FIXED POINTS OF AUTOMORPHISMS OF LINEAR GROUPS

Sarah J. Gottlieb

INTRODUCTION

In the author's paper, Algebraic Automorphisms of Algebraic Groups with Stable Maximal Tori, a counterexample due to D. Winter was given, showing the existence of a solvable linear group in characteristic 2, with automorphism σ , which has two σ -stable maximal tori not conjugate by a σ -fixed point.

This paper generalizes that group for any characteristic p > 0. We define first an upper triangular group \mathfrak{G} in $GL(p(p+1), \kappa)$ consisting of p diagonal block matrices, each block being upper triangular in $GL(p+1, \kappa)$. We then define a rational representation θ on \mathfrak{G}_u , the unipotent part of \mathfrak{G} :

$$\theta: (\mathfrak{G}_{n}, \cdot) \to (\kappa, +).$$

Our desired group is $G = T \cdot U$ where T is the diagonal maximal torus of \mathfrak{G} and U is the kernel of \mathfrak{g} . The automorphism σ of G cyclically permutes the p blocks of a matrix; that is, σ replaces the first block by the second, the second block by the third, etc., and the p^{th} block by the first. Having been previously defined on \mathfrak{G} , σ is used in the construction of \mathfrak{g} .

PART I

Let $M_i \subseteq GL(p+1,\kappa)$ be upper triangular matrices, for i=1,...,p; κ an algebraically closed field with char $\kappa=p>0$. Let M be the matrix in $GL(p(p+1),\kappa)$ with $M_1,...,M_p$ along the diagonal, and zeroes elsewhere:

Received February 18, 1977. Revision received October 16, 1978.

Michigan Math J. 27 (1980).

Denote by \mathfrak{M} the set of all such matrices M. Then \mathfrak{M} is an upper triangular algebraic group in $GL(p(p+1), \kappa)$.

It will be convenient to denote an entry of a matrix $M \in \mathfrak{M}$ by $(M_i)_{j,k}$, where M_i is the i^{th} block of M, and (j,k) are the local coordinates of the entry within the block.

There is an automorphism σ of order p on \mathfrak{M} , defined by:

$$\left\{ \begin{array}{ll} \left[\left(\sigma(M)\right)_i\right]_{k,j} = \left(M_{i+1}\right)_{k,j} & \text{for} \quad i=1,...,p-1 \\ \\ \left[\left(\sigma(M)\right)_p\right]_{k,j} = \left(M_1\right)_{k,j} \end{array} \right.$$

The effect of σ is to permute cyclically (upward) the blocks of a matrix $M \in \mathfrak{M}$. That is, $[\sigma(M)]_i = M_{i+1}$ for $1 \leq i \leq p-1$, and $[\sigma(M)]_p = M_1$. In fact, σ is conjugation by a permutation matrix of order p. For p=3, for example, the permutation matrix would be:

0	$\begin{bmatrix} 1 & & 0 & \\ & 1 & 0 \\ & 0 & 1 \\ & & 1 \end{bmatrix}$	0	
0	0	$\begin{array}{cccc} 1 & & \\ & 1 & \\ & 1 & \\ 0 & & 1 \end{array}$	
$\begin{bmatrix} 1 & & 0 \\ & 1 & \\ & & 1 \\ 0 & & 1 \end{bmatrix}$	0	0	

 \mathfrak{M} also admits an index-change automorphism τ , given by $[(\tau(M))_i]_{k,j} = (M_i)_{k-1,j-1}$ for $j,k \in \{2,...,p+1\}$; and for j=1,...,p+1:

$$\begin{split} & \left[\left(\tau(M) \right)_i \right]_{1,j} = \left(M_{i-1} \right)_{1,j} \qquad (i=2,...,p), \\ & \left[\left(\tau(M) \right)_1 \right]_{1,j} = \left(M_p \right)_{1,j} \end{split}$$

For example, in the case p = 3, if

$$M_1 = \left[egin{array}{cccc} t_1 & a_1 & a_2 & a_3 \ t_2 & b_1 & b_2 \ & t_3 & c_1 \ & & & t_4 \ \end{array}
ight] ext{ and } M_2 = \left[egin{array}{cccc} t_5 & a_4 & a_5 & a_6 \ & t_6 & b_3 & b_4 \ & & t_7 & c_2 \ & & & t_8 \ \end{array}
ight] \;, \;\; ext{then}$$

$$(\tau(M))_2 = \begin{bmatrix} t_1 & a_1 & a_2 & a_3 \\ & t_5 & a_4 & a_5 \\ & & t_6 & b_3 \\ & & t_7 \end{bmatrix}$$

Let $\alpha = \sigma \cdot \tau$. Then for $M \in \mathfrak{M}$, $N = \alpha(M)$, and i = 1, ..., p - 1, we have

$$(N_i)_{k,j} = [(\sigma(\tau(M))_i]_{k,j} = [(\tau(M))_{i+1}]_{k,j} = (M_{i+1})_{k-1,j-1}$$

where $k, j \in \{2, ..., p + 1\}$; and

$$(N_i)_{1,i} = [(\tau(M))_{i+1}]_{1,i} = (M_i)_{1,i}$$

where j = 1, ..., p + 1. The case for i = p is similar, with i + 1 replaced by 1.

In particular, if M is a fixed point of α , then N = M and:

(*):
$$\begin{cases} (M_i)_{k,j} = (M_{i+1})_{k-1,j-1} \\ (M_p)_{k,j} = (M_1)_{k-1,j-1} \end{cases} \text{ for } \begin{cases} i = 1, ..., p-1 \\ j = 2, ..., p+1 \\ k = 2, ..., p+1 \end{cases}$$

Note that the condition (*) implies that for j = p - i:

$$(M_i)_{p+1,p+1} = (M_{i+1})_{p,p} = \dots = (M_p)_{p+1-j,p+1-j} = (M_1)_{p-j,p-j}$$

= $(M_1)_{i,i} = \dots = (M_i)_{i-(i-1),i-(i-1)} = (M_i)_{1,1}.$

That is (**): $(M_i)_{1,1} = (M_i)_{p+1,p+1}$ for i = 1, ..., p.

