HILBERT FUNCTIONS AND SYMBOLIC POWERS

Craig Huneke

1. Introduction. The following question of Cowsik [4] inspired much of this
paper: if R is a regular local ring and p C R is a prime ideal, then is @, » o p""
Noetherian? Here p " = P"R,NR is the nth symbolic power of p. Cowsik proved
if dim R/p =1 then @® p™ Noetherian implies that p is a set-theoretic complete
intersection. One of the main cases is when R is 3-dimensional and ht p =2. Posi-
tive results were obtained in [5] and [8], but recently Roberts [29] gave a counter-
example to the general question. One of the main results of this paper is to give a
necessary and sufficient criterion (Theorem 3.1) for ®,,»0 p™ to be Noetherian
which is relatively simple to apply. Namely, we are able to show that, if R is a 3-
dimensional regular local ring and p is a height-2 prime of R, then @, p™ is
Noetherian if and only if there exist &, £, elements fe p(k ) gep®, and x ¢ p such
that N(R/(f, g,x)) =ekt, with e=A(R/(p, x)). Here A\( ) denotes length.

The proof of this result requires an understanding of Hilbert functions of m-
primary ideals in 2-dimensional Cohen-Macaulay (C-M for short) local rings. In
general, if R, m is a d-dimensional local C-M ring and 7 is an m-primary ideal,
then there is a polynomial P;(n) of the form

n+d—1 n+d-—2 _ n
eo( d )"‘el( d—1 )+“'+(—1)d l€d~1(1>'l'(—1)d€av

such that, for n>> 0, P;(n) =\NR/I"). We define H;(n) = N(R/I") for every
n =0, and call H; the Hilbert function of I and P; the Hilbert polynomial of 7.
Not a great deal is known about the coefficients ey, ..., e; of P;(n). However, see
[10], [21], [28], and [30].

Of course, e is called the multiplicity of 7 and can be computed as follows: if
R/m is infinite and x1, ..., x4 is a minimal reduction of 7, then eg=N(R/(xy, ..., X4)).
Northcott [22] showed that N(R/I') = e; —e; always holds while Narita [21] showed
that e, = 0. Recently Kubota [11] proved that if N(R/T) =ey—e; and N(R/[?)=

eo(d+1)—e d, then necessarily e; = --- =e;=0. For our theorem on symbolic
powers we need to improve this theorem. We are able to show (Theorem 2.7) that
if N(R/I)=ep—e; then necessarily e; =--- =e;=0. (From this it follows that

P;(n)= H;(n) for all n=0 and also that %= (x, e Xa)1.)

The basic method of proof is essentially the same as in papers of Rees [26] and
Kubota [11], but pushed slightly differently. The methods also apply to consider-
ing the difference P;(n) — H;(n). Following the lead of Morales [20], we consider
when P;(n)= H;(n) for all n=1 (Theorem 2.11) and when P;(n) = H;(n) for all
n =1 (Proposition 2.12), and later apply these to the case where ®,,~ o I"/I"is
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C-M (Theorem 4.6). We also discuss the independence of the reduction number.
We refer the reader to the text for precise statements.

The work on H,;(n) and P;(n) is contained in Section 2, while in Section 3
we give the main application to symbolic powers along with several examples. In
particular, recovering a result of [9], we show that if e(R/p) =3 then @, > p""”
is Noetherian; we also show that if p is the defining ideal of a curve k[[#4, 7, t"]]
then @, =0 p" is Noetherian. We prove a theorem which shows the difference
between @, o "’ being Noetherian and p being a set-theoretic complete inter-
section in the case where p is height 2 in a 3-dimensional regular local ring.

In Section 4 we carry over essentially the same proofs as in Section 2 to study
H;(n) and P;(n), where I is an m-primary ideal in a 2-dimensional local C-M
analytically unramified ring R. Here H;(n) =\(R/T"), where T" is the integral
closure of 7" and P;(n) is the polynomial of degree 2 such that P;(n) = H;(n) for
n>=> 0. Rees [25] proved such a polynomial exists. We prove exactly similar theo-
rems regarding the coefficients of P;(n) in this section as in Section 2, and as in
the work of Northcott [22], Narita [21], and Kubota [11] for P;(n). We also dis-
cuss an interesting theorem of Morales [20] which states that if P;(n) = H;(n) for
n=1then @, ¢ 1"/I"*!is C-M. Here R is a germ of a normal surface over C.
We prove P;(n)=H/(n) for all n=1if and only if I"=(x, y)I"~! for n=3, where
(x, y) is a minimal reduction of 7. Under this condition, ® I"/1"+1is C-M if and
only if 2N (x, y) = (x, y)I. In Theorem 4.7, if char R = p > 0 we prove this latter
condition for any d-dimensional C-M local ring; that is, if I is any ideal gener-
ated by a regular sequence Xy, ..., X, then we are able to show I"NJ"~!=71""1],

As a corollary we obtain that if P;(n)=H;(n) for n=1 and char R=p >0,
then @, >0 I"/I"*! is C-M —that is, we obtain the characteristic p analogue of
the theorem of Morales. We continue with a related result showing if R is F-pure
(see [6]) of dimension d and Xy, ..., Xy is a system of parameters for R then

(X1, e, x2S (X, .00y Xg).

We also present (in an appendix) a proof shown to me by M. Hochster, which
uses the technique of reduction to characteristic p to prove that if R is a C-M
local ring containing a field and xy, ..., X, is a regular sequence generating an ideal
I, then I"NI"—1=71""1T.

Hence we obtain a generalization of Morales’ theorem to arbitrary 2-dimen-
sional C-M analytically unramified local rings which contain a field.

ACKNOWLEDGMENT. I would like to thank W. Heinzer, S. Huckaba, and J.
Lipman for many useful conversations on this material.

2. Hilbert functions. We begin this section by proving, in a d-dimensional
C-M local ring R, that if eg—e; =AN(R/I) then e;=:-- =¢e;=0, P;(n)=H;(n)
for all n =1, and I has reduction number at most one; that is, for any minimal re-
duction (xy, ..., xg) of I, I?=(xy, ..., xgz)I. This is a stronger version of a theorem
of Kubota [11] and Rhodes [28, Proposition 6.1(ii)], and is what we use for the
criterion for the symbolic power algebra to be Noetherian (Theorem 3.1).
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However we are also able to prove several other results dealing with the differ-
ence between P;(n) and H;(n). For instance, we give a necessary and sufficient
condition in Theorem 2.11 for them to be the same for all #>1. We also show
under certain conditions (see Proposition 2.12) that P;(n) = H;(n) for n=1 and
further that if P;(n) = H;(n) then P;(j)=H;(j) for j=n. We also briefly dis-
cuss the independence of the reduction number.

THEOREM 2.1. Let (R, m) be a d-dimensional C-M local ring (d > 0) with in-
finite residue field. Let I be an m-primary ideal. Write

n+d—1> (n+d—2
—€

)\(R/I”)=e0< )+-~-+(—1)"ed

d d—1
Jor n>>0. Assume ey—e;=NR/I). Then, for any minimal reduction x,...,Xq4
of 1, I*= I(xX1,....,X3), ex=+--=e4=0, and H;(n) = P;(n) for n=1. Conversely,

if there are xy, ..., xq€ I such that I*=1I(xy, ..., xq) then eg—e; = \(R/I).

Proof. We induct on d. If d =1, then this is the content of [14, Theorem 1.5
and Lemma 1.11].

Let (xy,...,Xxy) be any minimal reduction of 7. Then denote by x7, ..., x}; their
images in I/I* < gr;(R)= G, and by J denote @®,,~; I"/I"*". Then for some #,
(X5 oens x;‘;)J"‘1 =J" so that (x}, ..., x}) is not contained in any associated prime
of G which does not contain J. As R/m is infinite it follows that we may, after
elementary transformations of x, ..., x4, assume that each of them is superficial
for I. Let R=R/(x4), I=1/(xz). Then Northcott [22] showed e, () = e, (I) for
0=<k=d—1. In particular N\(R/IT)=X(R/I)=eo(I)—e;(I), so that by induction
I’=I(X1,....,%0-1), ex(I)=---=ey_(I)=0, and Pj(n)=Hy(n) for all n=1.
Lifting to R we see that

(2.2) I’ (X1, ey Xa_ )T+ (x4).
We claim that
(2.3) (I*:x)=1.

Let ae (I2: x;). Then from (2.2) it follows that

d—1
xia= Y xibj+x,c,
i=1

where by, ..., b,_; are in I. Hence x;(a—b;) € (x3, ..., Xxq), and since xy, ..., Xg
are a regular sequence it follows that a—b;e (x;, ..., xz) so that aeI. Thus
(I?:x)=1I.

