FIXED POINTS OF AUTOMORPHISMS OF LINEAR GROUPS

Sarah J. Gottlieb

INTRODUCTION

In the author’s paper, Algebraic Automorphisms of Algebraic Groups with Stable
Maximal Tori, a counterexample due to D. Winter was given, showing the existence
of a solvable linear group in characteristic 2, with automorphism o, which has
two o-stable maximal tori not conjugate by a o-fixed point.

This paper generalizes that group for any characteristic p > 0. We define first
an upper triangular group & in GL (p(p + 1),k) consisting of p diagonal block
matrices, each block being upper triangular in GL(p + 1,x). We then define a
rational representation 6 on &,, the unipotent part of &:

0: (@u’.)—) (K; +).

Our desired group is G = T'- U where T is the diagonal maximal torus of &
and U is the kernel of 6. The automorphism o of G cyclically permutes the p
blocks of a matrix; that is, o replaces the first block by the second, the second
block by the third, etc., and the p*® block by the first. Having been previously
defined on &, o is used in the construction of 0.

PART I
Let M, C GL(p + 1,k) be upper triangular matrices, for i = 1,...,p; k an al-
gebraically closed field with char k = p > 0. Let M be the matrix in GL (p(p + 1),k)

with M,,...,M,, along the diagonal, and zeroes elsewhere:

M,
M,
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Denote by It the set of all such matrices M. Then IR is an upper triangular
algebraic group in GL(p(p + 1),k).

It will be convenient to denote an entry of a matrix M € I by (M,);, ., where
M, is the i*® block of M, and (j,k) are the local coordinates of the entry within
the block.

There is an automorphism o of order p on IN, defined by:

{ [(c(M)),] R (Mi+1)k,j for i=1,..,p—1
[(U(M))p] % (Ml)k,j

The effect of o is to permute cyclically (upward) the blocks of a matrix M € .
That is, [c(M)],=M;,,for1=i=p— 1, and [c(M)], = M,. In fact, o is conjuga-
tion by a permutation matrix of oirder p. For p = 3, for example, the permutation

matrix would be:

IR also admits an index-change automorphism r, given by [(+(M));],,;,= M) r_1 ;-1
forj, ke {2,..,p+1};and forj=1,...,p + 1:

[(T(M))z] 1.7 = (Mi—l)lj (l=2;,P),

[(T(M))l] . = (Mp)1,j
For example, in the case p = 3, if
&, a; a, a; —ts a, a; Qg
t, b b t, b b
M, = > PlandM,=| ° ° '], then
[ Cy i Co
b t4—l L- ts d
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- -
l, a, a, a4
s a, ag
(t(M)), =
b t7 —

Leta=oc- 7. ThenforM € N, N=aoaM),andi=1,...,p — 1, we have
(N = oW1y, = HeM))iials; = Miy) gy
where &, j € {2,...,p + 1}; and
(N, = 6 M) 1], = M)y,

where j = 1,...,p + 1. The case for { = p is similar, with i + 1 replaced by 1.
In particular, if M is a fixed point of a, then N = M and:

(Mi)kj = (Mi+1)k—lj—1 i=1,..,p—1
(*): for/j=2,...,p+1
(Mp)kJ = (Ml )k—l,j—l k= 2, e P +1

Note that the condition (*) implies that for j = p — i:

(Mi)p+1,p+1 = (Mi+1)p,p = e = (Mp)p+1—j,p+1—-j = (Ml)p—j,p—j
= (Ml)i,i = . = M)i¢ni-i-n = M)y,
That is (**):(M)),, = M), ,, ., fori=1,..,p.

Let G= (M), be the connected component of the fixed-point subgroup I
of I under a. Then & is the semi-direct product & = T - U of its diagonal maximal
torus ¥ and its maximal unipotent subgroup U.

A matrix in & has entries in the first row of each block arbitrary in k, while
its remaining non-zero entries satisfy the conditions (*) and (**) above.