Let $G = (\mathfrak{M}_{\alpha})_0$ be the connected component of the fixed-point subgroup \mathfrak{M}_{α} of \mathfrak{M} under α . Then \mathfrak{G} is the semi-direct product $\mathfrak{G} = \mathfrak{T} \cdot \mathfrak{U}$ of its diagonal maximal torus \mathfrak{T} and its maximal unipotent subgroup \mathfrak{U} .

A matrix in \mathfrak{G} has entries in the first row of each block arbitrary in κ , while its remaining non-zero entries satisfy the conditions (*) and (**) above.

It is helpful to display representative elements $t \in \mathfrak{T}$, $u \in \mathfrak{U}$, for p = 3:

	$egin{bmatrix} 1 & a_1 & a_2 & a_3 \ & 1 & b_1 & b_2 \ & 0 & 1 & c_1 \ & & 1 \ \end{pmatrix}$	0	0	
<i>u</i> =	0	$egin{array}{cccccccccccccccccccccccccccccccccccc$	0	$\left(egin{array}{c} a_1,a_2,a_3 \ b_1,b_2,b_3 \ c_1,c_2,c_3 \end{array} ight)$ $\in \kappa$
	0	0	$egin{array}{cccccccccccccccccccccccccccccccccccc$	

The groups \mathfrak{G} , \mathfrak{T} , and \mathfrak{U} are clearly σ -stable; but we shall usually apply σ to the set of nilpotent matrices $\mathfrak{U}' = \{u - I | u \in \mathfrak{U}\}$. \mathfrak{U}' is stabilized by σ . Moreover, \mathfrak{U}' is closed under matrix addition and multiplication; and σ preserves both.

For $X \in \mathcal{U}$ or \mathcal{U}' , define $\phi(X) = \sum_{i=1}^{p} (\sigma^{i}(X))_{1,p+1}$ Then ϕ is additive since σ is; that is,

$$\phi(X + Y) = \phi(X) + \phi(Y)$$
 for $X, Y \in \mathcal{U}$ or \mathcal{U}' .

We now define the function $\theta: \mathcal{U} \to \kappa$ by

$$\theta(I+X) = \sum_{i=1}^{p-1} \left(\binom{p}{i} / p \right) \phi(X^i) + (X^p)_{1,p+1}.$$

for $X \in \mathcal{U}'$. Then θ is a polynomial function in the entries of (I + X) with integral coefficients. Hence it is a rational function defined over the prime field.

We wish to prove that θ is in fact a rational representation of $\mathfrak U$ in κ . Hence we must show that θ is a homomorphism from $\langle U, \cdot \rangle$ to $\langle \kappa, + \rangle$. This is the object of parts II and III.

PART II

Define matrix rings \mathcal{M} and \mathcal{G} over the ring $\mathfrak{W}_2(\kappa)$ of 2-dimensional Witt vectors over κ , using the same defining relations as in Part I for \mathfrak{M} and \mathfrak{G} .

Addition (°) and multiplication (°) in $\mathfrak{W}_2(\kappa)$ are defined as follows: for $w=(w_0,w_1)$ and $v=(v_0,v_1)$ in $\mathfrak{W}_2(\kappa)$, w_0 , w_1 , v_0 , v_1 are in κ , and

$$w_{+}^{\circ}v = \left(w_{0} + v_{0}, w_{1} + v_{1} - \sum_{i=1}^{p-1} \left(\binom{p}{i} \middle/ p\right) w_{0}^{i} v_{0}^{p-i}\right)$$

$$w_{0}^{\circ}v = \left(w_{0}v_{0}, w_{0}^{p}v_{1} + w_{1}v_{0}^{p}\right).$$

The natural projection R of $\mathfrak{W}_2(\kappa)$ onto κ , given by R((w,v))=w, is a ring homomorphism.

The important facts for our purpose about $\mathfrak{W}_2(\kappa)$ are that addition and multiplication in κ are preserved in the first element while the characteristic of $\mathfrak{W}_2(\kappa)$ is p^2 .

The identity "1" in $\mathfrak{W}_{2}(\kappa)$ is (1,0); "i" is (i,0) for i=1,...,p-1; "p" is represented by (0,1), and "0" by (0,0); "p+i" by (i,1) and "jp+i" by (i,j) for i,j=1,2,...,p-1;

Let \hat{I} denote the identity of \mathscr{G} , and let \mathscr{U} denote the subset of \mathscr{G} whose elements have all "1"'s on the diagonal, and define $\mathscr{U}' = \{u - \hat{I} | u \in \mathscr{U}\}$. Then $\langle \mathscr{U}, \cdot \rangle$ is a semi-group, and \mathscr{U}' is closed under addition and multiplication.

There is a ring automorphism $\hat{\sigma}$ on \mathscr{M} defined as was σ on \mathfrak{M} , which is also defined on \mathscr{U}' and stabilizes \mathscr{G} , \mathscr{U} , and \mathscr{U}' .

·Similarly, there is an additive mapping $\hat{\Phi}$ from \mathscr{U} or \mathscr{U}' to $\mathfrak{W}_2(\kappa)$, given by

$$\hat{\Phi}(X) = \sum_{i=1}^{p} (\hat{\sigma}^{i}(X))_{1,p+1} \quad \text{for } X \in \mathcal{U} \text{ or } \mathcal{U}'$$

Define the mapping $\hat{\theta}: \mathcal{U} \to \mathfrak{W}_2(\kappa)$ by

$$\hat{\theta}(\hat{I}+X) = \sum_{i=1}^{p-1} \left(\binom{p}{i} \middle/ p \right) \hat{\phi}(X^i) + (X^p)_{1,p+1} \quad \text{for } X \in \mathcal{U}'.$$

The definition of $\hat{\theta}$ on \mathscr{U} is strikingly similar to that of θ on \mathfrak{U} .