By our choice of x, ..., X4, X1 is superficial for 7. Hence the same induction ap-
plied to R/(x;) and I/(x;) shows that

IP=T%: x)x1+ 2,y ey xa)1
=Ix;+(x2,...,xg)I by (2.3)

= (X1, .-, Xa) 1.
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Now Theorem (iv) of [11] shows that e;=--- =e; =0 and H;(n) = P;(n) for
all n=>1.
The converse is easy and can be found in [11]. ]

FUNDAMENTAL LEMMA 2.4. Let R, m be a 2-dimensional local C-M ring
and let x, y € m be any system of parameters of R. Let I be any ideal integral over
(x,y). Then

INC LRI E Y 40 EONC AN CA DV iy
=[P;(n+1)—Hy(n+1)]+[P/(n—1)—H;(n—1)]—2[P(n) — H(n)]
Jor all n=1.
Proof. Consider the exact sequence
0—K— (R/I")S (x,)/I"(x,y) >0,

where K = ker(«) and o((7,5)) = rx +sy. We calculate K. If «(7,5) =0 then
rx+syeI"(x, y) so that there are u, v e I" with rx+sy = ux+vy. Hence x(r —u) =
y(v—s) and thereisa fe R with r=u+yt and s=v—xt. Thus (F,35)=(y, —X)
which shows that (¥, —x) generates K. Thus K=R/(I": (x,y)). Hence

NG /T7(x, ) =2NMR/TT) = NMR/T": (x, 3)).
The length A(R/(x,y)) is equal to the multiplicity of 7. Hence
NI, 9) +NR/TT : (x, ) = 2MR/T™) +e = NR/T™Y,
so that
2.5 NI"YYIte, y) NI v/ I Y=e+2H(n)—H(n+1)— H;(n—1).
Now consider P;(7n). We have that

1
Pl(n)=€0(1)(n_2|_ )—el(l)n+ez(1),

where eg(I) = e is the multiplicity of 7. Consider P;(n+1)+ P;(n—1)—2P;(n)
for n=1: this is equal to

[e0<n;2)—e;(n+l)+e2]+ [e()(;)——el(n——l)+e2]—2[eo(n-2H)—eln-{—ez]

[(n+2)(n+1)+n(n—1)—2(n+1)n]
0
2

=gepg=2~e.
Hence, substituting this expression of e into (2.5), we obtain the lemma. O

Now we set v, =NI" Y/ (x, ) I")—NUI": (x,y)/I""") for n=1, with the as-
sumptions as in the fundamental lemma.

COROLLARY 2.6. Let R, I, x, y, and v,, be as above. Let a,, a, be arbitrary real
numbers and define a, = (n—1)a; —(n—2)a,. Then



HILBERT FUNCTIONS AND SYMBOLIC POWERS 297

(o]

E_:lanvnz (ax—2a))(eo—e1—N(R/I))+(ar—a;)(e2),
where -
n+1

2

Proof. Set u, = P;(n)— H;(n) for n=0. By the fundamental lemma, v, =
U, 1+u,_1—2u,. Hence,

P,(n)=e0< )—e1n+e2.

o0 o0
2 ap,n= E an(un+l+un-—1_’2un)-
n=1 n=1

This sum is finite since uy =0 for N > 0, and we obtain
o [>e)
E a,v,=a u,+(az—2a)u;+ E (an+l+an—l_’2an)un-
n=1 n=2

Buta,,i1+a,_1—2a,=0 for n=2. Hence

(o)

Y AnUn=ajug+(az—2a))u;

n=1
=aie;+(ay—2a))[eg—e;+e;—N(R/I)]
=(a;—a)er+(a—2a1)[eo—ei—N(R/I)]. L]

As immediate consequences of Corollary 2.6 we obtain the following formulas
for some of the coefficients of P;(n).

REMARK 2.7. -
MR/ —[eg—el]= ngl Un-
Proof. Let a;=a, =1 in the corollary. Then a, =1 for all n. O
REMARK 2.8.
e, = § nv,.
n=1

Proof. Let a;=1 and a, =2. Then a,=n for all n. ]
REMARK 2.9. Let j be chosen least such that P;(n)= H;(n) foralln=j. Then

j—1
J'(7\(R/1)—('30'“31))—632=—‘k§1 (J—Kk)vg.

Proof. Since P;(n) = H;(n) for n=j it follows that v,=0 for n=j+1 by the
fundamental lemma. Leta;=j—1, a,=j—2. Then a;=j—i for all i=1. Hence

oo Jj—1
> anvn=kzl (J—K)or+0-v;—vUj 11— 20,42+
=1 =

-1
= > (j—k)v, since v,=0 for n=j+1.
k=1

Thus by Corollary 2.6 we obtain Remark 2.9. O
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REMARK. Recall (Theorem 2.1) that if A\(R/I) = ey — e; then necessarily e; =0.
This would immediately follow from Remark 2.9 if we knew that v, = 0 for all k.
Also, Northcott’s theorem [22] that N(R/I)— (eqg—e;) =0 would follow immedi-
ately from Remark 2.7, while Narita’s theorem [21] that e; = 0 would follow im-
mediately from Remark 2.8. Clearly if grade gr;(R)* =1 then vy =0 for all k;
however, an example due to Huckaba shows that in general v; need not be non-
negative (although “philosophically” they behave as if they were!).

We recall some material from [24]. Let I be an ideal of grade at least 1 in a Noe-
therian ring R. Then {(/"*!: I")} form an ascending chain of ideals and the stable
value is denoted 7. Then we have the following.

REMARK 2.10. (I)"=1" for n>> 0. Furthermore I =1, so that (/": ["~ ) =T
for all n=1. I is the largest ideal with the same Hilbert polynomial as /.

THEOREM 2.11. Let (R, m) be a 2-dimensional local C-M ring with infinite
residue field and I an m-primary ideal such that I =1I. Then the following are
equivalent.

(1) H;(n)=P;(n) forall n=1.

(2) There exist x,y in I such that I} = (x, y)I? and Surther grade gr;(R)t =1,

where gri(R)Y =@, >0 ["/I".

Proof. Assume (1). Set u, = P;(n)— H;(n). By the fundamental lemma, if x, y
is a reduction of 7 then N\(Z" Y/ (x, Y)I"Y = NI : (x, ) /I VY =ty 1+ ttyy—1—2u,
for all n=1. Assuming (1) we obtain (for all n» = 2) that )\(I”“/(x "=
>\(1" (x,y)/I"™") and (for n = 1) that N\(/%/(x, ¥)I) — NI : (x, ¥)/I°) = uy. Thus
N(I?/(x, y)I) = P;(0)— H;(0) =e5(I). For n=2,

NI/ (e, )Ty = NI : (x, ¥)/1T).

We claim that 72: (x, y)=1I. For if ae I?: (x, y) then a(x, y)CIZ, so for j >0,
al’/ < 1'%/ since (x, y) is a reduction of 7. Hence ae (I/*': I/yc I=1. It follows
that 3= (x, y)I° Then I""'=(x, y)I" for all n=2, so that (since u,=0 for n=1)
it follows that I": (x, y)/I"~!'=0 for all n=2. Hence grade gr;(R)*>0.

Next assume (2). Since grade gr; (R)*>0, I": (x,y)/I" " '=0for all n=1, where
(x, y) is any reduction of 7. Hence u, . |+ t,_—2u,=NI"*/(x, y)I") forn=1.

If n=2, I""!'=(x, y)I" by assumption, so that u, .+ u,_;—2u, =0 for all n = 2.
For large n, u,, =0. Let i be chosen maximal so that ;0. Assume i > 0. Then
u;+u;,—2u; . =0, which contradicts the choice of i. ]

PROPOSITION 2.12. Fix the notation as in the fundamental lemma. If v,, >0
Jor all n (e.g., if grade gr;(R)* >0) then P;(n)—H;(n)=P;(m)—H;(m)=0 if
n<munless Py(n) = H;(n). If P;(n) = H;(n) for some n then P;(j)=H;(j) for
all j = n.

Proof. Let u,, = P;(n)—H;(n). For n>>0, u,=0. We will first show that neces-
arily u; = u; if j <i. In particular u#; = 0. Clearly it suffices to show u; = u; . if
1 <. Suppose not, so that «; < «; ;. We obtain from the fundamental lemma that
Viy2=Ujy2+u;—2u; 1, and (by assumption) v; = 0so that u; ;< (u; 12+ u;)/2
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and so u; 1 < (Ujpr+Uir1)/2, Or u; ) <ujy,. Similarly u; <u;, forall j =i. For
large n, however, u, =0, contradicting this inequality. Thus u; = u; ;, if 1 =i.
Now suppose u; =0 for some i. Then we have 0= u; , 1= u;,,=--- =0 so that
Uip | =Ui ="+ =U,=---=0 as required.
Finally, suppose u; =u; ., for some i. Then, as above, u; ;< (u;j;2+u;)/2 so
that
i1 =< (Uip2+uUip1)/2 OF U 1=Ujys.