It is helpful to display representative elements t € &, u € U, for p = 3:

[ ¢, |

ts 0 ti,tasts € K
0o & titot, # 0
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1 a, a, a 7
1 b, b
1 2 0 0
0 1 C,
1
1 b, b, b,
1 e ¢ a,,85,0Q5
u= 0 . 0 by,by, by YE K
0 1 a,
1 €15 Ce, C3
1 ¢ ¢, ¢4
1 a, a
0 0 P
0 1 b,
\ 1 J

The groups &, T, and U are clearly o-stable; but we shall usually apply o
to the set of nilpotent matrices1’ = {u — I|u € 11}. I’ is stabilized by . Moreover,
1’ is closed under matrix addition and multiplication; and ¢ preserves both.

P
For X € Il or 11’ define $(X) = > (6°(X)),,., Then ¢ is additive since o
i=1

is; that is,
PX+Y)=0X)+d(Y)for X, Y € Uor U

We now define the function 6: 1 — « by

0+ X) = 2 ((}: )/P) ¢(X') + (Xp)l,p+l'

for X € 1’. Then 0 is a polynomial function in the entries of (I + X) with integral
coefficients. Hence it is a rational function defined over the prime field.

We wish to prove that 6 is in fact a rational representation of Il in k. Hence
we must show that 6 is a homomorphism from (U, ) to (k,+). This is the object
of parts II and III.

PART II

Define matrix rings .# and ¥ over the ring 2B, (x) of 2-dimensional Witt
vectors over k, using the same defining relations as in Part I for % and &.

Addition (2) and multiplication () in 2B,(x) are defined as follows: for w =
(w,y,w,) and v = (v,y,v,) in B, (k), w,, w,, vy, U, are in k, and
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p—1
D
wlv= (w0+vo,wl+vl—z ((l )/p) wivk ‘)
i=1

wlv = (Wyv,, Whv, + w,vy).
The natural projection R of W,(x) onto k, given by R((w,v)) = w, is a ring
homomorphism.

The important facts for our purpose about 28, (x) are that addition and multi-
plication in k are preserved in the first element while-the characteristic of L8, (k)

is p°.
The identity “1” in 28, (K) is (1,0); “i”is (1,0) fori = 1,...,p — 1; “p” is represented
by (0,1), and “0” by (0,0); “p + i” by (i,1) and “jp + i” by (L,])for l,] 1,2,...,p—1;

Let I denote the identity of &, and let % denote the subset of & whose elements
have all “1”’s on the diagonal, and define ' ={u—~Ilu € Z}. Then ( %,-)
is a semi-group, and %’ is closed under addition and multiplication.

There is a ring automorphism & on .# defined as was ¢ on IR, which is also
defined on %’ and stabilizes ¥, %, and %’.

-Similarly, there is an additive mapping ¢ from % or %' to 2B,(k), given
by

$X) =D (3'X)1ps forXe % or 7’

Define the mapping §: % — 28, (x) by

0 +Xx)= 2 ((p )/p)&>(X") +(XP), . forXe,

i=1 l

The definition of 8 on % is strikingly similar to that of  on 11.
The proof of the following lemma is straightforward and will be omitted.

LEMMA 1. If p: M — A is the mapping defined by [p(X)];, = (X ,0), then

for x €', R [(b(p(X))] ¢X), R[(p(X))1pi1] = (XP) 141, ané R [$(p(X))]
= ¢(X’) forj=1,2,.

COROLLARY 2. 6 = Rbp on &.

Proof. For X € W/, p(I + X) = I+ p(X) where I denotes the identity matrix
in % and p(X) € Z’. We have:

[ ((? )/p)fb(p(X)i) + (p(X)p)l,P‘i‘l]
= 2 (( )/p)R [d(p (X)) + R [(p (X)) 1 1]

Rép(I+X) =
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p= (/1 '
=> (( i )/p) & (XY + (X7); s =0 U+ X),

THEOREM 3. If R is a homomorphism from { %,-) to (k,+), then 0 is
a homomorphism from (1,-) to (x,+).