The proof of the following lemma is straightforward and will be omitted.

LEMMA 1. If $\rho: \mathfrak{M} \to \mathcal{M}$ is the mapping defined by $[\rho(X)]_{j,k} = (X_{j,k}, 0)$, then for $x \in \mathfrak{U}'$, $R[\hat{\phi}(\rho(X))] = \phi(X)$, $R[(\rho(X)^p)_{1,p+1}] = (X^p)_{1,p+1}$, and $R[\hat{\phi}(\rho(X)^j)] = \phi(X^j)$ for j = 1, 2, ...

COROLLARY 2. $\theta = R\hat{\theta}\rho$ on \mathfrak{G} .

Proof. For $X \in \mathfrak{U}'$, $\rho(I+X) = \hat{I} + \rho(X)$ where \hat{I} denotes the identity matrix in \mathscr{U} and $\rho(X) \in \mathscr{U}'$. We have:

$$R \hat{\theta} \rho (I + X) = R \left[\sum_{i=1}^{p-1} \left(\binom{p}{i} \middle/ p \right) \hat{\phi} (\rho (X)^{i}) + (\rho (X)^{p})_{1,p+1} \right]$$

$$= \sum_{i=1}^{p-1} \left(\binom{p}{i} \middle/ p \right) R \left[\hat{\phi} (\rho (X)^{i}) \right] + R \left[(\rho (X)^{p})_{1,p+1} \right]$$

$$= \sum_{i=1}^{p-1} \left(\binom{p}{i} / p \right) \phi(X^{i}) + (X^{p})_{1,p+1} = \theta(I + X),$$

by Lemma 1.

THEOREM 3. If $R\hat{\theta}$ is a homomorphism from (\mathcal{U}, \cdot) to $(\kappa, +)$, then θ is a homomorphism from (\mathfrak{U}, \cdot) to $(\kappa, +)$.

Proof. Let A and B be any elements of \mathfrak{U}' , and note that for any i=1,2,... there are numbers j_i and k_i such that

$$[\rho(A) + \rho(B) + \rho(A)\rho(B)]^{i} = \sum_{j=1}^{j_{i}} \left[\prod_{i=1}^{k_{i}} X(j,k) \right],$$

where $X(j,k) = \rho(A)$ or $\rho(B)$ or 1. Thus, using Lemma 1,

$$R\hat{\Phi}\left[\left(\rho(A) + \rho(B) + \rho(A)\rho(B)\right)^{i}\right] = \Phi((A + B + AB)^{i}),$$

and

$$R \left[((\rho(A) + \rho(B) + \rho(A)\rho(B))^p)_{1,p+1} \right] = \left[(A + B + AB)^p \right]_{1,p+1}$$

Hence

$$R\hat{\theta} (\rho(I+A) \cdot \rho(I+B)) = R \hat{\theta} ((\hat{I} + \rho(A))(\hat{I} + \rho(B)))$$

$$= R \hat{\theta} (\hat{I} + \rho(A) + \rho(B) + \rho(A) \rho(B))$$

$$= R \left[\sum_{i=1}^{p-1} {\binom{p}{i}} / p \right) ((\rho(A) + \rho(B) + \rho(A) \rho(B))^{i})$$

$$+ ((\rho(A) + \rho(B) + \rho(A(\rho(B))^{p})_{1,p+1}]$$

$$= \sum_{i=1}^{p-1} {\binom{p}{i}} / p \phi ((A+B+AB)^{i})$$

$$+ ((A+B+AB)^{p})_{1,p+1}$$

$$= \theta (I+A+B+AB) = \theta ((I+A)(I+B)).$$

So if $R\hat{\theta}$ is a homomorphism, then

$$\theta((I+A)(I+B)) = R \hat{\theta}(\rho(I+A)\rho(I+B))$$

$$= [R\hat{\theta}(\rho(I+A)) + R\hat{\theta}(\rho(I+B))]$$

$$= \theta(I+A) + \theta(I+B),$$

by Cor. 2, as we wished to prove.

It remains now to prove that $R\hat{\theta}$ is indeed a homomorphism.

PART III

For this section, which deals only with matrices in \mathscr{G} , \mathscr{U} , \mathscr{U}' , etc., we may without confusion denote $\hat{\sigma}$, $\hat{\phi}$, $\hat{\theta}$, \hat{I} , etc., simply by σ , ϕ , θ , I, etc. (It should be noted, however, that the observations of Lemmas 4, 5, and 6 have corresponding formulations for \mathfrak{G} over κ).

LEMMA 4. For
$$X \in \mathcal{U}'$$
, $p\theta(I+X) = \phi((I+X)^p) = \phi\left(\sum_{k=1}^p \binom{p}{k}X^k\right)$

Proof. For
$$x \in \mathcal{U}'$$
, $(X_i^p)_{1,p+1} = \prod_{j=1}^p (X_i)_{j,j+1}$, $(i = 1, ..., p)$.

