ON FRACTIONAL DERIVATIVES
AND STAR INVARIANT SUBSPACES

William S. Cohn

1. Introduction and statement of main results. Let ¢(z) be an inner function
defined on the unit disk D = {|z|<1}. Factor ¢ canonically as

¢(z) =NB(2)s,(2),
where |\ |=1,
4 ap—2

B(iz)y=1]1

k=1 lakl 1—aiz

is a Blaschke product and

Ss(2) =exp<—5 {tz

T {—2

dam)

where o is a positive singular measure on the unit circle 7.
In [4] we proved the following result, extending earlier work of Frostman,
Riesz, and Ahern and Clark (see [6] and [1]).

THEOREM A. Let {oeT, ¢ =Bs,;, and 1 < p<oo,
(1) Necessary and sufficient that lim, _,| f(r$o) exist for all f € K,(¢) is that

1—|ag] S do($) <o,
v |So—ar| IT |$o—¢|
(2) Necessary and sufficient that lim, _,y f(r{o) exist for all f e K,(¢) is that

1—|ag| S do($)
k |So—ak|? I [So—¢|?
(Here and in the sequel, by lim, _,; f(r{o) we mean lim,_,;_ f(r{o).)
The spaces K, = K,(¢) and K, =K,(¢) are the “star-invariant” subspaces of
HP? and BMOA determined by
K ($)=¢HENH? and K.(¢)=K,(¢)NBMO,

where HY = {Zf(z): fe H”}.

Although derivatives are not mentioned in [4] it is not difficult to conjecture
(and prove) the correct results for the radial behavior of fV, f@® ... if fe K, or
K., and arrive at the following result.

< 00

THEOREM A’. Let {oeT, ¢ =Bs,, I<p<owandn=0,1,2,....
(1) Necessary and sufficient that lims_, f "(r¢o) exist for all fe K, is that

2 l—lakl S do($)

— —__<
‘g—o_akln-i-l T Ig—o_g-ln+l e
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392 WILLIAM S. COHN

(2) Necessary and sufficient that lim, _,, f " (r¢o) exist for all fe K p IS that

1—|ak| S do
lg-o_akiq(n+1)

where 1/p+1/q=1.

r Jfo—gJaeD =%

In this paper, we will use the methods of [4] to study fractional derivatives and
integrals of functions in K, and K,. It turns out that in this situation we can
provide more information about the radial behavior of derivatives of K, and K,
functions than one might first guess after glancing at Theorems A and A’.

If f(z)=2n-0a,z"” is holomorphic on D we define the fractional derivative

(D) @)= 3 (n+1)°az",

where o € R. We define the fractional integral

U@ 3 (n+1) a2,

where a € R. It is obvious that Df=I1"%f. If 83> 0 and « > 0 the following for-
mulas are easily verified:

B—1

8 __1 1
(1.1) I°fNHz)= T'(8) SO (108 P Sf(tz) dt
_ 1 1 l 1 a—1 N
(1.2) f(Z)—“l‘;(—a‘)* SO<Og —t-> (D%f)(tz) dt.

Notice also that if n=1,2, 3, ... then
n n—1
1.3) (D)D)= (Edz -z) S@ =2 D@+ 3 etk mz )
=0

for nonzero constants c(k, n).
Our main results are summarized below.

THEOREM 1. Let ¢ =Bs,, n=—1,0,1, ..., and 0 <a<1. Suppose 1 < p<oo,
I/p+1/g=1, and 1 = g(n+1+«a). If {oeT then the following conditions are

equivalent:
(1) lim, (D" 9f) (ro) exists for all fe K,.
1—|ay] do (%)
) Ig-o_aqu(n+l+a) ST Ig.o_g_lq(,H_i_*_Q) < oo,
1 1\«
3) SO ID"+1f(t§'o)|<10g 7) dt <eo forall feK,.

THEOREM 2. Let ¢ =Bs,, n=0,1,..., 0<«a<l, and {oeT. The following
conditions are equivalent:
(1) supo<,<1|D" f)(rso0)| = C| f|+ for all feK,, with C independent of f.
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1—|ay do($)
@ = |So—ax|"*!*e ST |fo—¢|nF1+e <
3) S:) |Dn+1f(f§'o)l(10g -1—) dt=C|f|« forall feK,,

with C independent of f.