Proof. Let A and B be any elements of 11/, and note that for any i = 1,2, ...
there are numbers j; and &, such that

by Lemma 1.

Ji k;
[p(4) + p(B) + p(4) p(B)]’ = E [H X(j,k)],

where X (j, k) = p(4) or p(B) or 1. Thus, using Lemma 1,
R& [(p(A) + p(B) + p(A) p(B))'] = $((A + B + AB)’),
and
R[((p(A) + p(B) + p(A)p(B)?)1p+1] = [(A+ B+ AB)?], .1

Hence

RO (p(I+ A) - p(I+ B)) = R8((I + p(AN + p(B)))
= R6(L + p(A) + p(B) + p(4) p(B))

= R[Z ((}: )/p)((p(A) +p(B) + p(4)p(B)))

+ ((p(A) + p(B) + p(A(p(B))")l,pH]

=> ((}: )/p)¢((A+B+AB)‘)

+ (A + B+ AB)"), 1
=0(I+A+B+AB)=06(I+ A)J + B)).

So if R is a homomorphism, then

0(( + A)I+ B)) =R8(pI+ A)pU + B))
= [Ré(p(I + A)) + Rb(p(I + B))]
=0(I+ A) + 8 + B),

by Cor. 2, as we wished to prove.
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It remains now to prove that R8 is indeed a homomorphism.

PART III

For this section, which deals only with matrices in &, %, %’, etc., we may
without confusion denote &, &, 8, I, etc., simply by o, &, 8,1, etc. (It should be
noted, however, that the observations of Lemmas 4, 5, and 6 have corresponding
formulations for & over k).

LEMMA 4. ForX € %', po(I+ X) = oI + X)p)=¢(2 (:)X’“)
k=1

P
Proof. Forx € %', (X5)1pn = Il X)jjur, G =1,..,p).

So
(G(Xp)l,p+1 = (O'(Xq ))1,p+1 = (Xg)l,p+l
= H (X2)j,j+1 = |: H (Xl)j+1,j+2:|(X1)1,2
= ]I (Xl)j,j+1 = (Xq)l,p+l = (Xp)l,p+1'
That is,
[O'i(Xp)] 1,p+1 — (Xp)l,p+l fori=1,...,p.
So
X" =D (0" (X )] 1prs = PX") 1
Hence
- . »
I+ X)?] = X*r*
LI+ X)"] = ¢ 2 ( i ) ]
e S ()]
L o1 \k
p—1 p
=d¢é X? X*
&) + & )+¢L2=l(k) ]
=0 +p(Xp)l,p+1 + Z (Z )¢(Xk) =p0( + X)
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LEMMA 5. Let X, Y € %'. Then $(XY) = $(YX).
Proof. Let 2 =k = p. By (), i.e., the condition defining ¥:

(Xl)l,k = (Xp)2.k+1 = e = (Xp—(p~k))2+(p—k).k+1+(p—-k)

= (Xk)p-k+2,p+1 = [U(k—l) (Xl)]p——k+2,p+l’

and

(Yl)k,p+1 = (YZ)k—l,p = (Y1+(k~—1))k—(k—l),p+1—(k—1)

= (Yk)l,p—k+2 = [U(k—n(Yl)] 1L,p—k+2"

Hence
(Xl)l,k(Yl)k,p+1 = [O'(knl)(Yl)] 1,p—k+2 [o (k—l)(Xl)]p—k+2,p+1

andfori=1,...,p

[Ui(Xl)] 1,k [O'i(Y1)] kp+1 = [o =19 (Yl)] 1,p—k+2 [U(k T (X1)] p—k+2,p+1

Thus:

D e XDk [0 V) ipar = D, 067 (Yl 1 popez [07 X)) popszpers

and:

M‘u

_2 [0'XY)] 1 prr =

k

Il

(Z [O'i(X1)] 1,k [Ui(Y1)] k,p+1)
(z [OJ(YI)] 1,p—k+2 [O'j(Xl)]p—k+2,p+1)

2 [O'j(Yl)] 1,2 [O'j(Xl)] l,p+1)

Il
M= M 1M

[0/ (YX)] 141

1

~
it

So: $(XY) = d(YX).