So

$$(\sigma(X^{p})_{1,p+1} = (\sigma(X_{1}^{p}))_{1,p+1} = (X_{2}^{p})_{1,p+1}$$

$$= \prod_{j=1}^{p} (X_{2})_{j,j+1} = \left[\prod_{j=1}^{p-1} (X_{1})_{j+1,j+2}\right] (X_{1})_{1,2}$$

$$= \prod_{j=1}^{p} (X_{1})_{j,j+1} = (X_{1}^{p})_{1,p+1} = (X^{p})_{1,p+1}.$$

That is,

$$[\sigma^{i}(X^{p})]_{1,p+1} = (X^{p})_{1,p+1} \text{ for } i = 1,...,p.$$

So

$$\phi(X^p) = \sum_{i=1}^p \left[\sigma^i(X^p)\right]_{1,p+1} = p(X^p)_{1,p+1}.$$

Hence

$$\phi [(I + X)^{p}] = \phi \left[\sum_{k=0}^{p} {p \choose k} X^{k} I^{p-k} \right]
= \phi \left[I + X^{p} + \sum_{k=1}^{p-1} {p \choose k} X^{k} \right]
= \phi (I) + \phi (X^{p}) + \phi \left[\sum_{k=1}^{p-1} {p \choose k} X^{k} \right]
= 0 + p (X^{p})_{1,p+1} + \sum_{k=1}^{p-1} {p \choose k} \phi (X^{k}) = p \theta (I + X)$$

LEMMA 5. Let $X, Y \in \mathcal{U}'$. Then $\phi(XY) = \phi(YX)$.

Proof. Let $2 \le k \le p$. By (*), i.e., the condition defining \mathscr{G} :

$$\begin{split} (X_1)_{1,k} &= (X_p)_{2,k+1} = \dots = (X_{p-(p-k)})_{2+(p-k),k+1+(p-k)} \\ &= (X_k)_{p-k+2,p+1} = \left[\sigma^{(k-1)}(X_1)\right]_{p-k+2,p+1}, \end{split}$$

and

$$(Y_1)_{k,p+1} = (Y_2)_{k-1,p} = (Y_{1+(k-1)})_{k-(k-1),p+1-(k-1)}$$
$$= (Y_k)_{1,p-k+2} = [\sigma^{(k-1)}(Y_1)]_{1,p-k+2}.$$

Hence

$$(X_1)_{1,k}(Y_1)_{k,p+1} = [\sigma^{(k-1)}(Y_1)]_{1,p-k+2} [\sigma^{(k-1)}(X_1)]_{p-k+2,p+1}$$

and for i = 1, ..., p

$$[\sigma^{i}(X_{1})]_{1,k} [\sigma^{i}(Y_{1})]_{k,p+1} = [\sigma^{(k-1+i)}(Y_{1})]_{1,p-k+2} [\sigma^{(k-1+i)}(X_{1})]_{p-k+2,p+1}$$

Thus:

$$\sum_{i=1}^{p} \left[\sigma^{i}(X_{1})\right]_{1,k} \left[\sigma^{i}(Y_{1})\right]_{k,p+1} = \sum_{j=1}^{p} \left[\sigma^{j}(Y_{1})\right]_{1,p-k+2} \left[\sigma^{j}(X_{1})\right]_{p-k+2,p+1},$$

and:

$$\begin{split} \sum_{i=1}^{p} \ \left[\sigma^{i}(XY)\right]_{1,p+1} &= \sum_{k=2}^{p} \left(\sum_{i=1}^{p} \left[\sigma^{i}(X_{1})\right]_{1,k} \left[\sigma^{i}(Y_{1})\right]_{k,p+1}\right) \\ &= \sum_{k=2}^{p} \left(\sum_{j=1}^{p} \left[\sigma^{j}(Y_{1})\right]_{1,p-k+2} \left[\sigma^{j}(X_{1})\right]_{p-k+2,p+1}\right) \\ &= \sum_{l=2}^{p} \left(\sum_{j=1}^{p} \left[\sigma^{j}(Y_{1})\right]_{1,l} \left[\sigma^{j}(X_{1})\right]_{l,p+1}\right) \\ &= \sum_{j=1}^{p} \left[\sigma^{j}(YX)\right]_{1,p+1} \end{split}$$

So: $\phi(XY) = \phi(YX)$.

COROLLARY 6. For a set of n matrices $\{\xi(1), \xi(2), ..., \xi(n)\} \subseteq \mathcal{U}'$; and for numbers $a_1, ..., a_m \in \mathfrak{W}_2(\kappa)$, we have

$$\phi \left[\xi(1) \cdot \xi(2) \dots \xi(n-1) \cdot \xi(n) \right] = \phi \left[\xi(2) \dots \xi(n-1) \xi(n) \xi(1) \right] \\
= \dots = \phi \left[\xi(n) \xi(1) \dots \xi(n-1) \right];$$

and

$$\phi \left[a_1 \xi(1) \xi(2) \dots \xi(n) + a_2 \xi(2) \dots \xi(n) \xi(1) + \dots + a_m \xi(n) \xi(1) \dots \xi(n-1) \right]
= (a_1 + a_2 + \dots + a_m) \phi \left[\xi(1) \cdot \xi(2) \dots \xi(n) \right].$$

Choose A, B arbitrary in \mathcal{U}' . Then by Lemma 4

$$p\theta [(I+A)(I+B)] = p\theta (I+A+B+AB) = \phi \left(\sum_{k=1}^{p} \binom{p}{k} (A+B+AB)^{k} \right).$$

Let us denote the expression $\sum_{k=1}^{p} \binom{p}{k} (A+B+AB)^k$ by E, and the expression $\binom{p}{k} (A+B+AB)^k$ by E_k , for k=1,...,p. The terms of each $(A+B+AB)^k$ we may consider as words in the letters A and B. The collection of all words, including repetitions, appearing in E_k we shall call \mathscr{W}_k . Note that \mathscr{W}_k contains $\binom{p}{k}$ copies of every word in $(A+B+AB)^k$. We set $\mathscr{W}=\bigcup_{k=1}^p \mathscr{W}_k$ —the collection of all words, including repetitions, appearing in E. Note that any given word may have a number of copies in each of several \mathscr{W}_k 's. For example, there are P copies of the word P in P copies in

We say that two words, $W, W' \in \mathcal{W}$ are equivalent if one is a cyclic permutation (abbreviate c.p.) of the other. For example, the words ABBA and AABB are equivalent. The relation of being in cyclic permutation is an equivalence relation.

