substitution:

(1.22) <pﬁ°‘= QDBa*'i‘ABaYO)T,

with 4% = A.%. Note that w, w*, ¢ and any choice of ¢z together form a co-

frame for Y. This coframe is well defined up to the transformation (1.22).
Differentiating (1.17),

(1.23) 0= i(dgag—-qoag—qogo,+ga5<p)/\w°‘/\wg+iha7c5/\w°‘/\w7

' +wA (ihgr 0’ Aol +ikga NP — ik w* Ao —dp),

where we have used g3, g°® to raise and lower indices (e.g8., ko= gagkﬁ ). It fol-

lows that

(1.24) Boy=hyo
and
(1.25) dgag— Pof— PBat EupP= aag,,w"+ baﬁaw&'l“ Couf Wy

with a,5, =a,3, and b,g; = b,55. Since the left-hand side of (1.25) is hermitian
symmetric, we must have b,5; = .5, Cop =0. So by setting Ag*, = az®, in (1.22),
we obtain (after dropping the *)

(1.26) dgaﬁ—¢a6—¢ﬁa+gaﬁﬁo=0°

This condition uniquely determines ¢4%, thereby providing us with a unique co-
frame (w, 0% ¢, ¢g*} on Y. We summarize this result in the following theorem.

THEOREM. On the coframe bundle Y there exists a unique coframe {w, »w%,
@, p*} satisfying (1.17), (1.20), (1.21), and (1.26) and such that for any local sec-
tion s: C"*15Y, the forms s*(w), s*(w®) are of type (1,0) and the leaves of the
foliation are given by s*(w— ) =0.

Moreover, any biholomorphic map taking the leaves of one foliation § to those
of another foliation §' induces a bundle map between the corresponding coframe
bundles Y and Y’, and this bundle map takes the unique coframe on Y to the
unique coframe on Y'.

Thus any biholomorphic map taking one foliation to another preserves the
forms w, %, ¢, pg*and hence preserves their exterior derivatives. Expressing their
exterior derivatives in terms of the forms themselves we obtain coefficients which
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must also be preserved by the map. These coefficients are then local invariants.
For example, 4, and k* are local invariants.

To obtain further invariants, we find formulas for dy and dyg®. From (1.23)
it now follows that

(1.27)  de=ikgaAwP+ik,dA0*—ik,wAw*—ikgoAeP+iloAG

for some real /. This may be written

(1.28) dp=i(k,0*+kzoP)A(0—&)+iloAG.
Differentiating (1.21) we obtain

(1.29) 0=wAWwPADI+wAGADk*—wPA D,
where

(1.30) Dh%s=dh®z+h"g¢.%— h*;p5°— h%5 0,
(1.31) Dk®=dk*+kPpg*—2k*p—hshP o7,

(1.32) (pﬁa = quBa_ qoB'Y/\gova—- ih“(;gﬁ,;w;/\wa+ ik“gﬁaw‘?/\(w— (:l_)).

From (1.29) it follows that

(133) '—(bﬁa=ﬂ,ﬁa,y/\w7+ V"‘ﬁaw/\wa+ TB“on'J,
(1.34) Dk®*= —T*0P+ B*;0°+ Uw+ W&,
(1.35) Dha5= —Va.ygw7+Ra55wa+Aagw+Ba35
for some one-forms pug*, satisfying

(1.36) ey = Py

and some functions V' %;, 7%, B%;, U, W ¢, “85, A% satisfying
(1.37) R%5;=R%3.

Note that the symmetry (1.24) of Az implies (using equation (1.30) and equation
(1.35))

(1.38)

Differentiating (1.26) we obtain
0=w"A [tapy+ Vagy @+ ihy, 850" — i(ko,g73+ k. 8up)(w—&)]
(1.39) + 0 Al pgas+ Vas 0 — ihgs 8uyw’ — i(kgg s+ k;8.5) (w—®)]
+ (T, —Tyg—ilgag)wNG.
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Therefore
(1.40) Ts,—T,5—ilg,3=0,
(1.41) HoBy=— VaE'y w— iha.,g#gw k4 i(kag73+ kvgag) (w—w)