COROLLARY 6. For a set of n matrices {£(1),£(2),...,£(n)} C #’; and for
numbers a,,...,a, € W, (k), we have

S [EQD) - £2) ... E(r = 1) - E(n)] = G [E(Q) ... E(n — 1) E(n) E(1)]
o= [E(R)EQ) ... E(n — D));
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and
$[aE(M)E(2) ... E(n) + a, £(2) ... EN)EQ) + ... + @, E@) &) ... &n — 1)]
=(a,+a,+..+a,)d[E1)  £(2)... &@n)].

Choose A, B arbitrary in % ’. Then by Lemma 4

po [+ A)I + B)] =pB(I+A+B+AB)=¢(Z (Z )(A +B+AB)’“).

p
p
Let us denote the expression z (k )(A + B + AB)* by E, and the expression

k=1
(: )(A +B+ AB)* by E,, for k=1, ...,p. The terms of each (4 + B + AB)*

we may consider as words in the letters A and B. The collection of all words,
including repetitions, appearing in E, we shall call #7,. Note that %, contains

P

(Z copies of every word in (A + B + AB)*. We set # = U %,—the collection
k=1

of all words, including repetitions, appearing in E. Note that any given word

may have a number of copies in each of several #,’s. For example, there are

. . p .. b
D copies of the word AB in #7,, and (2 ) copies in #,, for a total of p + (;)
in 7.

We say that two words, W, W’ € # are equivalent if one is a cyclic permutation
(abbreviate c.p.) of the other. For example, the words ABBA and AABB are
equivalent. The relation of being in cyclic permutation is an equivalence relation. |

For any word W € %, we denote by W the equivalence class in #  which
contains W.

LEMMA 7. ¢(E) = 2 card(W)tp(W), where the sum is over equivalence
wewv
classes. <

Proof. By Cor. 6, for a word W’ € W

¢(W’) = ¢(W) and ¢( > W') = card (W) $(W).

wew

Thus

we ¥ Wecw \Wew
=3 ¢( W’)= > card (W) ¢ (W).
wew

wc ¥



140 SARAH J. GOTTLIEB

We have now a counting problem, to determine card (W). If W is A* or B*
for some k € {1,...,p}, then W has only one distinct ¢p., which appears only

in E,; so, WC #,, and card (W) = (: ) . All the other words in # have at

least one A and at least one B._ These we shall call mixed words. We shall find
that for a mixed word W, card W is a multiple of p*.

Assume W is a mixed word. At least one c.p. of W starts with an A, so we
may assume that W, which is simply a representative of W, itself starts with
an A. Since W also has a B, it must somewhere have an A and B in succession.
The AB sequence we shall call a diphthong.

Suppose W has i letters and r diphthongs. Since a product of (p + 1) elements
of ' is 0, we need only consider 1 =i =p, and of course 1 =r =i/2. There
are [ (not necessarily distinct) possible c.p.’s of W, all of which in fact occur in
(A + B + AB)". Of these, r would start with a B, end with an A, and have only
(r — 1) diphthongs. (For example, the word ***AB~*+* may be cyclically permuted
to Bxxx++x+A), The remaining (i — r) ¢.p.’s of W all have r diphthongs.

The class W is therefore the disjoint union W U W, _, of the sets
W,.= {W’ € W| W’ has r diphthongs},

and

W,._,={W’' € W| W’ has (r — 1) diphthongs}.
So

card (W) = card (W,) + card (W, _,).