For any word $W \in \mathcal{W}$, we denote by \overline{W} the equivalence class in \mathcal{W} which contains W.

LEMMA 7. $\phi(E) = \sum_{\bar{W} \subseteq \mathscr{W}} \operatorname{card}(\bar{W}) \phi(W)$, where the sum is over equivalence classes.

Proof. By Cor. 6, for a word $W' \in \overline{W}$:

$$\phi(W') = \phi(W) \text{ and } \phi\left(\sum_{W' \in W} W'\right) = \operatorname{card}(\overline{W}) \phi(W).$$

Thus

$$\phi(E) = \phi\left(\sum_{W \in \mathscr{W}} W\right) = \phi\left(\sum_{\bar{W} \subseteq \mathscr{W}} \left(\sum_{W' \in \bar{W}} W'\right)\right) \\
= \sum_{\bar{W} \subseteq \mathscr{W}} \phi\left(\sum_{W' \in \bar{W}} W'\right) = \sum_{\bar{W} \subseteq \mathscr{W}} \operatorname{card}(\bar{W}) \phi(W).$$

We have now a counting problem, to determine card (\overline{W}) . If W is A^k or B^k for some $k \in \{1,...,p\}$, then W has only one distinct c.p., which appears only in E_k ; so, $\overline{W} \subseteq \mathscr{W}_k$, and card $(\overline{W}) = \binom{p}{k}$. All the other words in \mathscr{W} have at least one A and at least one B. These we shall call mixed words. We shall find that for a mixed word W, card \overline{W} is a multiple of p^2 .

Assume W is a mixed word. At least one c.p. of W starts with an A, so we may assume that W, which is simply a representative of \overline{W} , itself starts with an A. Since W also has a B, it must somewhere have an A and B in succession. The AB sequence we shall call a diphthong.

Suppose W has i letters and r diphthongs. Since a product of (p + 1) elements of \mathscr{U}' is 0, we need only consider $1 \le i \le p$, and of course $1 \le r \le i/2$. There are i (not necessarily distinct) possible c.p.'s of W, all of which in fact occur in $(A + B + AB)^{i}$. Of these, r would start with a B, end with an A, and have only (r-1) diphthongs. (For example, the word ***AB*** may be cyclically permuted to B*****A). The remaining (i-r) c.p.'s of W all have r diphthongs.

The class \bar{W} is therefore the disjoint union $\bar{W} \cup \bar{W}_{r-1}$ of the sets

$$\bar{W}_r = \{W' \in \bar{W} | W' \text{ has } r \text{ diphthongs}\},$$

and

$$\overline{W}_{r-1} = \{W' \in \overline{W} | W' \text{ has } (r-1) \text{ diphthongs}\}.$$

So

$$\operatorname{card}(\bar{W}) = \operatorname{card}(\bar{W}_r) + \operatorname{card}(\bar{W}_{r-1}).$$

Now suppose that W has only l distinct c.p.'s. (The number l of course depends on the exact configuration of W. For example, the word ABBA has 4 distinct c.p.'s, but the word ABAB has only 2). If one c.p. of W occurs j times in the list of i possible c.p.'s of W, then each of the l distinct c.p.'s of W occurs j times in the list, and $i = j \cdot l$. Similarly, there are (i - r)/j distinct c.p.'s of W with r diphthongs, and r/j distinct c.p.'s of W with r-1 diphthongs.

LEMMA 8. Denote by \mathcal{W}_k the set of words (including repetitions) appearing

in
$$(A + B + AB)^k$$
, and suppose that $\bar{W} \cap \mathscr{W}_k \mp \emptyset$. Say that W has i letters, r diphthongs, and $l = i/j$ distinct $c.p$.'s. Then $\operatorname{card}(\bar{W} \cap \mathscr{W}_k) = \frac{k\binom{r}{i-k}}{j}$.

Proof. $\bar{W} \cap \mathscr{W}_k = (\bar{W}_r \cap \mathscr{W}_k) \cup (\bar{W}_{r-1} \cap \mathscr{W}_k$, and the union is disjoint; so $\operatorname{card}(\bar{W} \cap \mathscr{W}_k) = \operatorname{card}(\bar{W}_r \cap \mathscr{W}_k) + \operatorname{card}(\bar{W}_{r-1} \cap \mathscr{W}_k)$.

Since $\overline{W} \cap \mathscr{W}_k \neq \emptyset$, k can be at most i, and at the least i-r, because 0 at the least and r at most of the k factors used can be AB, and the rest must be either A or B. Therefore, $i - r \le k \le i$.

Case 1. k=i-r. Then $\bar{W}_{r-1}\cap \mathscr{W}_{i-r}=\emptyset$, as we must use r factors of AB to form W. Each of the (i-r)/j distinct c.p.'s in \bar{W}_r appear exactly once in \mathscr{W}_k , by choosing the r factors of AB to correspond to the positions of the r diphthongs, and choosing the appropriate factors of either A or B in the remaining (i-2r) spots. Thus

$$\begin{split} \operatorname{card} \left(\bar{W} \cap \, \mathscr{W}_{i-r} \right) &= \operatorname{card} \left(\bar{W}_r \cap \, \mathscr{W}_{i-r} \right) \\ &= (i-r)/j = \frac{i-r}{j} \, \left(\begin{array}{c} r \\ i-(i-r) \end{array} \right) = \frac{k}{j} \left(\begin{array}{c} r \\ i-k \end{array} \right). \end{split}$$

Case 2. $i-r+1 \le k \le i$. We must use (i-k) factors of AB to obtain i letters in all. The $\frac{i-r}{j}$ distinct c.p.'s in \mathscr{W}_r , affording r possible positions for the (i-k)

factors of AB, may each be formed in $\binom{r}{i-k}$ ways, so

$$\operatorname{card}(\bar{W} \cap \mathscr{W}_k) = \frac{i-r}{j} \binom{r}{i-k}.$$

Similarly, each of the $\frac{r}{j}$ distinct c.p.'s in \bar{W}_{r-1} may be formed in $\binom{r-1}{i-k}$ ways, so card $(\bar{W}_{r-1} \cap \mathscr{W}_k) = \frac{r}{j} \binom{r-1}{i-k}$.