REMARK 1. Notice that in the fractional case condition (3) of Theorems 1 and
2 do not have analogues in Theorems A and A’.

REMARK 2. For 1< p<oo, if n=—1 and ga <1, that D"**f=['"%f is con-
tinuous on the closed disk for any f e H? follows from formula (1.1) by Hdélder’s
inequality and a standard approximation argument. This explains the restrictions
on n and p in Theorems 1 and 2.

We also get analogues of Theorems 1 and 2 for Cauchy type integrals of func-
tions fe K, and K,. These provide additional conditions equivalent to condi-
tions of type (2) above. The following results are contained in Theorems 3 and 4.

THEOREM 3’. Under the assumptions of Theorem 1 the following conditions
are equivalent:

(1) Condition (2) of Theorem 1 holds.

(2) There exists a g € HY such that (1—¢g)({o—z) "~ 17 %€ K,.

THEOREM 4'. Under the assumptions of Theorem 2 the following conditions
are equivalent:

(1) Condition (2) of Theorem 2 holds.

(2) There exists a g € H' such that (1—¢g)(so—2z) " '"%eH .

As an application of Theorem 1 we prove the following characterization of
Blaschke products whose zeros satisfy the Frostman condition.

THEOREM 5. Let 1< p <. The following conditions are equivalent:
(1) (IPf)(z) extends to be continuous on the closed disk D for all f € K p(d).
(2) ¢ is a Blaschke product whose zero sequence {zy} satisfies the Frostman

condition
1— |z }
su —:{eT{<oo.
D{E | & — 2zl d
B3) (Cp-npf)(z) extends to be continuous on the closed disk for all fe
Ky(9).

See Section 2 for the definition of C,,, . f.
Theorem 5 may be regarded as a supplement to the following fact.

THEOREM (see Proposition 3.1 and its Corollary in [4]). If ¢ is inner then
K.(9)=K(9) if and only if ¢ is a Blaschke product whose zero sequence satis-
fies the Frostman condition.

This theorem may be interpreted as the p = oo version of Theorem 5.
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The proofs of Theorems 1-5 will be given in the next section. We will need the
following resulit stated in [4, §2].

THEOREM B. For an inner function ¢ and 0<6<1 there is a region ® and
“Carleson curve” I's with the following properties:
(i) T'=3dRND separates {z: |p(z)| =8} from {z:|p(2)|<e()}, where
€(6) < 6;
(i) {z:|o(z)|<e(8)} = R;
(iii) arclength on Ty is a Carleson measure;
(iv) |¢(z)| =<6 forzeTs;
) I' =U, yn, where v, =1a,,b,] is a circular arc or radial segment and
there are constants o, and o, such that

an—by,
1 - an bn
(vi) if w, is the midpoint of v, then {w,} is a uniformly separated sequence,

and if By, = By, r; is the Blaschke product with zero sequence {w,} then
there are constants ¢, and ¢, such that

a(1—18(2)|) = (1—(By(z)]) = c2(1—[¢(2)|);
(vil) if ¢oe T then with ¢ =Bs, and v =1,
1—[ay| s do($)

O<o =< =0,<1;

< o
| $o—ak|” T |§o— ¢
if and only if
l—l"’nl <
li’o—wnIT

We assume familiarity with results in the literature concerning H”, BMOA,
Carleson measures, uniformly separated sequences, and the non-Euclidean met-
ric. As references we cite [5] and [7]. For two analytic functions f and g defined
on D we let {f, g) denote the usual pairing

(f, g>=lim L S” f(re®®)g(re®) do

r—1 2T J-=
in the cases where the limit exists. By|.f| « we mean the BMOA norm of f; | f|,
will denote the H” norm of f. The notation A = B will be used if there are posi-
tive constants . and M such that mA < B < MA. Finally, the letters ¢, ¢y, c5, ...
etc. will denote various constants which certainly differ in value in different in-
equalities.

