ON THE H? CLASSES OF DERIVATIVES OF FUNCTIONS
ORTHOGONAL TO INVARIANT SUBSPACES

William S. Cohn

Let A be the unit disk in the complex plane and let H” denote the usual class of
functions analytic on A. An analytic function ¢ which maps A into A is called an
inner function if

lim |@(re)|=1a.e. [dO].
r—>1-

Thus

e(z)=11 T Gk—Z -exp<—g {+z du(s“))

k=1 |ax| 1—axz T $—2

where ¥ 1—|a;|<oo, and p is a positive measure singular with respect to d#.

In [9] Protas, in [3] and [4] Ahern and Clark, and in [1] Ahern study the deriv-
ative ¢’ of an inner function ¢. In [1] Ahern obtained the following characteriza-
tion of when '€ H? for 1/2<p<]1.

THEOREM. If ¢ is inner and 1/2< p<1, the following are equivalent:

(a) o’ €H?.

(b) There is an a, || <1 such that ¥ (1— lay (@)])! P <o, where {ay (o))} are
the zeros of ¢, = (ax— )/ (1 —ayp).

(©) X (1—|ax(a)])'"P<oo for all « € A\E, where E is a set ofcapaczty 0.

Thus, if {a,] is the zero set of ¢, ¥ (1— |ai|)! 7P <o implies that ¢'€ H?. Al-
though the converse need not hold, ¥ (1— |a( a)[)l"p will converge for nearly all
€A, if p’€ H?,

In this paper we consider inner functions and the functions f belonging to
H*©QpH? We show that ¢'€ H? if and only if f’€ H” for all f€ (pH?)*, for
appropriate choice of 3. We also obtain a characterization of when ¢’€ H” in
terms of the ““level set’” {z:|¢(z)|<e}, for small e. In case ¢ is an interpolat-
ing Blaschke product, it turns out that for 1/2<p<1, ¢'€ H? if and only if
Y (1—|ai|)! 7P <, where {a} is the zero set of ¢.

This paper is divided into three sections. In the first we prove our results for
interpolating Blaschke products. In the second we call into play the ‘‘Carleson
curve’’ surrounding the level set {|¢(z)|<e}, where ¢ is an arbitrary inner func-
tion. This enables us to ‘‘approximate’’ ¢’ by B’, where B is an interpolating
Blaschke product, and we generalize the results of Section 1 to arbitrary inner
functions. The third section indicates further theorems the methods at hand
make available.

We assume the standard results in the literature about H” spaces, interpolation
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sequences, Carleson measures, and the non-Euclidean metric. As references we
give [6], [7], or [10].

We will follow the convention of Ahern and Clark in [3] and write f({) =
lim,_,, f/(r¢) if the limit exists, and | f({)|= oo if the limit does not exist. The
theorems on the angular derivative of Carathéodory imply that if ¢ is inner and
¢ €T, the unit circle,

|¢($)]=1lim

r—1

1—|e(r?)]
1—-r

We rely on this in the proof of Lemma 1 in Section 2.

As is usual, we use the notation A = B to denote that ¢; A < B <c, A for abso-
lute constants ¢; and c¢,. A constant ¢ which appears in one inequality may
change its value in the next inequality. Finally, /¥ denotes the set of sequences
{Bi} for which ¥ |B;|P <oo.

1. Interpolating Blaschke products. A Blaschke product

2 G, ap—z
B(z)=T] +~——
k=1 A 1—axz

is called an interpolating Blaschke product (1.B.p.) if the zero sequence {a; ]} is an
interpolation sequence. We will need the following results about interpolation
sequences. We let di=1—|ay]|.

THEOREM A. If {a,} is an interpolation sequence and f € H”, then

T |f@l de <171

where v is an absolute constant.

THEOREM B. If {a,} is an interpolation sequence then the functions
1/2

fe(z)=——

1—agz

\

form an unconditional basis for their closed linear span in H 2, Thus the series
¥ By fi converges to an H? function if and only if T |Bi|* <.

For Theorem A see [6: Chapter 9]. For Theorem B see [8]. We prove our first
result.

THEOREM 1. Let 1/2<p<1. Suppose B is an i.B.p. Then B’€ H? if and only
if Ldi P <oo.