For the moment set (i - k) = m. Then

$$\begin{aligned} \operatorname{card}\left(\bar{W}\cap \mathscr{W}_{k}\right) &= \operatorname{card}\left(\bar{W}_{r}\cap \mathscr{W}_{k}\right) + \operatorname{card}\left(\bar{W}_{r-1}\cap \mathscr{W}_{k}\right) \\ &= \frac{i-r}{j} \binom{r}{m} + \frac{r}{j} \binom{r-1}{m} \\ &= \frac{1}{j} \left(\frac{(i-r)r!}{m! \, (r-m)!} + \frac{r \, (r-1)!}{m! \, (r-1-m)!}\right) \\ &= \frac{1}{j} \cdot \frac{r!}{m! \, (r-m)!} \, (i-r+r-m) \\ &= \frac{1}{j} \binom{r}{m} (i-m) = \frac{i-(i-k)}{j} \binom{r}{m} \\ &= \frac{k \binom{r}{i-k}}{j}. \end{aligned}$$

LEMMA 9. Let $a_0, a_1, ..., a_r$ (r < p/2) be numbers such that

$$a_k + a_{k+1} \equiv 0$$
, mod p^2 .

Then
$$\sum_{m=0}^{r} a_m \binom{r}{m} \equiv 0$$
, mod p^2 .

Proof. We show by induction that for $1 \le k \le r$,

$$\sum_{m=0}^{k} a_m \binom{r}{m} \equiv \frac{(r-1)(r-2) \dots (r-k)}{k!} a_k, \mod p^2.$$

Base.

$$a_0 \binom{r}{0} + a_1 \binom{r}{1} \equiv a_0 + ra_1$$

$$\equiv a_0 + a_1 + (r-1)a_1 \equiv (r-1)a_1 \mod p^2.$$

Inductive step. Suppose for some $1 \le k < r$,

$$\sum_{m=0}^{k} a_{m} \binom{r}{m} \equiv \frac{(r-1)(r-2) \dots (r-k)}{k!} a_{k} \bmod p^{2}. \text{ Then}$$

$$\sum_{m=0}^{k+1} a_{m} \binom{r}{m} \equiv \frac{(r-1)(r-2) \dots (r-k)}{k!} a_{k} + a_{k+1} \binom{r}{k+1}$$

$$\equiv \frac{(r-1) \dots (r-k)}{k!} a_{k} + \frac{r(r-1) \dots (r-k)}{(k+1)!} a_{k+1}$$

$$\equiv \frac{(r-1) \dots (r-k)}{k!} \left[\frac{(k+1)a_{k} + ra_{k+1}}{k+1} \right]$$

$$\equiv \frac{(r-1) \dots (r-k)}{k!} \left[\frac{(k+1)(a_{k} + a_{k+1}) + (r-(k+1))a_{k+1}}{k+1} \right]$$

$$\equiv \frac{(r-1) \dots (r-k)}{(k+1)!} (r-(k+1))a_{k+1}, \bmod p^{2}$$

The induction is therefore completed and we may use it for k=r, obtaining immediately that $\sum_{m=0}^{r} a_m \binom{r}{m} \equiv 0 \mod p^2$.

THEOREM 10. If W is a mixed word of E, then card $(\overline{W}) \equiv 0 \mod p^2$.

Proof. Let us say that W begins with an A, and has i letters, r diphthongs, and l = (i/j) distinct c.p.'s. Note that $j < i \le p$ for a mixed word W. By lemma 8,

$$\operatorname{card}\left(ar{W}\cap \mathscr{W}_{k}
ight)=rac{kinom{r}{i-k}}{j} \quad ext{when } k=(i-r),...,i,$$

and otherwise is zero. So

$$\operatorname{card}(\bar{W}) = \sum_{k=i-r}^{i} \binom{p}{k} \operatorname{card}(\bar{W} \cap \mathscr{W}_k) = \frac{1}{j} \sum_{k=i-r}^{i} k \binom{p}{k} \binom{r}{i-k}.$$

But for $1 \le k < p$,

$$k \binom{p}{k} + (k+1) \binom{p}{k+1}$$

$$= \frac{k \cdot p!}{k! (p-k)!} + \frac{(k+1)p!}{(k+1)! (p-(k+1))!}$$

$$= p! \left[\frac{k + (p-k)}{k! (p-k)!} \right]$$

$$= p \binom{p}{k} \equiv 0 \mod p^2$$

Letting

$$m = r - (i - k)$$
 and $a_m = k \binom{p}{k}$

we have

$$\operatorname{card}(\bar{W}) = \frac{1}{j} \sum_{k=i-r}^{i} k \binom{p}{k} \binom{r}{i-k}$$

$$= \frac{1}{j} \sum_{m} a_m \binom{r}{m}, \text{ summation on } m = r - (i - (i - r)) \text{ to } m = r - (i - i)$$

$$= \frac{1}{j} \sum_{m=0}^{r} a_m \binom{r}{m} \equiv 0 \mod p^2$$

by lemma 9.