As we have shown that u; = u;,,, it follows that u; = u;,. Similarly ;=
u; if j=i and hence u; =0. Thus we see that the u; are strictly decreasing until
they hit 0. ]

EXAMPLE 2.13. The following example was shown to me by S. Huckaba. Let
R=k[[x,y]], k a field, and I be the ideal generated by (x7, x®y, x?y3, 7). Then

n+1
P,(n)=49< 5 )—21n+3

and P;(n) = H;(n) for n=4. However H;(1) =32, H;(2) =110, and H,;(3) =235
while P;(1) =31, P;(2) =108, and P;(3)=234. Thus u;=—1, up=—2, and u;=
—1. Thus

vl=u2+u0—2u1=—-2+(3)+2=3,

vy=uz+u—2u;=—2+4=2,
vy=uUgst+u;—2u3;=—-2+4+2=0,
Va=uUs+us—2uz=-—1,

and v; =0 for i = 5. Hence the v, do not have to be positive.

Another application of the fundamental lemma has to do with the indepen-
dence of the reduction number. If J is a reduction of 7, set r,;(I) =least n such
that JI"=I"*!. Sally raised the question if ,() is independent of J when J is a
minimal reduction of m.

In his thesis [7] Huckaba showed that for the ideal of Example 2.13, the reduc-
tion number is not independent of the reduction chosen, but he shows indepen-
dence if grade gr; (R)T = 1. Also see [31] for other work on the reduction number.

We can show the following.

PROPOSITION 2.14. Let N be the least integer such that /1= Ij—lfor all
J=N. (Such an N exists; see [19, Lemma 8.1].) Let N’ be the least integer such
that Pi(j)=H;(j) for j=N'. If N< N’ then r;(I)=r;(I) for any two minimal
reductions Jy, J, of I.

Proof. We claim that N is also the least integer such that I’ : (x, y) = I’~! for
j = N, where (x, y) is any minimal reduction of 1. If I’ : (x, y) = I/~ ! then (I’ nNc
(I7: (x, ¥)), so that j = N. Let N; be chosen least so that I/: (x, y)=1’/""! for
j=N,;. The above argument shows N;=N. If N< Nj then I~ 1': 1=1M~2 but
M=l (x, y) = ™17 2, However, if te I™M~!: (x, y) then #(x, y) < I~ implies
It(x,y)c I, soltc(I™M: (x,y)=I""'orteI™ ': 1=1""2 Thus N, = N.
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Now we have that P;(N’'—1) # H;(N’—1) and hence if (x,y) is any minimal
reduction of 7, we have that N\(IN Y/ (x, IV Y= NIV : (x, ¥)/T™V 1) %0, while
(by the fundamental lemma) N(/N'*+2/ (¢, )IN' ) NI N +1: (x,¥)/IV')=0.

By assumption N <N’ so that I™N": (x, y)/IN' ~1'=0 and IV *1: (x,»)/IN' =0
by the above calculation. Hence we obtain that 7V 13 (x, y)IN while IV +2=
(x, ¥)IN'*1 Thus r( ,)(I)=N’+1 is independent of (x, y). O

REMARK 2.15. Of course N < N’ if grade gr;(R)* = 1, since in this case I/ : I=
I~ ! for every j. But in this case the fundamental lemma shows that not only is
the reduction number independent, but also (for every n) that N\(I" "/ (x, y)I") is
independent of the minimal reduction (x, y)!

3. Symbolic powers. We will be able to use Theorem 2.1 to prove our main
theorem, which gives a criterion for @, =0 2" to be Noetherian where p is a
height-2 prime in a 3-dimensional regular local ring (R, /). Cowsik [4] proved
that if this is the case then p is necessarily a set-theoretic complete intersection.
Specific cases of when @, -0 p'™ is Noetherian have been done in [5] and [8],
and Roberts [29] recently gave an example to show that this is not always the case
(although it is still possible under the above assumptions that if R is complete or
has positive characteristic then @, = p'"” is always Noetherian).

We are able to apply our result to show, for curves of multiplicity three, that
@, =0 p™ is always Noetherian (see [9]), and to treat an example Moh mentions
as one which was not even known to be a set-theoretic complete intersection.

Before beginning the proof we recall the definition of Serre’s intersection mul-
tiplicity. Let R be a regular local ring and let M, N be two finitely generated R-
modules with A\(MQN) <. Then

X(M,N)= 3 (=1)'N(Torf (M, N)).
i=
THEOREM 3.1. Let (R, m) be a 3-dimensional regular local ring with infinite
residue field; let p < R be a height-2 prime ideal. Then the following are equivalent.
(1) @®,=0p™ is Noetherian.
(ii) There exist k, £, two elements fep(k), gep'®, and an x & p such that
MR/ (S5 8,%)) =NR/(p, x))tk.

Proof. It is known (see [4]) that (i) is equivalent to the following: (i”) There
exists a k such that (p®)"= p*m for all n=1.

Now assume (i’). Then inf, (depth R/(p*?)") =1 so that, by Burch’s theorem
31, 2£(p®) =2. Hence there are f, ge p® such that p*®) =(f, g). (Note that
p¥ is integrally closed.) Choose any x & p and let S= R/xR, I = (p®),x)/(x).
We compute P;(n). Since I"=((p®)", x)/(x)=(p%*", x)/(x) it follows that
MNS/I™) =NR/p¥™, x).

Since x is a nonzero divisor on R/p‘ for all m, it follows that

MR/(p",x)) = x(R/p", R/(x))
= Xx(R/(P, X)) E(R, /D)) = MR/ (D, x) LR, /D7) =
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e m+1
— ) ,

where we have set e=A(R/(p, x)). Hence

N(S/I™) = N(R/p*™, x) = e(k”z“ )=ek2(”’2” )_e(’;)n

for all n= 1. Thus the multiplicity of J is ek 2. Since J is integral over f, g in S, it
follows that N(S/(f, 8)) = ek?. Hence AN(R/(f, g, x)) = ek?, which is (ii).

Next we show that (ii) is equivalent to the following: (ii’) There exists a £ and
elements f, g€ p®) and an element x & p such that N(R/(f, g, X)) =ek?. (e=

AR/ (p,x)).)

Obviously, (ii’) implies (ii). Conversely, suppose fe p®, ge p'¥, x¢ p, and
NR/(f, g,x)) =ekt. Then N(R/(f", g%, x)) = kt(ekt) =e(kt)? and f', g¥e p*?,
which gives (ii").

Now assume (ii’). Set 7 = (p®, x)/(x), where k and x are chosen as in the

statement of (ii’). Write
n+1

P;(n) =€0( 5

)—em—i—ez

so that, for n>>0, P;(n)=N\(S/I").
Our calculations above show that if we set J, = (p**™, x)/(x) then

G.2) )\(S/Jn)=ek2(n+1)—e(/;)n,

2
where e = AN(R/(p, x)).
By assu_mption there are f, g e p**) such that NS/, 8)= ek?. As (f,g)cCl,
e(I)<e((f, 8)) =N(S/(f, g)) =ek?. Hence,
(3.3) eo < ek?.

On the other hand, since p®" < p*™ for all n=1 it follows that N\(S/I") =
A(S/J,) for all n=1, so that

. n+1 Ceinter > ek? n+1\ /k
o 2 inrer= 2 “\2)"

for all n > 0. Hence,
k
3.9 eo=ek? and €<2)2€1-

From (3.4) and (3.3) we obtain that e, = ek 2. Hence

eo—e1=ek2—elzek2—e<§>

ekz—e<12{)=e(k;1 ): N(S/I)

by (3.2). Thus eg—e; = ANR/]).

(from (3.4)), and
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Now Northcott’s theorem [22] implies that eg —e; = N(S/7). Hence from Theo-
rem 2.1 we conclude that e; =0 and P;(n) = H;(n) for all n=1 so that, for all
n=1,

AN(S/ITT) =e0<n;—1)—eln

=ek (n+1> (eo—N(S/I))n

o afn+1 _ 2 k+1
—ek( 5 ) (ek e( 5 ))n
-ec("; )<

=N(S/Jn).

As I"C J,, we obtain I"=J, for all n=1. Hence

(k)n (kn)
?