Proof. We need only show the necessity. If B’€ H?, Theorem A implies
E |B’(ak)|”dk<°0.
k=1

However a familiar calculation establishes that |B’(ay)| > c/(1—|a|), where cis
independent of k. This proves the theorem. O
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We now turn our attention to the subspace of H? spanned by the functions fj
defined above. It is well known that the closed linear span of the f; is simply
(BH*)' =H?>OQBH?. See [1] for exact details. We will need the following results
about (BH?)*.

THEOREM C. If {a,) is an interpolation sequence then the operator
T: (BH?)* — I defined by Tf=| f(ay)dy’*} is 1:1 and onto.

THEOREM D. Let ¢ be any inner function and let f€ (oH?*)*. Then there is
an h€ (¢H?*)* such that

fe®y=p(e®)yen(e®) a.e. [dI].

In the special case that ¢ =B, a Blaschke product, both f and h are analytic on
C\{1/a,}, where {ay} is the zero set of B and for z€ C\(1/a,}U (a;]}

f(z)=B(z)%h(1/Z).

For Theorem C see [6: Chapter 9]. For Theorem D see [5].
We now prove a theorem about the derivative of a (BH?)* function.

THEOREM 2. Let B be an 1.B.p. Suppose %< p<l. Then the following condi-
tions are equivalent:

(i) B’eHP.

(i) freH?'C*P) forall fe(BH?*)™ .

Proof. Suppose B’€ H”. We will show that for f=Y%_, B« f»

n 172
171e<r( T 18i?)
k=1

where a =2p/(p+2) and v is independent of n. Theorem B and the complete-
ness of H” will then imply || /|| < c[|f||» for all f € (BH?)*, for some constant c.
If f=Xk=1 Bk fx then

1
2)=Y B d’? —
S=)=X BrGrdy (1—ar2)?
and
I

[1—-dxz|*”

Since the sum on the right is finite we may estimate || f’|, by setting z=e'® and
integrating. Since % <a<l,

|£(2)|< T |Beldi”

Irla< T igedie | 2
. 1= e

<c L [Bedi®|*(1=ae))' >
=cY |Bk|2p/(p+2)dé—3p/(p+2)

where c is independent of #.
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Since (p+2)/p and (p+2)/2 are conjugate exponents, Holder’s inequality
shows that

|75 < e (X 1B/ PP (L d ") @+P,
Since B’€ H?, Theorem 1 shows that

1 2pr o2y S v CX |Be|H)2

as desired.

Now suppose f’€ H® for every f€ (BH?)* where a=2p/(p+2). The closed
graph theorem implies then that || f’||, <7/ f]» for an absolute constant . Using
the relation f(z) =B(z)(1/z) h(1/Z) of Theorem D yields

£12)=B1z) —;— (172 —B(2) —le— /%) —B(z)—leh—’(l/Z_).

If £(z)=X%_, Bxfr we may set z=e'? in the above equality. It is then an easy
observation that ||B’A|, <3v|f]l,- Since the functions # which arise from the
functions f form a dense subset of (BH?)*, we see that B'h€ H® for all h €
(BH?)*. We now apply Theorem A and get

kEI |h(a;) B'(a)| %P+ d; < oo,

Thus, for all h€ (BH?)*,
L |a(ag)| P+ D=2 D <o,
Next observe that by Theorem C, as /4 ranges over all of (BH?)*, the sequences
(Bi) = (h(ag)*P/ C+P af! * P
range over all of /2*P)? Thus
T 18l di= 7+ <o
for all {B,}€/?TP)P_ A simple argument shows that L d; ”<oo, and thus

B’€ H?, as desired. O

2. General Blaschke products. In this section we extend the results of Sec-
tion 1 to arbitrary Blaschke products. Our main tool is the following lemma.

LEMMA 1. Let 0<e<]1. Suppose B is an 1.B.p. with zeros {a;}, and ¢ is an
arbitrary inner function. If supy|e(ay)| <e, then there is a constant vy such that

|B'(e”®)|<v|¢'(e®)] a.e. [dB].