COROLLARY 11.
$$\phi(E) = \phi\left(\sum_{k=1}^{p} \binom{p}{k} A^{k}\right) + \phi\left(\sum_{k=1}^{p} \binom{p}{k} B^{k}\right).$$

Proof. Recall that the characteristic of $\mathfrak{W}_2(\kappa)$ is p^2 . By lemma 7,

$$\phi(E) = \sum_{\bar{W} \subset \mathscr{W}} \operatorname{card} (\bar{W}) \phi(W) \in \mathfrak{W}_{2}(\kappa)$$

where \mathcal{W} is the set of all words (including repetitions) in E. By theorem 10, $\operatorname{card}(\bar{W}) \equiv 0 \mod p^2$ whenever W is a mixed word, so $\operatorname{card}(\bar{W}) = 0$ in $\mathfrak{W}_2(\kappa)$ for

every mixed word W. The non-mixed words of E are A^k and B^k for k = 1, ..., p, which have only one distinct c.p., and $\binom{p}{k}$ copies in \mathscr{W} ; that is,

$$\operatorname{card}(\overline{A^k}) = \operatorname{card}(\overline{B^k}) = \begin{pmatrix} p \\ k \end{pmatrix}$$

Thus
$$\phi(E) \equiv \phi\left(\sum_{k=1}^{p} \binom{p}{k} A^{k}\right) + \phi\left(\sum_{k=q}^{p} \binom{p}{k} B^{k}\right).$$

THEOREM 12. For $u, v \in \mathcal{U}$, $R\theta(uv) = R\theta(u) + R\theta(v)$.

Proof. Let u = A + I, v = B + I; then $A, B \in \mathcal{U}'$, and

$$p\theta(uv) = \phi\left(\sum_{k=1}^{p} \binom{p}{k}(A+B+AB)^{k}\right)$$

$$= \phi(E) = \phi\left(\sum_{k=1}^{p} \binom{p}{k}A^{k}\right) + \phi\left(\sum_{k=1}^{p} \binom{p}{k}B^{k}\right)$$

$$= p\theta(u) + p\theta(v)$$

$$= p(\theta(u) + \theta(v)).$$

Now for $y = (y_0, y_1), z = (z_0, z_1)$ in $\mathfrak{W}_2(\kappa)$,

$$py = pz \Leftrightarrow (0,1)(y_0, y_1) = (0,1)(z_0, z_1)$$

$$\Leftrightarrow (0, y_0^p) = (0, z_0^p) \Leftrightarrow y_0 = z_0,$$

since κ is a field of characteristic p. That is $py = pz \Leftrightarrow R(y) = R(z)$. We thus have $R\theta(uv) = R(\theta(u) + \theta(v)) = R\theta(u) + R\theta(v)$.

PART IV

In this section we construct a solvable algebraic group G in characteristic p > 0, having a unipotent automorphism σ , and two σ -stable maximal tori *not* conjugate by a σ -fixed point:

Take \mathfrak{G} , \mathfrak{T} , \mathfrak{U} , \mathfrak{G} , \mathfrak{g} , as in Part I. Let $U = \{u \in \mathfrak{U} \mid \mathfrak{g}(u) = 0\}$. Then by Theorems 3 and 12, \mathfrak{g} is a rational representation on \mathfrak{U} , so U is an algebraic group. When κ is algebraically closed, as we assume, dim U > 0.

LEMMA 13. U is σ -stable.

Proof. For $u \in \mathcal{U}$, $\rho(u)$ is in \mathscr{U} . $\rho(\sigma(u)) = \hat{\sigma}(\rho(u))$, and by Cor. 2, $\theta(\sigma(u)) = R\hat{\theta}\rho(\sigma(u)) = R\hat{\theta}\hat{\sigma}(\rho(u))$. But for $v \in \mathscr{U}$, $\hat{\phi}(\hat{\sigma}(v)) = \sum_{i=1}^{p} \hat{\sigma}^{i}(\hat{\sigma}(v)) = \sum_{i=1}^{p} \hat{\sigma}^{i}(v) = \hat{\phi}(v)$;

$$p\,\hat{\theta}\,(\hat{\sigma}(v)) = \hat{\phi}\,((\hat{\sigma}(v))^p) = \hat{\phi}\,(\hat{\sigma}(v^p)) = \hat{\phi}\,(v^p) = p\,\hat{\theta}\,(v).$$

As in the proof of Theorem 12, this implies that $R\hat{\theta}(\hat{\sigma}(v)) = R\hat{\theta}(v)$. Thus:

$$\theta(\sigma(u)) = R \,\hat{\theta}(\hat{\sigma}(\rho(u))) = R \,\hat{\theta}(\rho(u)) = R \,\hat{\theta}(\rho(u)) = \theta(u).$$

In particular, $\theta(u) = 0 \Rightarrow \theta(\sigma(u)) = 0$, so U is σ -stable.

Set $T = \mathfrak{T}$. Then:

LEMMA 14. U is T-stable.

Proof. Observe that $\rho(T)$ is diagonal and consists of "blocks" such that for $S \in \rho(T)$, if S_i denotes the i^{th} block of $\rho(T)$, then $(S_i)_{1,1} = (S_i)_{p+1,p+1}$. Moreover S^{-1} exists and is simply $\rho(t^{-1})$, where $S = \rho(t) \in \rho(T)$. Hence

$$(SvS^{-1})_{1,p+1} = S_{1,1}(S^{-1})_{p+1,p+1}v_{1,p+1} = v_{1,p+1},$$

for all $S \in \rho(T)$, $v \in \mathcal{U}$, and thus

$$\hat{\Phi}(SvS^{-1}) = \sum_{i=1}^{p} \left[\hat{\sigma}^{i}(SvS^{-1}) \right]_{1,p+1} = \sum_{i=1}^{p} \hat{\sigma}^{i}(v)_{1,p+1} = \hat{\Phi}(v),$$

for all $v \in \mathcal{U}$. So $p \hat{\theta} (SvS^{-1}) = \hat{\phi} ((SvS^{-1})^p) = \hat{\phi} (Sv^pS^{-1}) = \hat{\phi} (v^p) = p \hat{\theta} (v)$. Observing also that for $t \in T$, $u \in U$,

$$[\rho(t) \rho(u) \rho(t)^{-1}]_{i,j} = \rho(t)_{i,i} \rho(t^{-1})_{j,j} \rho(u)_{i,j}$$

=
$$(t_{i,i},0)(t_{j,j}^{-1},0)(u_{i,j},0) = (t_{i,i}t_{j,j}^{-1}u_{i,j},0) = ((tut^{-1})_{i,j},0)$$
, we see that

$$\rho(tut^{-1}) = \rho(t)\,\rho(u)\,\rho(t)^{-1}.$$

It follows that

$$\theta(tut^{-1}) = R \,\hat{\theta} \,\rho(tut^{-1}) = R \,\hat{\theta} \,(\rho(t) \,\rho(u) \,\rho(t)^{-1}) = R \,\hat{\theta} \,(\rho(u)) = \theta(u),$$

as in the proof of Lemma 13, so U is T-stable.