2. Proofs of main results. We will need the following computational resulis
which are well known.

LEMMA 1. Let 0=a<1, |z|<1, and v>1— «. Then there are constants c|(«, )
and c3(«a, 7v) independent of z such that

cl(a"Y) - CZ(ar'Y)
@D oz = (%8 1) i = e e
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Now let |[w| <1, 0 <@ <1, and choose a branch of the logarithm so (1—w)“is
positive if w=0.
LEMMA 2. Ifn=0,1,2,... then
I'(a+n) 1 _ (nyy ST SI A O St O e
') (A—z)"+te Y77 g o (1—tz)rt!
Proof. By the binomial theorem
1 ©  T(a+n)
—_— =Y Z
(1-2)* =0 '(n+1)I'(x)
_ sintae & I'N(la+n)I'l—a) ,
T or neo0 I'(n+1)
Sin'ﬂ'a § S:) tn+a—l(1__t)—a dtzn

™ n=0

dt.

n

Il

_ sinma Sl t* 11—y~ @
0 (1—1z)
where we have used the facts that sin 7o’ («¢)I'(1 —a) = 7 and
'm+ao)I'fl—a)
I'(n+1) ’
see [10, pp. 239 and 254]. The result follows by differentiation with respect to z.
As a consequence of Lemma 2, suppose 0 < #yg< 1. Since
S’O tn+a+1(1 —1)
0 (1—tz)"+!
remains uniformly bounded as z varies (and # and « are held fixed), Lemma 2

shows that there is a constant c(n, o) > 0 independent of ¢4 and a 6 > 0 such that
|z—1| < & implies

’
™

1
SO tn+a_1(1—t)_adt —

dt

Sl tn+a—1(1_t)—a
to (l—tz)"“

This observation gives the next fact.

- '1_Z|n+a °

dt‘> c(n, o)

COROLLARY 1. If t, is sufficiently close to 1 then there exist constants 6,>0
and c(n, a) >0 with c(n, o) independent of t, such that |z —1|<§, implies that

1 1\™¢ 1 c(n, o)
log — _— > ———
lsn (og f) (1—1tz)"+! = [1—z|"+e

Proof. Since

_ 1\ ¢
|(1—t) "‘—(log ?)

[t~ —1|=0(1—¢]) as t—1,

=0O(|1—¢|'"*) as t—>1

and
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using Lemma 1 we see that

! 1 _l _a__n+a~l o
S:, 1—12)" 1 ((log t) t (1—-19) )dt’

<Sl |z|”+°‘—'|(1—t)"“—(logu/t))““]+|t°‘“+”—1|(1og(1/t))—“d
- 1 Il_tzw+l

1
“g e

t

<c|l—

Choosing ¢; close enough to 1 so ¢|1—¢] is sufficiently small, the desired result
follows from the observation made after Lemma 2. U

The next corollary is the last preliminary fact we will need. For related results,
see [2]. First we need two formulas.
If B is a Blaschke product with zero sequence {a;}, then

l—lakl2
(2—ar)(1—axz)
ar (1—|axl*)
lax] (1—arz)*’

B'(z)=B(z) X

=— 2 B)(z)

where By, is the Blaschke product with zeros {a;};««. Leibnitz’s rule gives that

N=1/N—1 e T GEDIA =)
2.2) BWMiz)y=-3 ( _ ) BN (z) —— ,
j=o\ J % ) ( |ak| (1—axz)/*2
for N=1,2,3,.... Also, if f(z) =X =0 a,z" is holomorphic on the disk, then for
O<a<land n=-1,0,1,...

(D" f) () =T'"*D" ' ) (z)

(2.3) o LI p
“Td—o) So(og ;-) ( S (tz) dt.

This follows from (1.1) and (1.2).

COROLLARY 2. Let ¢ =Bs,, n=0,1,2,..., 0<«a<1. Suppose in addition that
whenever  divides ¢, lim, _ | ¢ (r) exists and has modulus 1. Then the following
conditions are equivalent:

(1) There is a constant M > 0 such that

sup [((D" Y)Y (r)|=M

O0=r<l
Sfor all divisors  of ¢.
l—lakl do
2
( ) % Il_ak|n+l+a S |1__§-|n+l+a <o

(3) There is a constant M > 0 such that
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S:) I(Dn+1\[/)(f)l(10g %>_adt =M

Jor all divisors Y of ¢.