(p x)=(pY",x) for n=1.
This equation shows that p*™ < (p®" x), so
p* e p®" L xyn(p*m)
____p(k)n (k"):x)
=p
Applying Nakayama’s lemma gives that

+x(p

(k)n (kn)

+xp

p&M =p®n for all n=1,
which shows (i’). ]

REMARK 3.5. Suppose, in Theorem 3.1, that x ¢ m2 and the leading forms F*
and gtoffand g in gr,(S) (n=m/(x)) are relatively prime. Then N(R/(f,g,x))=
deg((f)*) deg((g)*).

COROLLARY 3.6 ([9]). Suppose R, m, p are as in Theorem 3.1 and e(R/p) =3.
Then @,,=0 p'™ is Noetherian.

Proof. Choose x ¢ p such that x ¢ m? and ANR/(p,x))=3. By length arguments
(as was done in [9]) one sees that (p®, x)/(x) = (m* x, f), where fe m3N p?®
and deg((f)*)=3. Choose some g e m* such that (g)* and (f)* are relatively
prime, and lift g to ge p®. Then

NR/(f, 8, %)) =NS/([,8)) =deg((f)*) deg((g)*) (byRemark 3.5)
=3.4=12=3.22,
As f,gep® and AR/ (p, x)) =3, the conclusion follows from Theorem 3.1. (]

EXAMPLE 3.7. Moh mentions the following example as not being known even
though it is a set-theoretic complete intersection. Let R=C[[X, Y, Z]]; let p be
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the kernel of the homomorphism of R onto C[[2%¢7+1'° #8]] sending X to 1% Y
to t’+ ¢ and Z to 8 We claim that @, - p™ is Noetherian and hence in partic-
ular that p is a set-theoretic complete intersection. In fact we will find f, g € p!'%
and x & p, so that AN(R/(f, g, x)) = 600 = 6 x 10%> while N\(R/(p, x)) =6 =e(R/p).
First we calculate the generators of p. A straightforward check shows that

a=2xz>-3x%yz—-2x*+y3—xyz,
b=x32z—-2yz>+xy%—x?z,
c=x%z2-2x3y+y%z—xz% and
d=x*-2z3

are in p. We claim p =(a, b, c, d).

To prove this claim we first observe that, up to unit, (a, b, c,d)=1arethe3x3

minors of
-y —2z 2x

z —2x* —y 2xz
0 —Z X 2y

It follows that R/I is C-M.
Consider (I,x) = (a, b, c,d,x) = (¥3,2yz% y%z,z3,x) so that \(R/(I, x)) = 6.
Thus
e(x;R/I)=NR/(,x)) (as R/I is C-M)
=6.
By the associativity formula,
e(x;R/I)= 2% e(x;R/q)(R;/1,;).

Icqg
htg=2

Since e(x; R/p)=NR/(p, x)) =6, it follows that £(R,/I,)=1and VI=p. As R/I
is unmixed, 7 = p. Therefore (7, x) = (p, x) = (m3,x). We next calculate p(z).
A straightforward calculation shows there exist e, f, g such that

(3.8) xe =2ad — bd + 4d°x,
(3.9 xf=2c*+ab+2bdx, and
(3.10) xg =b%+4cd.

These equations show that e, g, f € p'®. Furthermore,
(3.11) = —y*z mod (x),
(3.12) f=-2y*2°+y’mod (x), and
(3.13) gs4z5-—4y3z2mod (x).

In fact, explicitly,
e=4x%—5x%z3 —4ax3yz+8xyz*—4ax" —6x3y2z>
+6x3z3+4x3y3—4x4yz—y4z+2xyzzz—x2z3,
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f=2x"z+2x32*-15x*yz? +10x°y? — 4x %2 + 10xy?z3
—4x%z4—10x%y3z +14x3yz2 —2x%y? + 2x%z — 2y %23
+2xz3+2xz%+y3 —2xy3z+x%yz? and
g=5x2%>—4xz>—8xz° —8x8y+4x?yz3 +6x3y?z
—6x%z224+4z°—4y32%2 v+ Axyd +xyt —2x2y%z + x372
From the equations (3.8)-(3.13) we obtain that (p‘®, x) contains

J=m® x,y%z,y°—2y%23,2°—y3z?).

Clearly A\(R/J)=(1+ ---+6)—3 =18. However
AR/PP, x)=NR/(P, X)) NR,/P})=6x3 =18,

so that (p(z), x)=(J,x).

Next one checks that bf %+ 2ae?+ geb =0 mod (x). Hence there is an element
h such that xh = bf?+ 2ae’ + geb, so he p®®. A straightforward check shows
that 2= y1?—36y8z°+72y°z% mod (x). The leading form of g in k[y, z]=
gm0y (R/(x)) is 425 —4y3z2 Hence (g)* and (A)* are relatively prime so that
(8%)*=((8)*)’ and (Ah2)*= ((h)*)? are also relatively prime. However A2, g5 e pt10
and deg((h2)*) =24, deg((g°)*)=25. Hence AN(R/(g°, h? x))=24%x25=600=
6 x102=\(R/(p, x))-102. The theorem implies now that @, p is Noethe-
rian and the proof shows that </(g, #) = p.

Now we show the following.

THEOREM 3.14. Let k be a field of characteristic # 2 and let p be the defin-
ing ideal in k[[x, y,z]]1 =R of the curve k[[t*,¢",t™]], n<m. Then @0 p™ is
Noetherian. :

Proof. First we find a standard form for such curves. Consider R/(p, x). This
has length 4 so that its Hilbert function must be 1, 2, 1. If there is only a 1-dimen-
sional socle, then R/p is Gorenstein and hence p is a complete intersection, in
which case p” = p(" for all n and the theorem is trivially true. Hence there is a 1-
form in the socle. (Note that (p, x) is an ideal generated by monomials so it is
homogeneous in the polynomial ring k[x, y, z].) Hence (p, x) must be equal to
(»% yz,23,x) or (z% yz,y>, x). However the first possibility forces m < n which
contradicts our assumption. Hence (p, x) = (z2, yz, ¥, x) can be assumed. There-
fore the defining equations of p must be of the form (see [11])

xp+¢7_yz
(3.15) y3—zx9
z2__y2xp

z y* x4
xP z y )

In this case n=p+2q, m=2g+3p, and p must be odd else (4, n, m) #=1.

which are the 2 X2 minors of
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Choose k£ =0 such that kp <g = (k+1)p provided g=p. (We will treat g<p
at the end —this is an easy case.) By induction on j we claim there is an element
e; € pY? such that

(3.16) €; Ey2j+l+(_1)jxq—(f—l)pz2j—l mod. (xq—(j_z)p)

forl=j=k+1.
For j =1, we have that e; = y* —zx 7€ p, which satisfies (3.16). Suppose e; has
been constructed and j < k. Then

ej(z2_y2xp) Ey21'+1z2+(_l)jxq—(j—l)1322j+1_y2j+3xp mod (xq—(j—Z)p)_
(Note here that p<g— (j—2)p.) On the other hand,
(xP*1—zy)*(ej-1) =

(x2p+2q_pr+qzy+z2y2)(y2j—l_|_(_l)j—lxq—(j~2)p22j—3) mod (xq—(j—3)p)
SO

(xp+q—-zy)2(ej_1) E.),21'+122_|_(_l)j—lxq—(JF—Z)pZZJ"+1y2 mod (xq—(j—3)p)

= y2/+172 mod (x9-U—2P)y,
Hence if we set
(3.18) t=—ej(z2—y*xP)+(xP*9—zy)%e;_,
then
tEy2j+3xp+(_1)j+1xq—(j—l)p22j+l mod (xq—(j—Z)p)_

Astep¥th

it follows that if we define e;,, =#/x” then e; ;€ p“*! and
ej+1Ey2j+3+(—-1)j+'xq_jp22j+l mod (xq—(f'—l)P),

which finishes the induction.
For j =k +1 we obtain an element e, ;€ p* ™V such that

rs1 = yHF3 L (1)K Ixd kP 2kl 0q (x9—K=Dpy
Now we apply the process as in (3.18) to obtain that
(3.20) —er1(22—y2xP) + (xP* 1 —zy)le;
= y2k+5y Py (1)K 2y @—kpy2%k+3 10 (9= K=DPY.
However now p=q—kp. We consider two cases.
Case 1. p=q—kp. In this case we find an element e; ., in p**2) such that

— .,2k+5 k+2_2k+3
2=y +(—1)"""z

mod (x).
Also, zy € (p, x). Since
AR/ (Y, €k42,X))=QRk+5)+2k+3)=4(k+2)=4(k+2)-1,

applying Theorem 3.1 gives the assertion.
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Case 2. p>q—kp. In this case we find from (3.20) an element ;€ p*+?
such that

ek+2Ey2k+5x(k+1)p—q+(___l)k+2z2k+3 mod (xp).