Hence, $G=T\cdot U$ is a σ -stable solvable algebraic group with σ -stable maximal torus T. Its σ -fixed points are those of its matrices M for which $M_1=M_2=\ldots=M_p$. The cartan subgroup $C(T)=T\times C_u$ consists of those of its matrices X for which $(X_i)_{kj}=0$ when $k\neq j$ and $(k,j)\neq (1,p+1)$. The condition $\theta(X)=0$ on C_u amounts to $\theta(X)=\sum_{i=1}^p (X_i)_{1,p+1}=0$.

Therefore, if U has a matrix X such that $X^{-1} \cdot \sigma(X) \in C_u$ and

$$X^{-1} \cdot \sigma(X) \notin \{c^{-1} \cdot \sigma(c) | c \in C_{\nu}\},$$

then XTX^{-1} is a σ -stable maximal torus of G which is *not* conjugate to T by a σ -fixed point of G. We now exhibit such an element X.

Let $X \in U$ be given by $(X_i)_{k,j} = a \neq 0$ for k < j and $(k,j) \neq (1,p+1), i = 1,...,p$. Note that $X = A \cdot Y$ where

(i.e., $(A_i)_{kj} = a, k < j, (k,j) \neq (1,p+1)$, and $(A_i)_{1,p+1} = 0$) and

where $x_i = (X_i)_{1,p+1}$

Although A and Y are not in U, they are in $\mathbb{1}$, so θ is defined on them separately, and $\theta(X) = \theta(AY) = \theta(A) + \theta(Y)$. $\theta(Y)$ amounts to $\sum_{i=1}^{p} x_i$; and as A is σ -fixed, $\theta(A)$ amounts to:

$$\sum_{k=1}^{p-1} \left(\binom{p}{k} \middle/ p \right) \left[\sum_{i=1}^{p} \left(\sigma^{i} (A^{k}) \right)_{1,p+1} \right] + \left(A^{p} \right)_{1,p+1}$$

$$= \sum_{k=1}^{p-1} \binom{p}{k} \left(A^{k} \right)_{1,p+1} + \left(A^{p} \right)_{1,p+1} = a^{p}$$

Therefore the condition $\theta(X) = 0$ amounts to $\sum_{i=1}^{p} x_i = -a^p$. We may note here

that Y (hence X) cannot then be σ -fixed. For if it were, $\sum_{i=1}^{p} x_i = \sum_{i=1}^{p} [\sigma^i(Y)]_{1,p+1}$ would be $px_1 = 0$.

Now $X^{-1} \cdot \sigma(X) = Y^{-1}A^{-1}\sigma(A)\sigma(Y) = Y^{-1}\sigma(Y)$, which is given by

for i=1,...,p-1. The p^{th} block is similar, with corner entry (x_1-x_p) . Thus $X^{-1}\sigma(X)$ is in C_u .

Suppose, though, that $\exists Z \in C_u$ such that $X^{-1} \cdot \sigma(X) = Z^{-1} \cdot \sigma(Z)$. Let $(Z_i)_{1,p+1} = z_i$, i = 1, ..., p. Then

$$([Z^{-1} \cdot \sigma(Z)]_{i})_{1,p+1} = z_{i+1} - z_{i}, i = 1,...,p-1$$

= $z_{1} - z_{p}, i = 1$

Therefore:

$$z_{2} - z_{1} = x_{2} - x_{1}$$

$$z_{3} - z_{2} = x_{3} - x_{2}$$

$$\vdots \qquad \vdots$$

$$z_{k} - z_{k-1} = x_{k} - x_{k-1}$$

$$\vdots \qquad \vdots$$

$$z_{p} - z_{p-1} = x_{p} - x_{p-1}$$

Adding the first (k-1) equations above we obtain $z_k - z_1 = x_k - x_1$, for k = 2, ..., p. Hence,

$$\sum_{k=1}^{p} z_k = \sum_{k=1}^{p} (z_k - z_1) = \sum_{k=1}^{p} (x_k - x_1) = \sum_{k=1}^{p} x_k$$

But the conditions $\theta(Z) = 0$, $\theta(X) = 0$ dictate that

$$0 = \sum_{k=1}^{p} z_k = \sum_{k=1}^{p} x_k = -a^p \neq 0.$$

Hence there can be no such $Z \in C_u$; whence the σ -stable maximal torus XTX^{-1} cannot be conjugate to T by a σ -fixed point of G.

Note. The work represented by the paper was undertaken and completed at Purdue University, West Lafayette, Indiana.

REFERENCES

- 1. S. J. Gottlieb, Automorphisms of Algebraic Groups with Stable Maximal Tori. Doctoral Dissertation, Rutgers University, 1973.
- Algebraic Automorphisms of Algebraic Groups with Stable Maximal Tori, Pacific J. Math. (2) 72 (1977), 461-470.
- 3. N. Jacobson, Lectures in Abstract Algebra, Volume III. D. Van Nostrand Co. Inc., Princeton, N.J., 1964.

Bell Telephone Laboratories Whippany, New Jersey 07981.