Proof. Suppose ¥ = B;s, divides ¢, that is, 0 < 7 < ¢ and the zero sequence of
B, Z(B,), is a subsequence of {a;} = Z(B). It follows from [1, Lemma 3, p. 197]
that the hypothesis that lim, _,; y(r) =L exists and |L|=1 for all divisors ¢ of ¢
is equivalent to the condition that

E 1-—|ak[ +S dO(g')
k

11— ax| 1-¢|
Use (2.2) to get the estimate

i do(§)
Iw(t)l—c(E Ia;||2+§ —0————)

< 00

T |1—§t|?

It follows from the last two inequalities and Lemma 1 that

lim Sl |W(¢)| de =0
r—1
where the convergence is actually uniform over the entire collection {¥: ¢ is a di-
visor of ¢}. Thus, given € >0 we may find 8§, independent of ¢, such that if 6 <
t <1and ¢ divides ¢ then |Y(¢)—¢(1)| <e. Choose e = 2 (c(1, @) /c2(, 2)) where
the constants on the right-hand side refer back to Lemma 1 and Corollary 1, and
find the corresponding 6. By adjusting the §; of Corollary 1 we may assume that
the ¢, of Corollary 1 is bigger than 6.

With this taken care of we are ready to use induction to show that (1) im-
plies (2).

Assume that #» = 0 and (1) holds. Suppose B; is a finite Blaschke product whose
zeros satisfy the conditions

(i) |ax—1]<é; and

11— |a|
lax| |1—at|

(ii) <§ for t;<t<1,
where € is as above. Set 7= 0. We will show that the sum in condition (2), for the
zeros of By, is finite. A similar argument will deal with the integral.

Letting r — 1, use (2.2) and (2.3) to conclude from (1) that

(1—|ax|*)

dt|\<M
A—aer)? |5

1\™* a
5, (08 7) % ot B =B+ B0~ BiD+ By(1)]
4 ! Iak|

where

ar—2

By (z) — |a 11—z

= B(z)

and M’ is an absolute constant.
Observe that for ¢, <t <1,
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| By (8) (Jag |+ art) (1 —|ag])|
— <e€
|ak||1—akt|
and |B;(¢)—Bi(1)| <e. Since |B,(1)|=1, it follows that
! 1N\™® @ (1—|a]?) e l—latkl2
log — dt|<M’'+2 1
'Esh(og f) lax| (1—art)? I € 2 (og ) |1—akt}2
1—ax|?
AR

|By(t)— By ()| =

1
=M'+ cl, @) S
2
Corollary 1 shows that we may partition the zero sequence Z(B) of B into finitely
many sets such that if the zeros of B; belong to one of those sets, then the left-

hand side of the last inequality is bounded below by

3c(1, @) > 1—|ag|?
4 |1—-ak|1+°‘ ’

where the sum is over the zeros of B;. From this it follows that

1— |
—_— < w,
where the sum is taken over the entire zero sequence of B.
A similar argument considering s,(z) where 0 < 7 < ¢ and 7 assigns zero mass
to a small neighborhood of 1 shows that

do($)
ST [1—¢|t+e =
Thus (1) implies (2) in case n=0.
Assume now that (1) implies (2) is true for 0,1, 2, ..., n—1. We will show that
this means that (1) implies (2) is true for n as well. Use (1.2) to obtain that

1 1 1\™¢
. Dn —_ - n+aw t
@4 D)=y o (02 7) @™y a
and argue recursively from this (using (1.3)) that (1) implies that all the limits
lim,_,; (D*y) () and lim,_,, ¥ ¥ (r) exist and are uniformly bounded (indepen-
dent of ¥) if k=0,1,...,n and ¢ divides ¢. Now use formula (2.2) to get that

ar+ 2
B =—3 By (1) (n+1)1ag ™ 2— lax|*)
3 lakl(l—akf)”+
where the last remark and the induction hypothesis allow us to apply condition
(2) of Corollary 2 (with n—1 in place of n) to deduce that ”1 (log(1/t))"*R(¢) dt

remains uniformly bounded as 7 — 1, where the bound is independent of B,. By
(2.3), it follows then that if B is a finite Blaschke product, condition (1) implies