Hence, mod (x?),
) - —
(3.21) ek+]ek+25(_1)k+ z2k+3y2k+e+y4k+8x(k+l)p qz4k+4xq kp-

Thus

ek+lek+2+(xp+q__zy)2k+3(_1)kEy4k+8x(k+])p-—q_Z4k+4xq—kp mOd (xp).

Depending on whether g—kp < (k+1)p—g or not we obtain that in p©?*+?

there is an element f such that either

(3.22) S=y**¥ mod (x),
(3.23) f=z%"*"mod (x), or
(3.24) f=py¥t8_z4%+4 mod (x).

We do each case separately.
In the case of (3.22),

NR/S, €12, X)=(4k+8)(2k+3)=4(2k+2)(2k+3).

(2k+3) (k+2)

Since fep and e, ,€p , we are done by using Theorem 3.1.

In the case of (3.23),
MNR/(f, ex+1,x))=(@k+4)2k+3)=4(k+1)(2k+3).

Again, apply Theorem 3.1.
In the case of (3.24),

MR/ (zy, f,x))=(4k+8)+(4k+4)=4(2k+3).

Since zy € (p, x), applying Theorem 3.1 finishes.
Finally we do the case where g < p. In this case we proceed exactly as in case 2
above with & =0. The proof obtained goes through without change. ]

We end this section by proving a theorem which shows the difference between
@,=0p"™ being Noetherian and p being a set-theoretic complete intersection.

THEOREM 3.25. Let R be a 3-dimensional regular local ring with infinite resi-
due field and let p be a height-2 prime ideal of R. Then the following are equiv-
alent.

(1) @D,=0p™ is Noetherian.
(ii) Thereexist f, g € p such that \/(f, g) =p and ht(f*, g*) =2, where f* and
g* are the leading forms of f/1 and g/1 in grp,(R,) =®n=0 p,ﬁ’/pﬁ“.

Proof. Assume (i). Then Cowsik [4] showed that ¢(p‘*’) =2 for some k. Hence
p %) isintegral over (f, g) for some fand g in p® . Hence V(i g) =p.InR,, f/1
and g/1 are a reduction ofp,f, SO p},‘”z , g)p,f"""‘. It follows that in G =grp,(R,)
the leading forms of f and g must be relatively prime, which proves (ii).
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Next assume (ii). Let r be the degree of the leading form of f/1 and s be the
degree of the leading form of g/1 in G =gr,,(R,). Then f° and g” have leading
forms (f*)° and (g*)” of degree rs in G, and (f*)° and (g*)" are relatively prime.
We claim that (f*, g")R, = p,’. This follows at once from the fact that (f°)* and
(g7)* are relatively prime of degree rs, together with Proposition 3, Appendix 5
of Zariski and Samuel [33].

Now consider 7= (f%, g”) in R. We claim I=p®. As ¢(I)=2 and T=1, by
McAdam [19, Proposition 4.1] Ass(R/I) all have height 2. Since VI =+/(f, g) =p
it follows that Ass(R/I') = {p]}. Thus it suffices to show 7, =p,(,k’ =p§. However,
I,={f%2),=(f%g)R,=ps. Hence I = p® and so ¢(p*))=2. Since p® is
integrally closed and of analytic spread 2, and since R is regular, [9, Theorem 4.1]
shows that p )" are integrally closed for all #=1. Since ¢(p*¥)")=2, by McAdam
[19, Proposition 4.1] it follows that p %7 is unmixed for n =1, and so p¥" = pkn)
for all n=1. This is equivalent to @®,,~ ¢ p” being Noetherian. (See [4].)

4. Integral closures and Hilbert functions. In this section we apply the same
method as in Section 2 to study the Hilbert function H;(n)=X(R/I"). Practi-
cally everything done in Section 2 goes through and even more since the formula
T7: (x, y)=I""1is automatically satisfied.

We begin by doing the fundamental lemma for this case. Throughout we as-
sume that R is a 2-dimensional C-M analytically unramified local ring with in-
finite residue field.

Accordingly, we let P;(n) be the Hilbert polynomial such that P;(n) = N(R/T")
for large n. Rees [25] proved such a polynomial exists. I_Jil-_[;(n) =N(R/T") for
every n=0. If (x, y) is a reduction of 7 then 7" : (x, y) = I"—!. (Check this on val-
uations.) The same proof as in Lemma 2.4 now shows the following.

LEMMA 4.1. Let (R, m) be a 2-dimensional local C-M analytically unramified
ring and I an m-primary ideal with minimal reduction (x,y). Then

NI"¥Y (e, )T7) = [Pr(n+1)— H (n+1)]
+[Pr(n—1)—H(n—1)]=2[P;(n)—H;(n)].
Proof. We briefly recall the proof. Use the exact sequence
0— K —(R/I")—(x,9)/(x,»)I" >0

and we find that K = R/(I": (x,¥)) =R/I"~'. Asin (2.1), A\(R/(x, y)) = &y, where
we write

— 1
NR/T) =éo("; )—éln+€2.
The rest follows as in (2.1). 3

From Lemma 4.1 (just as from Lemma 2.1) we obtain the following remarks,
where we set 0, = N(I"+V/(x, y)I").

REMARK 4.2.
NR/I)—[Ep—E]l= Y D,.

n=1
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REMARK 4.3.

Rees [26] obtained essentially these equations using a proof upon which the
fundamental lemma is based.
Similarly, the same proof as in Theorem 2.11 shows the following.

THEOREM 4.4, Let (R, m) be a 2-dimensional local C-M analytically unrami-
fied ring and (x,y)=1 an m-primary ideal. Then the following are equivalent.
(i) H;(n)=P;(n) forall n=1.

(i) I"=(x,y)I"! forall n=3.

Proof. Again we briefly summarize the argument. Set &F,, = P;(n) — H;(n). Now
assume (i). Then

)\(I"'H/(x,y)ﬁ) =Upp1+U,——2u,=0,

provided n—1=1 (i.e., n=2). Hence I"=(x, y)I"~! for all n=3.
Next assume (ii). Then, again by Lemma 4.1, &%, .+ #,,_—2#,=0 for n=2.
Since iy, =0 for N >0, it follows that &7, =i, = --- = @iy =0, which is (i). O

Next we summarize the theory of the coeflicients of the Hilbert polynomial
P;(n) and the difference between P;(n) and H;(n).

As usual, let /C R, R a 2-dimensional C-M analytically unramified local ring
and I an m-primary ideal with minimal reduction (x, y). Write

n+1

P(n) =§0( 5

)—éﬂ’l-i-éz,

and let L_l,'= [161(1)—'1'_[1(’)]

THEOREM 4.5 (cf. [20, Proposition 2.1]).
(i) e,=0.
(11) )\(R/i) =€éy—€;. )\(R/I_) =€p—€ ifand only l:féz =0.
(iii) #;>u; if i<junless u;=0. If i;=0 then ti;=0 for j =i.
(iv) The least n such that I"*1=T"(x, y) is independent of the minimal
reduction (x,y).

Proof. Obviously #,, =0 for all n. Hence (i) and the first statement of (ii) fol-
low immediately from Remarks 4.2 and 4.3. If \(R/T) = &, — &;, then Remark 4.2
coupled with 7,,= 0 implies that 7, =0 for every n=1. Then by Remark 4.3 we
must have &, =0. Conversely, &, =0 implies 7,,=0 for n =1, which implies that
ANR/T)=¢)—e,.

Since i, 1+ #,_—2u, =0 for every n= 1, we conclude if #; < @#; , | then (since
20 < Ui+ U;<U;,»,+1U; 1) we have if; | = @;  », with equality if and only if
;= ;. It follows that unless &#; = %; ;| = --- = 0 we must have #&; > @; ., which
is the content of (iii).

Finally, (iv) is clear from the lemma since the right-hand side of the main for-
mula does not depend on the reduction (x, y). Ll
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Morales [20] showed the intriguing theorem that if H;(n) = P;(n) for all n=1
then @, >0 I"/I"*!is C-M in the case that R is a germ of a normal surface over
C. We will prove this in characteristic p.

In the context of Theorems 2.11 and 4.4 we identify what more is needed to
conclude that either @, I"/I" ! or 2o I"/T"+1is C-M.

THEOREM 4.6. Let (R, m) be a 2-dimensional C-M (and analytically unrami-
fied for (i1)) local ring with infinite residue field, and let I be an m-primary ideal
with minimal reduction (x,y).
() If H(n)=P;(n) forn=1and I =1 then gr;(R) is C-M if and only if
I*N(x,y)=(x, ). .
(ii) If H;(n) = P;(n) for n=1 then @, /1" is C-M if and only if
120(x, ) = (x, »)I.

Proof. First we prove (i). Let # and v be the images of x and y in 7/1 2cgr(R) =
G. We claim « and v are a G-sequence. By Theorem 2.11 we have that /"% =
I"(x,y) for n=2. Assume I*N(x, y) = (x, y)1.