Proof. We may choose r so small that the set {z: |B(z)|<r] is a union of dis-
joint components R, where R, contains the single zero a;. It can be shown that
there is an s, going to zero as r goes to zero, such that

I—ag

<s}, for all %.
l—akz

ng{ZI
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Since |¢(a;)| <e, we may choose r and s so small that there is a 6<1 such that
|¢(z)| <6 for z€ UR,. Thus we have the containment UR; S{z: |¢(z)|<8}.

Let G=AN{z: |¢(z)|>8). Since {z: |B(2)|<r}<SA\G, —log|B(z)|<—log r,
for z€G. On dGN A, |¢|=6. Thus

*) —log|B(z)| < —vlog|¢(2))
for z€dGNA, where y=1log r/log 6. If z€dGNT then
(**) —log|B(z)|= —log|e(z)|=0 a.e. [dO].

Since —log|B| and —log|¢| are bounded harmonic functions on G, (*) and (**)
imply that —log|B(z)| <+ log|e(z)| for all z€G.
Now, for almost all 8, re’? € G if r is close enough to 1. For such a 8 and r we
have
—log|B(re’)| log|e(re’)]
<£—-y——

~=

1—r 1—r

and letting r —> 1 we get
|B‘(e”)|<v|¢'(e)| a.e. [d8].
This completes the proof. ()

In order to generalize the results of Section 1, we let ¢ be an arbitrary inner
function. We plan to find an i.B.p., B, such that ¢’€ H? if and only if B’€ H?.

To this end, let I, be the ‘‘Carleson curve’’ surrounding the set [z: |¢(z)|<e]}.
Recall that T', consists of certain curvilinear polygonal segments and that:

(i) arc length on T, is a Carleson measure;

() e<|e(z)|<€e<], for z€T; and

(iii) {z:|e(2)|SIntT,}.
We need the following theorem.

THEOREM E. Let 0<0<1. Then if ¢ is small enough, there is a uniformly
separated sequence {w;} on I, with the property that if T'; is any component of T
i Wi — Wi |
Pj= U [wk,wkH] where "1‘—_—_*—*—<0',
k=n; Wi Wi 41
and [wg, wg4] is the segment on I'; connecting wy and wy ;. For the proof see
[7: p. 341]. Essentially, one just distributes the w; evenly (with respect to the non-
Euclidean distance) over I',. Thus {w;} is a separated sequence. Since arc length

on I, is a Carleson measure, {w;]} is easily shown to be uniformly separated.
The i.B.p. B we choose will be the one with zeros {w;}, where ¢ and o are
chosen as above.
We may now generalize Theorem 1.

THEOREM 3. Let % <p<\l. Suppose ¢ is inner. Let B be the i.B.p. related to ¢
as above. Then the following conditions are equivalent:
(i) o' €H”.
(i) B’eH?P.
(i) fr |dz|/(1—|z|)? <o, where T, is the Carleson curve of Theorem E.
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~

Proof. That (i) implies (ii) follows from Lemma 1. To see that (ii) is equivalent

to (iii) we write
|dz| |dz|
§ € _ZJ;SF; (I_IZI)‘O

where the I'; are the components of I'.. By Theorem E

S |da| _ |z
Iy (l_,zl)p k=n; " [wg, wg 4] (1'—‘|ZI)p

Nj
= Y (1| ".
k:nj
Since B’€ H” and B is an i.B.p., we see that (ii) and (iii) are equivalent.
We finally show that (ii) implies (i). It is not hard to see that for some 6<1,
|B| <6 on the curve I'.. Thus

[z:]e(z)|<e}SInt T S (z: |B(z)|<6).
We may now argue as in Lemma 1 and find a constant y such that
|¢'(e®)| <v|B'(e)| a.e. [db].
This completes the proof. O
We turn now to functions in (@oH?)" .

THEOREM 4. Let % <p<l. Let ¢ be an inner function. The following condi-
tions are equivalent:

(i) o’'€H?.

(i) freH™ P2, forall f€ (pH?)".

Proof. Assume ¢’'€ H”. By Theorem 3 in [3], ¢ is a Blaschke product. Let {a; }
be the zero set of . Then it will be enough to show that || /||, <-v-||f]l, for all f
in (B, H?*)*, where B is a finite subproduct of 5 and v is an absolute constant.