+ Saygﬂw + Sa,ygg

for some functions S,.3,, S5 satisfying

SoyBu= Saufys
(1.42) S oyB5 = Spsay
SayBs = Syaps-
Thus
(1.43) —Pp%= — 8,0 Aw T~V Y ONT+ V% wAw? —ihg, 0, 0" N
+i(kgd,*+k,05%) (0— @) A"+ T A G
and
dog®= og" N, *+ih%; g0’ Aew®+ ihg, 6, w"Ap"
(1.44) +S37°‘5w7/\w‘_’+ Ve®, @A wY— aﬁgwl\wa

—i(kgb,+ K, 85%) (0= B) AT+ ik gy (w— @) A’ — T5w A G,

The tensors Sg,%, V3%, ... are local invariants. They are not all independent.
By differentiating the structure equations we obtain relations among these ten-
sors. (We also obtain further invariants — derivatives of curvature.)

Differentiating (1.44) we obtain further relations. The computations (and even
the results) are quite long, so we shall simply state the one result we shall use

later.

LEMMA. If n>1and S, vanishes identically, then V%, vanishes identically.
Proof. Set = in (1.44) and sum:

de =S, *oYAw’ — V5, 0N+ V', swAw’

a ay @

(1.45)
—i(n+1)k (0= &) N0+ ik;(0— @) Aw® "—T fuA.

By assumption, S,,% =0. If we differentiate (1.45) and calculate modulo (v, ),
we obtain

(1.46) 0=ig,; V2 W N0’ NwY—ig gV ;0 AwPA W

Thus 0=g,;V,*,— g,5V.",- Multiplying by g*? and summing over x and &, we
have

(1.47) 0=(n—-1)V,,
and if n# 1 the result follows. O

2. Interpretation. In this section we attempt to provide an explanation of the
geometric meaning of the third-order invariants #%; and k. To do this, first note
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that the real direction w+&=w®*=w? =0 is well defined in C"*! (even though
the frame {w, w®} is not). By following the integral curves of this direction we ob-
tain a map F: M — M’ between leaves of the foliation.

PROPOSITION. The map F is a contact transformation, that is, F*(w| )=
A\w | 5s for some nonzero constant \.

Proof. Choose a defining function r. Let X be the vector field defined by
@2.1) (0+&)(X)=0%X)=wf(X)=0, dr(X)=1.

The map F'is just the flow of X at a particular time. Thus it suffices to show that
the Lie derivative

for every leaf M. Moreover, it suffices to show this for any particular choice of w.
Choose w so that w(X)=1i/2. Then w=idr and w—&=idr. So 0=d(w—&)=
(w— @) A . Therefore ¢ is a multiple of w— @ and ¢ | ,,=0. We then have

Lxwl|ly=ixdo|y+d(ixw)|y
(2.3) =(i/2)e | y—e(X)w |y
=—p(X)w| . O

In general F will not be a CR mapping, however. The map F is CR precisely
when £y w®| 5,=0modulo (w, »w?). But

(2.4) Lx0%| 4= (i/2) h%50P| 5, modulo (w, 7).
Therefore, h*; is a measure of how the leaf map F is not a CR map.

The tensor 7*; may be thought of as the infinitesimal change in the complex
structure on the maximal complex tangent space of the leaf resulting from an

infinitesimal movement in the intrinsic normal direction.
Similarly,

(2.5) Lyw*=ik%*w mod(w“,wﬁ,w—cﬁ).

Thus, k¢ is a measure of how the complex normal direction is changing as we
flow from leaf to leaf.
Another interpretation of k“is contained in the following.

PROPOSITION. k*=0 if and only if the foliation § has a defining function r
which is a solution of the complex Monge-Ampere equation

(2.6) det(d%r/dz; 9%;) = 0.

Proof. Suppose r is a defining function satisfying (2.6). Let w=1idr. We saw
above that this implies that ¢ is a multiple of w—&. Then dr =i& and

2.7) 00r = i(ig,zw NP+ GNA ).