1 1\™® (@) —ak]?)
log ‘) By (¢ — dt|=M’,
Stl ( t akeg(Bl) (1) lax| (1 —a,t)"+2

where M’ is independent of B|. Argue as before to conclude that

+ R(?),
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1—|a|?
aln+1+cx

< 00,
aczm) |1—

A similar proof based on an analogue of (2.2) shows that
S do($)
T ll _ §-|n+l+a

Thus (1) implies (2) for all n=0,1, 2, ....
An argument by induction patterned after the one given above also shows that
(3) implies (2); note that since

ro") (= @" )0 dt

< 00

for m=0,1,2,..., condition (3) easily yields the facts that the limits
im(D*y)(r) and limy®(r)
r—1 r—1

exist and are uniformly bounded for k=0,1, ..., n, a key step in the induction.
Finally, that (2) implies both (1) and (3) is an easy consequence of (2.2), (2.3),

Lemma 1, and the estimate
1—|ax|? do(¢)
(n+1)
hb (l‘)lSC[E Il_takln+2 +S Il—f§|n+2],

which follows in a straightforward but tedious fashion by calculating y "+ (z)
and applying condition (2) repeatedly in making elementary estimates. This con-
cludes the proof. OJ

We are now ready to prove the main results. In the proofs of Theorems 1-4
we assume without loss of generality that {o=1.

Proof of Theorem 1. From (2.3), it follows that if fe K, then

(DY) =S, K (-5 1))
where K(-; r) e K; and
— IN™ /1= 8() 6 ()
' a)K(z,r)—-S (log p Dy ( -tz
Under the pairing { f, g>, Lemma 4.2 of [4] states that K} is isomorphic to K;. A
standard duality argument shows that if (1) holds then K (-; r) converges weak-*
in K; =K, to K(-;1), where K(-;1) is defined by the formula above. In other
words, (1) implies that K(-;1) belongs to K,. By Lemma 4.1 of [4],

1
dt.
0

IKCsD1g= [ 1Kz DI |dz|
where TI'; is the Carleson curve associated with ¢ as described in Section 1. We

claim that if e is chosen sufficiently small then

C
z|n+l+a

|K(z;1)| = T
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for z e ', and z close to 1. Accepting this claim as true, it follows that if (1) holds
then

: |dz|
"K(, I)H(ql =C S‘I‘E Il__zlq(n+1+a)

- |az|
= E S'Yn |1__zlq(n+l+oz)

n

. 1— ||
- % Il___wn!q(n+l+a) ’

where {w,} and v, are as described in Section 1. Thus (1) implies that the sum
above is finite and Theorem B of Section 1 shows therefore that (1) implies (2).
To prove the claim, (2.4) shows that (1) implies lim, _,; (D"f)(r) exists if fe K,
and n=0,1,.... So therefore do the limits lim, _, { (D%¥f) (r) and lim, _,; f % (r) if
fekK, and k=0,1, ..., n. Notice also that if n=0,1,... we also conclude from
Theorem A that the hypothesis of Corollary 2 is satisfied.
Calculate now that

1+1Z
a"! [1-6(N)é@)\, d* (1-¢(1) ()
— gn+1 &
=1 dtn+l< l_tz >+k§OC(k,n)t dtk( l_tz' )
_ (e gnrignr 122W00R@) L 2TTN06GR) R

(l_t’z—)n+2 (l—tZ) (l_tz)n+l

where ¢(k, —1) =0 and c(k, n) is as in (1.3), and R is a sum of terms which re-
main uniformly bounded as # — 1 by the remark prior to the calculation above.
(We are using here that 1—¢(0)¢(z) € K,(¢), so “essentially” we may treat ¢(z)
as a function in K,(¢). No generality is lost in assuming that ¢(0) = 0.)

By choosing e so small that z € I'. implies that |¢(z)| is sufficiently small, we
see that if z e I, and is close enough to 1 then, if n=0,1, ..., Corollary 1 yields

1 1\ 1 ! 1\ " (1)
SO (log }‘) ?1—_'1‘—27”—_,—_—2- dt —C2 SO (log ) — dt

t |1—¢z|
—cC Sl lo l —a____._C_It_.__
3o\ O8 7 [14+ez|7+1°

To bound the integral involving ¢ “"*!, since 1—¢(0)y(z) € K,(¢) whenever ¢
divides ¢, condition (1) enables us to apply Corollary 2 and conclude that condi-
tion (3) of Corollary 2 holds. It follows that