Without loss of generality, we may assume that ¢ {0)=0. This in turn implies
that the curve I', will not contain 0. Now let I'? be the reflection of I', across the
unit circle. Since the only singularities of f occur at {1/a;}, and since 0 is in the
interior of I',, we have the integral formula

J(§)
r: (§—z)?

Let z=e". Since I', is a union of “‘intervals’’ of the form [wy, wi 4] where the wy
are as in Theorem E, an elementary estimate gives, for a ¢ independent of n,

wor 1
S(@)= 2wi S ds.

l——lwkl

£ (e <X | b)) |

wk_eiBIZ

where ¢} is some point on the reflection of the interval [wy, wg4]. The relation
f(z)=B(z)h(1/%Z)/z of Theorem D shows that
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1— |y |?
|‘*’k—ei0|2.

|7 <e T (R0

It is quite easy to see that ¥ |A(4)]* (1 —|wi]) <v- || #]|* and that ||k, =]|| f]l2- Thus
if Br=h(t)(1—|w )2, then {B;} €/% and we have

Bi(1—]wxh "2
[1—e™Puy*

|f(e”)<c- L

It follows now that || f’||, <+v-||.f|, exactly as i1 the proof of Theorem 2, since
E(l—lwkl)l_p<oo. O

To prove the converse, we will need the following result, and its corollary.

THEOREM F. Let {w;} be an interpolation sequence and suppose sup | ¢ (wi)| <
1. Then for some n, the functions

{ 1—o"(wp) 9"(2) }

I—CT)kZ

form an unconditional basis for their closed linear span in H?.

COROLLARY. If {wy]}, ¢ and n are as above, then the map T: (¢"H?*)* — I?
defined by Tf = f(wi) (1—|wi|)?} is onto.

See [8: p. 265, 275] for the discussions.

Now assume f'€ H®, for all f€(pH?)*, where a=2p/(p+2). As in the
proof of Theorem 2 it follows immediately that ¢’f € H for any fin (¢H?)*. In
[1] it is shown that

(¢"H*) = (oH*)* ®p(oH)*® - @o" (oH?*)*.
An easy calculation now shows that if g€ (o H?)*, then g’€ H* and p'g € H®.

Now let B be the i.B.p. of Theorem E. Clearly, B’gs € H* for any g € (¢"H?)*.
Thus

kg | B(wr) g (0)|* (1 =]y ]) <oo.

We may now use Theorem F and its corollary and the argument of Theorem 2 to
conclude that ¥ (1—|wg|)! 7 <o and that B’€ H”. An application of Theorem 3
completes the proof. a

3. Other results. If B is a Blaschke product with zero set {a,}, define (BH™)*
to be the closure in H" of H*N(BH?)*. It is shown in [8] that for 1<n <o,
{1/(1—a,z)} is an unconditional basis for its span in H" if and only if {a;} is an
interpolation sequence. The methods of Section 1 and Section 2 easily yield the
following theorem.

THEOREM 5. Let  <np/(p+n) <p<1. If ¢ is a Blaschke product the follow-
ing conditions are equivalent:

(i) o' €H?”.

(i) freH™ P, forall f€ (oH™*" .
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Note that if %<p<1, then for large enough n, %<np/(p+n), and so the
theorem applies. -

The limiting case, when n= oo, is also of interest. We may define (BH ®°)* to
be equal to (BH?)* N H>. We have the following theorem.

THEOREM 6. Let % <p<l. Thenif ¢ is a Blaschke product, the following con-
ditions are equivalent:

(i) ¢o’'€H?.
(i) f'€HP, forall f€(pH>)" .
Proof. We let B and {w;} be as in the first part of proof of Theorem 4. Repeat-
ing the argument, if ¢’€ H” and fis in (¢H *)*,
o 1—|ey|?
|f(e?)<c- X [h(ty)] Tor—e|2°
where £, € [wy, wi41] and f= gom a.e. [df). Since f€ H®, so does h. Thus
1—|wg|?
lw_eiolz

<c|B'(e").

|f(e”)<c- L

Thus Theorem 3 implies f'€ H”.
In the other direction, recall that for any { € A, the function

1—o(§) 0()
k = =
¢(2) 1-{z
isin (eH?>)*NH®™. If ki€ H?, it follows easily that ¢’€ H?, provided { is not a
zero of ¢. This completes the proof. O
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