Now suppose that W has only { distinct c.p.’s. (The number / of course depends
on the exact configuration of W. For example, the word ABBA has 4 distinct
c.p.’s, but the word ABAB has only 2). If one c.p. of W occurs j times in the
list of i possible c.p.’s of W, then each of the ! distinct c.p.’s of W occurs j times
in the list, and { = -[. Similarly, there are (i — r)/j distinct ¢.p.’s of W with
r diphthongs, and r/j distinct c.p.’s of W with r — 1 diphthongs.

LEMMA 8. Denote by #; the set of words (including repetitions) appearing
in (A + B + AB)*, and suppose that W 0 #, ¥ 0. Say that W has i letters, r

J
Proof. WNn #,=W.Nn #,)U (W._,N #,, and the union is disjoint; so
card(WnNn #,)=card(W.Nn #,) +card(W,_, N %).
Since WN #,, #0, k can be at most i, and at the least i — r, because O at

the least and r at most of the k2 factors used can be AB, and the rest must be
either A or B. Therefore, i —r=% =1i.

diphthongs, and | = i/j distinct c¢.p.’s. Then card(W N #,) =
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Case 1. k=i—r. Then W._, N #,_, =0, as we must use r factors of AB
to form W. Each of the (i — r)/j distinct c.p.’s in W, appear exactly once in v,
by choosing the r factors of AB to correspond to the positions of the r diphthongs,
and choosing the appropriate factors of either A or B in the remaining (i — 2r)
spots. Thus

card(WnN #,_,) =card(W, N #7;_,)

G—rj=t"1 ( ’ ) k( ’ )
=(1—-r = = — .
T Nici-n) "7 \i-t

Case2. i—r+1=k=i Wemustuse (I — k) factors of AB to obtain i letters

in all. The distinct c.p.’s in %, affording r possible positions for the (i — k)

r

factors of AB, may each be formed in ( f ) ways, so
L —_—

card(Wn #,) = z—r( r )

J i—k

r - r—1
Similarly, each of the - distinct c¢.p.’s in W,_, may be formed in ( f ) ways,
J i—

- rf{r—1
so card(W,._, N Wk)=—_(. )
J\i—kFk

For the moment set (i — k) = m. Then

card(W, N #,) + card(W,_, N %)

-5 )5 00)

1( (i-r)r! rir— 1 )
=— +

card(Wn #3)

Il

J\m!t—m)! m!'(r—1-m)!

1 r! .
=—+————(@{—r+r—m)

J mlir—m)!

1

ry . i—(E—%k) (r
= — Ct—m)=—7—
J \m J m
r
k .
i—k

J

LEMMA 9. Letay,a,,...,a, (r<p/2) be numbers such that
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a,+a,,,=0, modp?

d r
Then Z am( ) = 0, mod p°.
m=0 m

Proof. We show by induction that for 1 =2 =r,

k (r) r—1)r—-2..0r—k
E a,, = a,, mod p>.
m k!

m =0

ase. a + a =a,+ra
(4] 0 1 1 0 1

=aqa,+a,+ (r—1)a,=(— 1)a, modp>.

' Inductive step. Suppose for some 1 = k <r,

r r—1Dr-2)..0r—%k)
k!

B+ (r) r—Dr—-=2)...(r—Fk) ( r )
a, = Ay + Ay,
m k! k+1

(r=1)..(r—%) rir—1)...(r—k)

a, mod p®. Then

fi

= k! ST e .

=1 .=k [+ Da,+ra,.,

- k! I B+ 1 ]

=1 =k [+ D@+ a,) + = R+ 1D a,.,

- k! i E+1 ]

r—1)...(r—%&)

&+ D1 (r—(+1)a,,,, modp?

The induction is therefore completed and we may use it for k =r, obtaining

d r
immediately that > a,, ) = 0 mod p>.

=~ m
THEOREM 10. If W is a mixed word of E, then card (W) = 0 mod p°.