Suppose u is a zero divisor. Then there is an element f e I"/I"*! for some n= 0
such that f& 7" and f-xeI"*2 If n=0 then f& I, but f-xeI> Hence fxe
I’N(x,y)=1I(x,y), so we may write fx = xi;+ yi, with iy, i, € I. Then x(f—i;) =
yi, shows that f—i;e(y) or fel, which contradicts our assumptions. Hence
n=1. Then n+2=3 so I""? =71"*!Y(x, y) or fx = xi,+ yi,, where i, i,eI""\
Then x(f—i,) =yi; sothereisat e R with xt =i, and f—i; = yt. We may assume
f has been chosen of least degree. Then xt e I”*! implies ¢ € I", and hence f=
ii+ytelI""! acontradiction. Thus u (and similarly v) are not zero divisors in G.

Now suppose there is a relation r*u+s*v =0 in G. We may assume r* and s*
are homogeneous of the same degree (otherwise # or v would be a zero divisor).

Thus we may assume r,s € I*\7¥*! and rx+sy e I**2, where r,s are liftings
of r* and s* to R. We also assume k is chosen least so that there exist such ele-
ments with s*¢ (x*). If k=0 then rx+syeI’N(x,y) = (x,y)I, while if k=1
then 7¥+2=1¥+!(x, y). In either case rx+sy e (x, y)I**, so that we may write
rx+sy=ax+by with a, be I**!. Thus x(r—a) = y(b—s) and so there is a re R
with xt =b—s and yt =r —a. Hence xt e I'* and yte I*. Since x* and »y* are not
zero divisors in G, ¢ must be in 7¥~!. Hence in G we may write x*/*= —s* and
y*t*=r*; thus s* € (x*), which contradicts our assumption.

Conversely if G is C-M and if rx+syeI? then in G either r*x*+x*y*=0,
r*x*=0, or s*y*=0. In any case r and s must be in 7 so that rx+sy e (x, y)1.

The proof of (ii) is exactly the same, although slightly easier as in this case the
images of x and y in ®,,= ¢ I"/I"*! are necessarily nonzero divisors without any
assumptions. 1

In light of the theorem of Morales in case (ii), HI(n) = P;(n) should force
I’N(x, y)=(x, ). Since H;(n) = P;(n) is equivalent to 7" = (x, y)I"~! for n= 3,
one is led to suspect N (x, ) = (x, y)I with no assumptions on H;(n). The next
theorem proves this is the case if char R = p > 0 and R is C-M (of arbitrary dimen-
sion). However we first recall the pseudo-valuation 7;(x) studied by Rees [27].




310 CRAIG HUNEKE

If 7 is an ideal and x e R, set v;(x) =sup{n|xeI"} and 0;(x) =lim, _, o v;(x")/n.
This limit exists and is a rational number (see [27] and [19, Chapter 11]). Further-
more, when R is Noetherian 7;(x) = k if and only if x e I*.

THEOREM 4.7. Let R, m be a d-dimensional C-M local ring of characteristic

p>0. Let xy,...,xq be any system of parameters and set I = (x,, ...,xq). Then
I"Nr-'=r1"-'T forall n=2.
Proof. We will write x* for x*\, ..., xj49, a=(«ay, ..., ag). Suppose

t=Yr,x%el”,

where the sum ranges over all o with
d
la| = aj=n—1.
i=1

Then T;(¢) = n, so that lim,,, _,  v;(¢"")/m=n. Set v;(t?")=k,,. Then

lim k,,/p™ =n.

H — oo

We have that #7" e I'*m, so that
> rPxer" g [km,

We may assume 2 is chosen so that k,,> p”"(n—1). As xy, ..., x4 is a regular se-
quence, all the relations on monomials in xy, ..., x4 are generated by the “mixed”
Koszul relations: that is, if m, and m, are monomials in x,, ..., x; (say, m; =
x{'...xd and my=x{1...xJd) then the “mixed” Koszul relation determined by

d
my and m, is x{1... xJam, =Xxy'... x;9m,, where

fq——'_max(iq’jq)—iq’ eqzmax(iQ’jq)_jQ’
From (4.8) we see that r? " is in the ideal generated by the mixed Koszul coeffi-
cients of x*?” with {xP?"|B8# «, |B| =n—1} and all monomials of degree k.
Hence

m n m k — m _l
rPe(x ), ., xPTY (X1, ey xg)im P (TD

so that v;(r?"”) = min(p™, k,, — p"™(n—1)) and

lim v, (r?™)/p™=min(l, lim (k,,—p"(n—1))/p™)=1.

Hl1— O 111 — oo

Therefore 7;(r,) =1 and so r, eI for every «. O

COROLLARY 4.8. Let R, m be a 2-dimensional C-M analytically unramified
local ring of characteristic p > 0, and let I be a m-primary ideal. Assume P;(n)=
Hy(n) forall n=1. Then @, I"/I"*! is C-M.

Proof. We may assume R/m is infinite. Now the corollary follows at once from
Theorem 4.7 and Theorem 4.6(ii). 1

Finally, we apply the same techniques as in Theorem 4.7 to study F-pure rings.
Recall if R is a local reduced ring of characteristic p >0 then R is said to be F-pure
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if the Frobenius map is pure. In particular this implies that if we set RP={r?|
re R} then, for iy,...,in€R, (if,....,iPYRNR?=(if,...,i’)R".

Hochster and Lipman [unpublished] showed if R is C-M and F-pure and if
X1, ..., Xg is a system of parameters of R then r 4*le (xy, ..., xq) if re (xy, ..., x4).
(In fact they prove this even for F-pure type.) In Proposition 4.9 we will strength-
en this.

If R is regular then in [17] and [16] algebraic proofs were given of the stronger
result that (xq, ..., xz7)9 < (xy, ..., Xz). If R is 2-dimensional regular and contains a
field then this containment together with Theorem 4.7 and the theorem of the
appendix show that (x;, x2)2 < (x, x2) so that (x;, x2)2N(x;, x2) = (X1, X2)?2, but
also this intersection is (x1, x3) (x;, x2). Hence (x;, x2) (x1, X2) = (X1, x3)?2, a result
known and proved in [17] and [26] even for pseudo-rational singularities of di-
mension two.

PROPOSITION 4.9, Let R, m be a C-M reduced d-dimensional local ring of
characteristic p > 0 which is F-pure. If x1, ..., Xq is an s.o.p. for R and I =
(X1, ---sXg), then I9t1C T,

Proof. Let reI?+1, Then v;(r)=d +1. Choose n>>0 so that v;(r") =dn. Then
r'e(xy, ..., xg)%" < (x1, ..., x4). Choose m so that p""=n. Then

m m m m m n m
rf e, .., xP)RNRP =P, ...,xJ )R?

so that r?”" =39, y#"xP". Then (r—3¢_, y;x;)?"=0and so r=3%_, y;x; 1.
]

Appendix. In this appendix we present a theorem, extending Theorem 4.7 to
arbitrary characteristics, whose proof was shown to me by M. Hochster. The
proof is the “standard” reduction to characteristic p; however, although standard
I found it by no means obvious. Any mistakes or unclearness are due to this au-
thor. We prove the following.

THEOREM. Let (R, m) be a d-dimensional C-M local riné containing Q, and
let I be an m-primary ideal generated by x,...,xq. Then I"NI""1=[1""1] for
n=2.

REMARK. D. Rees communicated that he proved this theorem if d =#n =2 with-
out assumption on the characteristic of R, using his theory of degree functions.

Pr_oof of Theorem. First we replace R by R, the completion of R. We claim
that TR = (IR)™ for any m-primary ideal 7 of R. For choose N >> 0 so that m™Nc I
and suppose # € (/R)". Then in R there is an equation,

1+"'+rn=0’

with ;e I'R. Choose &, 7, ..., F,€ R such that u=a, r;=7 mod m™R. Then
(@) " +A @) '+ F=u"+ru" '+ -+ +r, mod m"™ R so that

t=@)"+7@) " '+ +F,em™BRNR=m"N.

Thus ()" +7(@)" '+ - +F,—t=0and 7,—tel" Fel (since Fi—r,em™cI"
implies ;e I'RNR=I")sothatiiel. Nowu—idem"™R<IR souelR as claimed.

u"+riu""
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Now suppose the theorem is false. Choose ue I"NI"~1 u ¢ I"~'I. After pass-
ingtoR, ue ({"R)"NI""'R, and since I""'(JR)" = (I"~'T)R it follows that u ¢
(I""'R)(IR)™. Thus we assume R is complete. Let k¥ be a coefficient field of R
and set A =k[[x1,...,xX4]1 C R. Then A is a regular local ring and R is a finite free
A-module (as R is C-M). We claim we may replace k be k, its algebraic closure.
Let A'=k[[x1,...,Xx4]1], R"=A'"®4R. By [12, (vi), (viii), and Lemma 2.4], if J
is an ideal of R then JR’= (JR’)™. Also R — R’ is flat as A’ is flat over A, so that
JR’'NR=J if Jis an ideal of R. It follows as above that we may assume £ is alge-
braically closed, and we go back to our original notation.