IK(Z;I)IZCI

1 &) C3
K(z;1)|= — —
l (Z )l Il_z|n+l+a |1—Z| Il_zln-}-a
if z is close to 1 and on I',. This proves the claim for n=0,1,2,.... If n=—1 the

argument is even simpler and depends only on Corollary 1 and correct choice of €.
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Assume next that (2) is true. We will show that (3) must follow. Use the proof
of Lemma 3.1 in [4] to express fe K, as

_ 1 ¢ [RE)] _df
J@=55 Sr [qs(g)]l—z?’
where he K, and |k|,=|.f|,. Estimate that
n+1 |d§'|
(D f)(z)|5cSF|h(§’)|—-————|1_zﬂn+2
_ 45|
—C% S’yn]h(g-)| Il___z;:ln_i.z
h($n
SCE I (« )’ (1_!wn|),

o ll_za)nln-i-Z

where ¢, €, and |h($,)|=sup{|h($)]: § €vn). It follows that

1 1\™¢ 1 1\ ¢ dt
Soan+1f(t)| log?> dtSC§|h(§‘,,)](1—|wn|)50(10g?>

ll_twn|n+2

l—lwnl

_;.'g Ih(g‘n)l Il—wn|”+l+°‘

A} l/q

p I—Iw,,[
=(SiGra-1a0) (2 oaqesms ) -

since (1—|¢,]) =(1—|w,|). Since ¢, € v, the sequence {{,} is a Carleson sequence
and it follows that this last product is finite. Thus (2) implies (3).

Next, assume that (3) holds. We will prove that (2) must follow. If fe€ K, the
dominated convergence theorem implies that

l —
lim SO |D"* (1) (10g 7) dt < co.

r—1

The uniform boundedness principle shows therefore that with

r 1\ ¢
A= 0" o(los ) ar

then, as r » 1, A, converges weak-* on K} to a bounded linear functional. It is
easy to verify that A, (f)=<{/f, g/, where

— 1\ 1— b (2)
gf(z)=So(log—t- Dsi’“( ?(_?;(Z) §=tdt

belongs to K,;. Thus (3) implies that g, converges weak-* to a function g€ K. It
is clear that g(z) = K(z;1), where K(-;1) is the kernel defined in the first part of
this proof. We show now that (3) implies (2) by an argument similar to the one
used to show (1) implies (2).

Because, if n=0,1,2, ...,
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") (n)= | 1D )] dt,
(3) implies that

1 . 1\ ¢
SO|rD f(lt)l(log —;) drsg

= Sl Sl (log 1)—adr |D"* ()| dt

0 Jt r

1
0

r n+1 _1__ -
SO|D f(t)|dt<logr) dr

1
SCSO |D"F f(t)| dt < oo.

Arguing recursively, we see that (3) holds with k£ in place of n for k=0,1,...,n
(if n = —1). This means that for n —1 we have that lim,_,; £ ¥)(¢) exists for k =
0,1,...,n and fe K, and therefore Theorem A implies that the hypotheses of
Corollary 2 are satisfied. (This is all unnecessary if n=—1.)

Since (3) implies also that

1 n+1 __1__ -
SO|¢ (t)}(logt) dit < oo,

an analysis of D/"*!1((1—¢(¢)¢(z))/(1—¢Z)) similar to the previous one shows that

'
Zin-{-l—i-oz

|K(z;1)|= T

if zeT'. and is close to 1. Since (3) implies that K(-;1) € K, it follows exactly as
before that (3) implies (2), as desired.
_ To complete the proof, we show that (2) implies (1). Suppose (2) is true. We
claim that

1 1\ ¢
. (k+1) 1
lim Sof (rt){log t) dt

r—1

exists whenever fe K, and k=—1,0,...,n. From (2.3) it follows that (1) must
hold.
To prove the claim, use the integral representation of fe€ K, and write

' e N = [ AN\ kD! o 1\
Sof (rt)(logt> dt—gso[svm 3(0) ) A=rep)e+ ds (logt dt

=2Fm,k(r)
where kil e
1 ! h($) [ d¢ l -
o = (1, (565 [ammyer | (e 7) o

and F,, , is continuous on the interval [0, 1]. Estimate now that

| Fom, ko = SUP{|Fi, (r)|: 0= r <1}
1 l_lwm‘ 1 T
=c |, 1wl (log t) dr

—twm|k+2
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SC'k(fm)l Il—'wm!k+l+a ’

where ¢, € v, and |A($) | =sup{|A($)|; § € vm}. Thus

/p 1— | wpn] aq
S il 5 (S 1EDPA= 18D (5 oo et

=C|flp<e

for k=—1,0,..., n. The Weierstrass-M test implies now that >, F,, , extends to
be continuous on [0,1] for k=0,1, ..., and the proof is complete. O