Since ¢ is a multiple of w— &, the defining function r will satisfy (2.6) only when
¢ =0. By using (1.28), we obtain k*=0.
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Conversely, if k*=0 then
(2.8) de=iloNa.
Differentiating,

0=d?p
(2.9 _ _
= —Ilg g0 NP Ao—lIg g0 N w*AwP

modulo (wA&). Thus we must have /=0, and hence d¢ =0. By the Frobenius
theorem, there is a codimension 1 real submanifold N of Y along which ¢=0.
On this submanifold d(w—®) =0, so w— &=dR for some function R. Choosing
a section s: C"*! - Y whose image lies in N, let »=s*R. The function r is then
a defining function satisfying (2.6) (since we may take a frame with w=i9dr and
¢ =0 and apply (2.7)).

3. Ricci flat foliations. The local invariants of foliations described above re-
semble (intentionally) those of real hypersurfaces described in [1]. One particular
parallel is the curvature tensor Saf(—,. As the curvature tensor of a real hypersur-
face, this must be trace free:

G.1) Sey®=0.

Calculation of the invariant of the foliation given by |z| =constant shows that
this condition need not be satisfied by the curvature tensor Sa735 of a foliaticn.
We call a foliation Ricci flat if its curvature satisfies (3.1). It is then natural to ask
whether every real hypersurface in C"*! can locally be a leaf of a Ricci flat folia-
tion. In this section, we provide examples of real hypersurfaces in C"*!, n>1,
for which there exist no such foliations.

For indeed, if M is a leaf of a Ricci flat foliation, then the local invariants of
M satisfy certain relations. It will suffice to construct a real hypersurface whose
invariants do not satisfy the necessary relations. These relations are calculated
by starting with the local invariants of the foliation and using them to calculate
the local invariants of the leaf. This is done very much like the calculations in
[1, §6]. (We refer the reader to [1] for the structure equations, curvatures and
such we shall use, though we shall also use the Bianchi identities as presented in
[3].) The examples are constructed using Moser normal form.

Let M be a leaf of a Ricci flat foliation &, and let {w, w*} be an adapted co-
frame, g,3, g, ... the local invariants in this frame. Then {w, w®, ¢} is an adapt-
ed frame on M and we wish to calculate the Chern-Moser connection forms
@7, #*, ¥ and their curvatures Sm,ﬁ,;, Vaﬂv, .... We have, on M,

dw =igagw°‘/\w5+w/\go,
(3.2) do® = PN+ h%GeP Ao,
de=0.

So we take, as a first approximation to @,°, 1 ¥
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Soga(l) = g%
(3.3) oM =pg0f,
¢(l) =0.
Then a little calculation shows
dps® — DA 2D oA oW 4 DA e
(3.4) +i85%(p, VA% —(1/2) 85 ¢ DA w
= Sa,YB&(;)’YA w’+ Va'87 Ww'Aw—VP -w'Aw.

Using the lemma at the end of Section 1, we see that we can take

05" = 05"
3.5) SR
¢a=h°‘gwﬁ.
Then
dg*—pNg*— @ A Eg*—(1/2)Y D Aw®
(3.6)

=V gw'A w5+h°‘gh57wAw"+ (A“5+B°‘5)wAw5,

from which we can derive that we must take

(3.7) ¥v=—(2/n)h**h o

and that

3.8) B = —h%ghP +(1/n)h*zh®,5.°,

(3.9) 0,%= A%+ B*;.

Differentiating (3.8) and equating coefficients of w, we obtain

(3.10) 0=P2, . +hP Oz*+h*Q0.F—(1/n)hf, 08,2~ (1/n)h*30,Ps.°
This is clearly not satisfied if

(3.11) 0.f=0

and

(3.12) P #0

Thus it suffices for us to construct a real hypersurface satisfying (3.11) and (3.12)
at a given point.

THEOREM. The real hypersurface M= {r(z,Z)=0}CC"*!={(zy,...,2,, W)}
(n>1) is not the leaf of a Ricci flat foliation in any neighborhood of the origin if

(3.13) r=w—w)/2i+ 3 2,02+ 322 — 2,°2,°) (w+ W)
or

(3.14) r=(w—w)/2i+ Y |2,|*+ (2’2 %2+ 2,°2: 2 ) (W+ W)
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Proof. Calculate that (3.11) and (3.12) are satisfied at the origin (cf. [1, §6]).
O
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