Choose an A-basis ey, ..., e,, of R where we may assume ¢; =1 and e,, ..., e, €
m, where m is the maximal ideal of R. (This is possible as R/m =.A/M, where
M = (xy,...,xgz) is the maximal ideal of 4.) We may uniquely write

m

(A]) ee;= E Fijk€k with I','jkEA.
k=1

We refer to {r;;x} as the “structure constants” of R over A. Since Me,+ Ae,+ ---
+ Ae,, is the unique maximal ideal of R, we see that

(A.2) rineM if ior j#l,
and, since e; =1, it follows that

1 if k=i
A.3 i = ’
(A-3) Tk {0 if ki,

The commutative law shows that r;;x = r;;x while the associative law translates
into quadratic equations in the r;;; with +1 as coefficients. We fix these equations
Fi, ..., F; where we put variables X in place of r;;; with the convention that
Xijk=Xjix, and in place of Xy we put 1if k=i and 0 if k # /. For future use we
note that if A4 is any commutative ring and q;;x € A satisfying (A.2), (A.3), and
the equations Fi, ..., F;, then we may construct a commutative A-algebra C =
Ae{® --- D Ae),, free as an A-module, by defining ef - e} =)'~ a;jrei and extend-
ing this linearly.

Next consider the element # € R which is chosen so that ue I"NI1""' ug 1"~ '].
Write

m

(A.4) u= > ue;,, ucA.
i=
Since u e I" ! it follows that ;e M"~'. As u € T” there is an equation
u?+bu? '+ ... +b,=0

with b; e I"". Write b; =3X7_, b;je; with b;; e M"™.

Since u;e M" ™! we may write u; =3 |4|=n—1 Uia X", Where x*=x1, ..., x54. Giv-
en any elements 2 =37 (X |a|=n—-1ZiaX)e; and b; =37 bjrex with z;o, bjx e
A, we may expand the expression

zP+ b1z 7+ -+ b
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using (A.l) to write it as 2;":1 Go(Ziws b,-j,r,-jk)ey. Let Ge(z,'a,Bjk,R,'jk) be the

polynomial (with coefficients in Z[x, ..., x4]) obtained in the obvious way from
the expression G¢(ziq«, bij, rijr). Consider the system of equations

Fi(R;jx)= - =F(Rijx) =0,

Gi(Zia, Bij, Rijx) = -+ = Gp(Zig, Bij, Rijx) =0,
(A.5)
R,‘jk-—Rj,'k"—"O, and
Ry —6ix =0.
We have shown that r;jx = R;j«x, bij = Bi;, and u;, = Z;, satisfy these equations

and (of course) rjjk, bij, Ui € A =K[[x1, ..., x4]].

By the Artin Approximation Theorem [1, Theorem 1.10] we may find solutions
fias Fijic> Dij 1o (A.5) in some etale neighborhood B of D=k[ X\, ..., Xal(x,,...,x,
(actually in D”, the hensilization of D, but D” is the direct limit of etale neigh-
borhoods of D) such that the new solutions approximate our original solutions
to any fixed power of M. In particular, choose such solutions such that u;, = i;,,
I‘,'jkEFijk, and b,’jE b~,'j mod M‘S where 6 = m+pn.

Use F;jx as new structure constants to construct an algebra S=Bf @ --- @ Bf,
free of rank m as a B-module. Since 7 satisfy Fi, ..., F;, Fijr = Fjix, and Fij; =
6;x, we see that S is a commutative B-algebra and f; is the unit. Consider the ideal
J=(x1,...,x2)S. We claim that the element 7 =X7L (X4 #iax)f; satisfies #i e
J'NJ"=1 ¢ J"1J. First we prove that i e JJ"NJ"~1, Obviously i1 e J"~. Since
bij—bije M*c M™, b;;e M"N B =mg'. Hence if we let b; =37, b;; f; then
b;e J™, and furthermore # satisfies the equation (#)”+b,(#)? "'+ --- +5,=0as
5,-j, Fijx and d;, satisfy Gy, ..., G,,. Thusiie J". It remains to see that i ¢ J"\J.
To show this we require a lemma which is interesting in its own right.

LEMMA. Let (R, m) be a regular local ring with quotient field K and let S be a
torsion-free R-algebra, finitely generated as an R-module. Let I = mS. Suppose
yeI". Then y satisfies an integral equation y? +a, y? '+ --- + a,=0witha;e I
where p=dimg(KQ@rS).

Proof. Let V be the m-adic prime divisor of R. Thus V is a DVR with uniform-
izing parameter ¢ (= x;, say) and 'VNR = m’. We know there is a polynomial,

y“’+a1y”_1+o-- +a,=0 with a,-em”’S,

SO we may write
YP+t"aiyP " ¢ oo t"Paf, =0

with a/e S[m/¢]. Thus, y/t" is integral over S[m/t] and hence over R[m/t] (since
S is integral over R) and finally over V as V= R[m/t](;,. Now consider the mini-
mal polynomial p(x) of y over K = quotient field of R. Since y is integral over R,
the coefficients of p(X) all lie in R [2]. Over K, the algebraic closure of K, write
p(x)=TI{_,(X—X\;). Note that ¢ =dimx(S®zK) (since y can be considered in
Endg(S®zrK)). Let f(X) be the monic polynomial giving the equation of in-
tegrality of y/t" over V; write f(X)= XN+, XN 14+ -.- +cn, cieV, and let
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gX)=XN4c;t" XN 14 oo 4 ent™ so that g(y)=0. Hence over K[X], p(X)
divides g(X) and in particular g(A\;) =0 for everyi=1, ..., £, so that f(\;/t")=0
and hence \;/t” are integral over V. Write p(X)=X'4+p, X" '+ --- + p,. As
D1, ---, Dy are symmetric functions in A\, ..., Ay, we see that p, /", ..., p, /" must
all be integral over ¥ and in K. Hence p,-/ti" eVsop;e t"VOAR=m". As p(y)=0
we have proved the lemma. 0O

Now suppose Z€ J" . Asii =3 (7 i, f;)x %, and since x4, ..., x, are nec-
essarily a regular S-sequence, it follows that 37L | i,, f; € J for each « (as the re-
lations on distinct monomials in x, ..., Xy are contained in (xy,...,Xxgz)). On the
other hand since u =X (Z; tiee€;)x* and u ¢ I""'T, for some o, 3; u;j e & I. By
the lemma, =Y, i, f; satisfies an integral equation over J of degree m (as S
is free of rank m over B and B is a regular local ring). Suppose this equation is
(D" +&D)" '+ .-+ +6,=0 with & e J'.

Write & =X7=ci; fj, so that ¢;; € mp. Using the structure constants 7, and
the expression ¥ =Y; é;, fi, expand

(5)m+c~;1(5)m—l+ °t +Em

to 3¢l Hy(#;a, Fijk, Cij)Jo, so that H, is a polynomial expression in 4, 7k, ¢;;
and H(?(ﬁiayfijks C;'j)=0 for £ = 1, I ((BS
Expanding in a similar manner v+ c;v™ '+ --- +¢,, using (A.1) yields that
m m—1 _xm _ m
v+ cv + oot e =271 He(Uia, riji, cij)e.. (Here ¢; =%7_;c;je;.) Hence
m

+ o= X Ho(fias Fijk, €ij)e=0(mod M°).
(=1

Thus v +c;v™ '+ --- +¢,,€ M?. Since M®C M by choice of 6, it follows that
v is integral over MR =TI since c¢;=3X"_c;;e;e mpR C I'. This contradicts our
choice of v and proves that @ ¢ J"J.

We now fix our attention on S. S is semilocal and J < Jab(S). Since i ¢ J"~'J
this must also be true at some maximal ideal # of S. Then S, is a local d-dimen-
sional C-M ring which is a spot (that is, essentially of finite type) over an alge-
braically closed field &, x,,...,x;in S, is a s.0.p. generating an ideal J, and there
is a i such that e J"NJ" L g¢ J" .