Proof of Theorem 2. Notice that (2.4) shows that if either (1) or (3) holds, then
lim, _,; f(r) exists whenever f € K,(¢), so by Theorem A the hypothesis of Corol-
lary 2 must hold. That (1) implies (2) then follows from Corollary 2 since when-
ever ¥ divides ¢, 1—y(0)y¥(z) € K.(¢) and |1 —y¢(0)y|«=<c, where ¢ does not
depend on y. That (2) implies (3) follows from the integral representation (see
[4, Lemma 3.1]): .

o= 5 ], [BD) 45
wi Jr | ¢(§) | 1—2¢
where he H™ and |h|«=|f]«, for fe K,, by an argument similar to the cor-
responding one in the proof of Theorem 1. To see that (3) implies (2), an argu-
ment similar to the parallel point in the proof of the implication (3) implies (2) in
Theorem 1 shows thatif k=0,1,...,n+1, ¢ divides ¢, and (3) holds, then, for an
M’ independent of ¢,

1 —
go |¢""(t)|(log %) dt <M.

Corollary 2 shows now that (3) implies (2).
Finally, if (2) holds use the integral representation for f e K, and the Weier-
strass-M test to deduce (1). This completes the proof. ]

We consider now integrals of K, functions with respect to fractional Cauchy
kernels. As before, if |[w|<1 and 0 <a <1 choose a branch of the logarithm so
(1—w)“is positive if w=0. Let

I'Na+n) 1
IN'a) 2w

where n=0,1, ... and |z|<1. It follows from Lemma 2 that

(Crra) @)= |, rrerya-gzymay]

sin o

(Crvaf)(2) = [ extrma—ny ™z ar,

and we expect therefore that C, ., f will behave like D"~ 1*f.
If fe K,(¢) and 1 < p < oo then it is easy to verify that

(Cn-i-ozf)(r):(szr)s
where K, € K,;(¢) and
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sinmae 1 _ . d" [1—d()D(2)
K. (z)= BT O T dt.
@ e s (5 )

Because log(1/¢) =1—1¢ for ¢ close to 1, it is almost obvious that the following
properties are all equivalent:

(1) lim, 1 (Crio f)(r) exists for all feK,, if l <(n+a)gq.

1—|a| do
(2) E Il_alq(n+a) +§T ll__g-,q(n+cz)

(3) lim,_,, (D"~ ey (r) exists for all fe K,, if 1= (n+a)gq.
We omit the proofs; however, we state the following result since it provides yet
another condition equivalent to (2) above.

<oo if l=(n+a)q.

THEOREM 3. Let 1< p<oo, n=0,1,..., and 0<a<1. Suppose 1 <=g(n+ «)
and ¢ = Bs,. Then the following conditions are equivalent:
(1) Condition (1) above holds.
(2) Condition (2) above holds.
(3) lim,_|Pk,(1—rz)""~%|, <, where Pk, denotes orthogonal projection
of H? onto K.
@ (1—¢g)(1—z) ""*eK, for some ge HI.

Proof. The equivalence of (1), (3), and (4) follows from duality considerations;
see also [4, §4], especially the remark preceding Theorem 4.2. That (1) and (2) are

equivalent is essentially the same as the equivalence of (1) and (2) in Theorem 1.
O

For K.(¢) we state the following result.

THEOREM 4. Letp=Bs,, n=1,2,...,and 0 < ax <1. The following conditions
are equivalent:

(1) lim,_((C,1af)(r) exists for all fe K,.(¢).

(2) ForsomegeH!, 1—¢g)(1—2z) " “eH.

1—|a| do
3
* T i ) g

Proof. The equivalence of (1) and (2) is again based on duality considerations;
see [4, Thm. 3.3]. That (1) and (3) are equivalent is essentially contained in Thec-
rem 2. 0

We conclude this paper with the proof of Theorem 5.