Proof. Let us say that W begins with an A, and has ¢ letters, r diphthongs,
and I = (i/j) distinct c.p.’s. Note that j < i =<p for a mixed word W. By lemma

8,

card(WnN #,)=———— whenk=(@G~—r),..,i,
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and otherwise is zero. So

i 1
card (W) = z (Z)card(Wn Wk)=7 2 k(z )(1 rk).
k=i—r -

k=i—r
k(p)+(k+1)( P )
k k+1

B k - p! N (# + 1)p!
—k!(p—k)! kR+D(p—k+1)

_ '[k+(p—k)]
P k\(p — k)!

b
= =0 modp?
p(7) =omoas

m=r—({—4%k) and am=k(§:)

But for 1 =k <p,

Letting

we have

wion =5 3 46 )

), summationonm=r—(i—-(C—r))tom=r— (G —1)

J

1 r 5
= — a, = Omod p

J m=0 m

by lemma 9.

COROLLARY 11. ¢(E)=¢(§p: (Z )A") +¢(’2 (: )Bk).

k=1 k=1

Proof. Recall that the characteristic of 28, (x) is p®. By lemma 7,

$E)= D card (W)$(W) € B, ()

wecw

where 7#" is the set of all words (including repetitions) in E. By theorem 10,
card (W) = 0 mod p® whenever W is a mixed word, so card (W) = 0 in 2B, (k) for
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every mixed word W. The non-mixed words of E are A* and B* for k=1,...,p,

which have only one distinct c.p., and (: ) copies in #; that is,

card (—ZZ) = card (?) = (II: )

wair=s(§,(1)#) o5 ().

THEOREM 12. For u,v € %, R6(uv) = R0 (u) + RO (v).
Proof. Letu=A+Lv=B+I,thenA,BE€ %', and

P

PO uv) = ¢(2 (: )(A + B+ AB)*

k=1

-om=o(Z (7)) +(E (1))

= p06(u) +po(v)
= p(0(u) + 0(v)).

Now for y = (¥5,7:1), 2 = (24,2;) in ﬂBz(K),

py =p2 < (0,1)(3’0,3’1) = (0’ 1)(20,21)

< (0,y8) = (0,28) < ¥y, = 24,

since k is a field of characteristic p. That is py = pz & R(y) = R(z). We thus
have RO (uv) = R(0(u) + 6(v)) = Ro(u) + RO (v).

PART IV

In this section we construct a solvable algebraic group G in characteristic p > 0,
having a unipotent automorphism o, and two o-stable maximal tori not conjugate
by a o-fixed point:

Take &, T, U, o, 6, as in PartI. Let U= {u € 1| 6 (¢) = 0}. Then by Theorems
3 and 12, 0 is a rational representation on U, so U is an algebraic group. When
k is algebraically closed, as we assume, dim U > 0.

LEMMA 13. U is o-stable.
Proof. Foruell, p(u) isin %. p(c(u)) = 6(p(u)), and by Cor. 2, 8(c(u)) =
P b

Rbp(o(u)) = R85 (p (). But for v € %, (G () = 2 &' GW)= 2 &'(v) = d);

i=1 i=1

SO
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PO (W) = $((6W)7) = $(6(W") = b") = pb (v).
As in the proof of Theorem 12, this implies that RO(6(v)) = R8(v). Thus:
0(c(w)) = R8(5(p(w) = Ré(p()) = R6p(u) = 6(u).

In particular, 0(uz) = 0 = 0(c(u)) = 0, so U is o-stable.
Set T'=¥. Then:

LEMMA 14. U is T-stable.