Now we start anew. To simplify notation call # just u. There are equations,
uP+buP '+ b,=0, bje J, and u = E|a|=,,_1 u,x* Write each b; as a
combination of monomials of degree #ni in x4, ..., X4 and collect all the coefficients
—call these coefficients ¢y, ..., cy. Since S, is a spot over k (and even localized at
a maximal ideal of a finitely generated k-algebra), we can find a finitely gener-
ated k-algebra R and a maximal ideal m of R so that S,,=R,,,. By localizing R ata
single nonzero element R\ m we can obtain a ring Ry =17, finitely generated over
k such that

() Xx1,..-,X4,C15--.,CN, Uy, €T; and

(ii) ~/(xi,...,Xxq) = m;, the maximal ideal of 7T corresponding to m.

Hence ueT, and if I=(xy, ..., xz)T then ueI"NI""; but ug¢ I" 'T as ug
(I""'T)m, even. ‘

Now we proceed to shrink k. Since 7/m, = k (as k = k) we may find generators

Z1, ---5 Ze for T over k such that z,, ..., z,€ m;. There exists a homomorphism

vm_l_clvm—l
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k(Z,,...,Z.] onto T sending Z; to z;. Let the kernel be generated by fy, ..., f;.
Choose a subfield L of k, finitely generated over Q such that
@) fi,--freLlZy,...,Z.],

(ii) X1y..e9Xdy Clyeers CNs U € L[Z1,...,2Z.], and

(111) \/(xl, cees Xg) =(Z1yce52e)-

(This is possible by writing equations over X showing that z; are nilpotent over
(xi, ..., Xg) and adding the field coefficients of these equations to Q.)

Put A=L[z;,...,2.]. Clearly AX; k=T. Thus (2, ..., 2.)A is a maximal ideal
of A of height d. Furthermore x, ..., x; are an A-sequence since they are a 7-
sequence and 7 is flat over A. Let I =(xy,...,xq)A. Then ueIlNI{~!, but u ¢
IT 'Tyelseuell! 'T,in T.

Next choose a finitely generated Z-algebra C whose quotient field is L, and
then localize C at finitely many elements so that the following conditions hold:

(i) fl: ""fre C[le LEEE) Ze]s
(1) X1,.e0y Xgy Clyeees CNy U ECLZ1,y 245 Ze]s
(iii) zy,...,Z2 are in rad((xy, ..., xz7)Clz1, ---5 Ze]1),
(iv) Clz1,...,2.] is free as a C-module, and
W) ifJ=(xy,...,x4)Clz4,...,2.] and D=C[zy,...,2.] then D/J and D are
free C-modules.
Clearly (i)-(iii) are possible by inverting the denominators of similar equations
holding in L[z,,...,2.]. Conditions (iv) and (v) are possible by the theorem of
generic flatness ([18, §22.A}).

As a C-module D = C® m,, where my,=VJ =(zy, ..., 2.). It follows that
ht(m,) =d. Since x, ..., x4 are a regular sequence over L[z, ..., Z.], by inverting
possibly another element of C we may assume: (vi) x;, ..., Xy are a D-sequence.

(We will use the notation C and D even if we change C by inverting possibly fi-
nitely many elements of C, and change D accordingly. Notice that none of (i)-
(vi) will be affected by inverting further elements of C.)

In D, clearly ue J"NJ"'and u¢ J"'J. Let P be a maximal ideal of C and set
D,=D®cC/PC; let m, be the image of m, and use a “’” to denote the images of
elements of D in D,,. Note that P+ m, is a maximal ideal of D, since D/(P+m;) =
C/PC since D=C®m,.

Suppose we can find such a P so that

(i) xi,...,x5 are a (Dp)m, sequence, and

(i) w e ()" T,

Then we are done. For clearly u’e (J))"N(J’)"~1, as this is true even in D. Since
necessarily \/(x1, ..., x7) = m,, it follows that Ass(D,, /(J’)"~'(J’)) = {m,} so that
u’ ¢ (J')"~1(J’) implies u’ & ()"~ (Jiu,). Then (Dp)m, will be a d-dimensional
C-M local ring of characteristic > 0 (since C/P is a finite field), and thus by The-
orem 4.7 such a u#’ cannot exist.

First we observe that the Koszul complex K.(xy, ..., xs; D) is a free D-resolu-
tion of D/J. Since we obtained that D/J is C-free, it follows that

Tor (C/P,D/J)=0 for i=1

and hence K.(xy, ..., Xq; D)®c C/P = K.(x{, ..., x4; D,) is exact. Thus locally
Xi, ..., Xg are a regular sequence. Thus (i) holds for any maximal ideal P of C.
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To prove (ii) we first invert an element of C so that D/J and gr;(D)=D/J®
J/J*@ .-+ are free C-modules. An easy induction using

O—’Jk/Jk+l—*D/Jk+l—’D/Jk—’0

shows that D/J¥ are then projective C-modules for all k. In addition, D/J¥ is a fi-

nite projective C-module since D/m, = C and some power of m, is contained in J.
Now, since ue J"~! we may write u =341 4y x* Then some u, ¢ J. Fix

this «. If we show there is a P such that u/ ¢ J’, we then claim u’ ¢ (J')"~1(J").
For if u’ =34 = n—1 04 (x")* with v, € J', then the equation

Y )= P uxe

la|=n—1 || =n—1
plus the fact that x{, ..., x; are a regular sequence shows that
uo’te (v(;uxfs "-’xi,’ .“,x&) C'T;,

which contradicts our assumption. Put v, =w.

Consider D,. This is a d-dimensional local ring containing a field. Suppose
weJ’. We claim there is a fixed bound for the minimal degree of the integral equa-
tion satisfied by w over J’, depending only on D and J. Note there is a fixed power
of m, lying on J, which shows that D/J is a finite free C-module of rank f, say.
Then N(D, /J’) = f for every maximal ideal P of C.

Complete D,. Then D, is a free module of rank f over the regular local ring
F[[xy,...,xz]] where F is a coefficient field of Dp. Hence the lemma shows that
w’ satisfies an integral equation of degree f over Jﬁp. By lifting the coefficients
of this equation to D, mod m,{ we obtain an integral equation for w’ over JD, =
J’ of degree f. Hence there is an equation

(*) (w’)f+a1(w’)f_1+-~+af=0, a;e(J’)i.

By induction we claim that (w’)/ e (J’)"*! for all n=0. For n=0, (*) shows
this. Suppose (w’)/*"~ e (J')" and multiply (*) by (w’)". Then

(wr)n+f= _a(wf)n+f—l_a2(wr)n+f—2__ ... _af(wl)ne (J,)n+l

as required, since a;(w’)"/~ie . TiF c "+ (If n=1i this holds; if n<i
then a’e (J’) so that a’e (J')"+1)

We have shown that if w’e J’, then (w’)"*/ e (J')"*! and f does not depend
on P. Thus if w’ e J” for some P e m—spec(C) then w"* e (J"*!, PD). Suppose
there is a P e m —spec(C) and n such that w”* ¢ (J"*!, PD). Then (by the above)
w’ ¢ J’, which finishes the proof of the theorem. Hence we may assume wt/e
(J"*1, PD) for all P e m—spec(C), and all n. As D/J"*!is projective over C this
implies that w”*/e J"*!. Hence

lim v,(w"ty/(n+f)= lim (n+1/n+f)=1,

n— oo 1 — o0

which shows by [27] that w € J. This contradiction proves the theorem. Ol

COROLLARY (cf. [20]). Let R, m be a 2-dimensional C-M local ring con _Egining
a field and I an m-primary ideal. If P;(n) = H;(n) foralln=1then @, =o I"/I"+!
is C-M.
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Proof. This is immediate from the theorem of this appendix and Theorem
4.6(ii). ]

We can generalize the theorem of the appendix and Theorem 4.7 as follows.

THEOREM. Let R, m be a local C-M ring containing a field. If I = (xy,...,Xxg)
is generated by a regular sequence, then

Inr—t=yr-r.

Proof. Clearly I""'Tc I"NI""1, so it suffices to prove equality at all pe
Ass(R/I"TI'). We claim Ass(R/I"~'T)= Ass(R/I). To see this suppose that
r-selI" T and r is a nonzero divisor modulo 7. Then r is also a nonzero divi-
sor modulo 7 since [ is generated by a regular sequence (see [19, Proposition
4.11). Since rse I"~! we get se I""! as Ass(R/I"~') = Ass(R/I), so that s =
Dia|=n—185x% Since rs € I"~'I, we may write

S rsegx%=rs= Y t,x“ with t,el.
la| =n—1 || =n—1
Since x, ..., X, is a regular sequence, this equation shows that rs, — 7, € (xy, ..., Xg)
so that rs, € I, which implies s, € I so that s € I"~!I. This proves our claim. Now
if pe Ass(R/I) then I, is generated by an s.o.p. of R, which is a C-M local ring
containing a field. Hence Theorem 4.7 and the theorem of this appendix finish
the proof. L]
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