< o0

Proof of Theorem 5. We will show only the equivalence of (1) and (2). Sup-
pose first that ¢ satisfies (2). By Corollary 3.3 and Lemma 3.4 of [9] we may fac-
tor ¢ as ¢ = B1B,---B,, where each B; is a Blaschke product whose zeros are uni-
formly separated and (of course) still satisfy the Frostman condition. If p=2
then by [1, Lemma 3.1, p. 196]

Ky (@)=K(B) DB K(B))D---®BBy---B,_1K>2(By).
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An argument based on the M. Riesz theorem shows that H” = ¢H” + K, (o) if
1 < p <. Using this fact and the argument used in [1] for the case p=2, it is
easy to show that
Kp((b) = Kp(Bl) +B1Kp(32) +.--+BB;,-- ’Bn—le(Bn)-
If fe K,(B;) for some i, then by the remarks on [8, p. 274]
f@)=3% ———,

—2iZ
where dy =1— |zx|, {zx} is the zero sequence of B;, and {ct} € /”. Set
G(z)c,d}~ /P

1—Zxz )

G=BB;---B;_, and g;(z)=

It is simple to check that (ZPg,)(z) is continuous for |z|=1.
Estimate next that if NV is fixed then

> [Vrg, =sup{ > (IPg)(z) ’]ZISI}
k=N oo k=N
1 1\""~!  ar
<Csu c dl—l/ps lo —') N—rzez] © 51}
p{kENI il di o \'O8 7 |1—2Zz| &
sCsup{ S e di-P _1 :KGT}
k=N 1=z s |7

l/p dy
=C( Y |ck|p) sup( D ———:g'eT)
k=N

k=N |1—Zk |
V/p
sC( » |ck|p) .

k=N

It follows that the series S2-; IP(gx) converges in the disk algebra of holomor-
phic functions on D with continuous extensions to the closed disk. Since I'7(f)
is a finite sum of such series, 7/?(f) must be continuous on the closed disk, as
claimed.

Conversely, assume that (2) holds. Let { € 7 and K¢(z) € K, be such that

P1)(5) =< f, K¢

such a K exists since the map f— ({ 1/p ) (¢) is a bounded linear functional under
assumption (2). In fact, since (2) implies that |7 p g | = CI|flp, it is clear that
|K¢|q=C for all {eT. The proof of Theorem 1 ((1) implies (2)) makes it clear
that with {w,}, the points associated with the Carleson curve I',, we must have

1—|w,,|
sup ), — = =sup| K|, < C,
g‘eTE Il__g.wnl reITJ"H i’"q

and it follows that {w,} is a Frostman sequence. It follows from this by the re-
mark after the proof of Theorem 3.1 in [4] that K,.(¢) = K.(¢). By [4, Prop. 3.1]
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(and its Corollary), ¢ must also be a Blaschke product satisfying condition (F).
This completes the proof. L]

1.

[e BN

10.

REFERENCES

P. R. Ahern and D. N. Clark, Radial limits and invariant subspaces, Amer. J. Math.
92 (1970), 332-342.
, On functions orthogonal to invariant subspaces, Acta Math. 124 (1970), 191-

204.

, Radial nth derivatives of Blaschke products, Math. Scand. 28 (1971), 189-201.
W. S. Cohn, Radial limits and star invariant subspaces of bounded mean oscillation,
Amer. J. Math 108 (1986), 719-749.

P. L. Duren, Theory of H? spaces, Academic Press, New York, 1970.

O. Frostman, Sur les produits de Blaschke, Kungl. Fysiogr. Séllsk. i Lund. Forh. 12
(1942), 169-182.

J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.

. S. V. Hruschev, N. K. Nikolskii, and B. S. Pavlov, Unconditional bases of exponen-

tials and of reproducing kernels. Complex analysis and spectral theory (Leningrad,
1979/80), 214-335, Lecture Notes in Math., 864, Springer, New York, 1981.

. S. V. Hruschev and S. A. Vinogradov, Inner functions and multipliers of Cauchy type

integrals, Ark. Mat. 19 (1981), 23-42.
E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed., Cambridge
Univ. Press, New York, 1962.

Department of Mathematics
Wayne State University
Detroit, MI 48202