Proof. Observe that p(T) is diagonal and consists of “blocks” such that for
S € p(T), if S; denotes the i™ block of p(T), then (S:)11 = (S;)p11,p+1- Moreover
S~ exists and is simply p(¢™'), where S = p(t) € p(T). Hence

-3 -1 —_
(SUS )1_p+1 = Sl'l(S )p+l,p+1 Uip+1 = Uipss

forall S € p(T), v € %, and thus

$SvS™) =D [ (SvS 1 pu1 = D, 5 (0) pur = SO,

for all v € %. So pd(SvS™") = $((SvS™")?) = $(Sv”S™*) = & (v”) = pB(v). Ob-
serving also that fort € T, u € U,

[p (8) p(u) P(t)_I] i p(t)i,i P(t—l )j,j P(u)i,j

0)=(t,,t 'u

= (¢, 0)(¢;,0)(u; it Ui;,0) = ((tut™), ;,0), we see that

,J? i,

p(tut™) = p(t)p(u) p(¢) .
It follows that
8(fut™) =Rép(tut™) =R (@) pw) pt) ") = Rb(pw) = 6(u),

as in the proof of Lemma 13, so U is T-stable.

Hence, G = T - U is a o-stable solvable algebraic group with o-stable maximal
torus 7. Its o-fixed points are those of its matrices M for which M, =M, = ... = M,,.
The cartan subgroup C(T') = T X C, consists of those of its matrices X for which
(X;); = 0 when & # j and (&,j) # (1,p + 1). The condition 6(X) = 0 on C, amounts

P

to 8(X) = 2 (X)) 1per=0.

i=1
Therefore, if U has a matrix X such that X - o(X) € C, and

X7'-oX)& {cale)cE C,},
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then XTX ' is a o-stable maximal torus of G which is not conjugate to T by
a o-fixed point of G. We now exhibit such an element X.

LetX € U begivenby (X,), ;=a# Ofork <jand(k,j) # (L,p+1),i=1,..,p.
Note that X = A - Y where

Fl a a - a a Oﬂ
1 a a a
1
A=A, = =A, =
a
1 a
L |
(e, A)y=0a k<j (kj)# @Qp+1),and (4,),,,, =0) and
1 0 O 0 X,
1 0 0 0
1 0 0
Y, =
0 - -0
0
1

where x;, = (X,); .1
Although A and Y are not in U, they are in U, so 0 is defined on them separately,

p
and 0(X) = 0(4AY) =0(4) + 6(Y). 6(Y) amounts to Z x;; and as A is o-fixed,

i=1

6(A) amounts to:

*’2 ((: )/p) [i (0" (4") l,pﬂ] + (A%) s

P21 (4
= 2 (k )(Ak) 1,p+1 + (Ap) Lp+1 = a”
k=1
P
x; = —a”. We may note here
i=1

Therefore the condition 8(X) = 0 amounts to
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p P

that Y (hence X) cannot then be o-fixed. For if it were, 2 x; = 2 [0 (V)] Lpa
i=1 i=1

would be px, = 0.
Now X' o(X) =Y 'A7'0(A)o(Y) = Y 'o(Y), which is given by '

—

1 00 - - 0 0 (x,,—x) |
100 - - 00
100 - - 0
[Y7'a(Y)], =
0 0
10
| 1 ]

for i=1,...,p — 1. The p* block is similar, with corner entry (x, — x,). Thus
X 'o(X)isin C,.

Suppose, though, that 3Z € C, suchthat X' - ¢(X) =Z7" : 0(Z). Let (Z)1p+1
=2z,1t=1,...,p. Then

([Zz7*- a(Z)];) Lp+1 = Ziv1 T %y i=1,.,p-1
=2, Zp’ i =1
Therefore:
29 — 2 = X5 — X,

23_22 == x3_x2
Bp T RBp_1 T Xp T Xp_y

2,2 = X — X,

Adding the first (¢ — 1) equations above we obtainz, — z, = x, — x,,fork =2, ...,p.
Hence,

p P p p
zzk=2(zk—21)=2(xk_x1)=2xk
k=1 k=1 k=1 k=1
But the conditions 6(Z) = 0, 0 (X) = 0 dictate that

P
0=22k=

p
xk = _ap # O-
k=1 k=1
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Hence there can be no such Z € C,; whence the o-stable maximal torus X7X !
cannot be conjugate to T by a o-fixed point of G.

Note. The work represented by the paper was undertaken and completed at
Purdue University, West Lafayette, Indiana.
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