FREE ACTIONS ON PRODUCTS OF SPHERES

Elliott Stein

1. INTRODUCTION

It has been known for some time that if the finite group G acts freely on
S”, then G satisfies the following conditions: (1) Every abelian subgroup is cyclic
[2, Chap. XII]; (2) Every element of order two is central [7]. Recent work of
Madsen, Thomas, and Wall has shown that these two conditions are sufficient
to imply the existence of a free action on some sphere. In this paper, we consider
similar questions for the product of spheres, S” X S” X ... X S". The problem seems
to be substantially more difficult than the spherical case, and a complete solution
is not in sight. Our results, obtained by surgery theory, give an interesting class
of examples.

In [3], Conner proved that condition (1) above generalizes to S" X S" X ... X S"
in the following way. Let (S™)* denote the product of k copies of S®. Conner’s
result is that if G acts freely on (S)*, then any abelian subgroup of G can be
generated by at most k elements. The question then arises as to whether there
is an analogue of condition (2) for (S™)* with k > 1. In this vein, Gene Lewis
made the following conjecture in [5].

Conjecture. If G acts freely on S" X S™ and H is a subgroup isomorphic to
Z, X Z,, then H N Z(G) # {e}, where Z(G) is the center of G.

We will show that this conjecture is false. Specifically, let D, denote the dihedral
group of order 2q, with q an odd prime. Let (Dq)k denote the product of k copies
of D,.

PROPOSITION 1. Foranyn = 4j + 3 and any k = 2, there exist free, orientation
preserving, piecewise-linear actions of (Dq)k on (S™)k.

When k = 2, this gives the desired counterexamples, since Z, X Z, C D, X D
but D, X D, has trivial center.

In Sections 2 and 3, we prove Proposition 1 for the case k = 2. The construction
proceeds along lines suggested by [6], and we use some of the tools developed
there. In Section 4, we deal with k > 2 and observe that some of our examples
can be smoothed. The interesting arguments are in the proofs of Lemmas 5 and
7, where the surgery obstructions of certain products are analyzed. Throughout,

it will be assumed that the reader is familiar with surgery theory, as given in
[1] or [10].
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2. CONSTRUCTING A NORMAL MAP

Since D, has cohomology of period four, the results of Swan [8] show that
D, acts freely and cellularly on a finite CW complex X" with the homotopy type
of S”. In fact, Swan shows that n may be any integer of the form 8j + 7. The
following lemma improves this result. (For q = 3, this lemma was proven by Swan
[8, p. 289].)

LEMMA 2. There exists a free cellular action of D, on a finite three-dimen-
sional CW complex X, such that X is homotopy equivalent to S*. The induced
action on H , (X) is trivial.

Proof. Let D, be given by the following presentation:

{xy:y*=1, yx"'y=x"}
where s = (q + 1)/2. Let (z,,z,, ...) be the free Z[D,] module with {z,,z,, ...}
as basis. Define a chain complex

ER 3, 9,
()= (c,c’ )= (b,b’ )— (a)

by the following formulas:

d,b=x—-1)a 3,b' =(y—1a
e=[yd+x+..+x)—(1+x+..+xHb+ (1 +x°y)b
d,¢" =1+ y)b’

de=x+x’+ ... +xHETT-IN1 —x°y)c+ (y — 1)c;.

Following Swan [8], this chain complex gives rise to a simply-connected finite
complex X on which D, operates freely. The cellular chain complex of X is the
one given above. (Note that the two-skeleton of the quotient space X/D, is the
complex with one 0-cell, two 1-cells, and two 2-cells associated to the presentation
{x,y: y>,yx* 'yx°}.) All that remains is to verify that the chain complex has
the desired homology. This is a routine computation; the only nontrivial step is
showing that image a, = kernel d,. Since this can be done exactly as in Swan’s
example for q = 3, we omit the details. That the action on H, (X) is trivial can
be seen directly from the construction, or from the Lefschetz Fixed Point Theorem.

By taking the iterated join of X with itself, we get a free action of D, on
Y 4% =~ §4*3 (=~ denotes homotopy equivalence). Denote Y*** simply by Y, and
let Z, C D, be some subgroup of order two.

LEMMA 3. Let £ be a stable spherical fibration over Y /D, . Let w:Y /Z,— Y /D,
be the q-fold covering. Then any PL structure on w*§ is the pullback of a PL
structure on &.

Proof. The proof is given in [9, Prop.3.5]. We have to check that

%k

. ™ .
H(Y/D m_,G/PL)—» H(Y/Z,;m;,_,G/PL)
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is injective and that

*

Hi(Y/Dq;wiG/PL)l H(Y/Z,;w,G/PL)

is surjective, for all i. Recall that
;41 (G/PL) =0, = (G/PL)=72, and m,,,(G/PL)=17Z,.

Also, H**'(Y/D,) = H***(Y/Z,) = 0, except when 2i + 1 = 4j + 3, in which case
both groups are infinite cyclic. For i < j, H***(Y/D,) = Z, and H*(Y/D,) = Z,,,
so H®(Y/Dy; Z,) = H™(Y/Z,;Z,) = Z, for m = 4j + 3. The conditions above now
follow immediately by composing w* with the transfer map.

LEMMA 4 ([6]). There is a PL normal map £: M**®— Y**?/D_ such that

the q-fold covering £:M**?— Y*¥*?/Z, is normally cobordant to a homotopy
equivalence RP¥*°> — Y9*3/7 .

Proof. Since Y*“**/Z, is obviously homotopy equivalent to RP**® we give
the Spivak fibration for Y ¥**/Z, the PL structure which comes from some homotopy
equivalence RP**® - Y**3/7 _ Because the Spivak fibration is natural for cover-
ings, we can apply Lemma 3 and the result follows.

Note that if we pass to universal covers, f: M— Y is normally cobordant to
a homotopy equivalence S¥*> > Y.

Lemma 3 will be of further use in the next section.

3. VANISHING OF A SURGERY OBSTRUCTION

The normal map f: M — Y /D, must have nonzero surgery obstruction, regardless
of how the normal invariant was chosen. (In fact, Milnor’s condition that involutions
must be central can be derived by surgery; see [4].) The map we wish to analyze
is f X f.

LEMMA 5. The surgery obstruction of f X f: M X M— Y /D, X Y/D, is zero.

Proof. By the construction of f, the covering of f X f corresponding to a 2-Sylow
subgroup, f X f: M X M— Y/Z, X Y/Z,, has zero obstruction. From the proof
of Theorem 4.1 of [6], it follows that we only need to show that (Y X Y)/H has
the homotopy type of a manifold for each hyperelementary subgroup H C D X D,.
Recall that H is hyperelementary if it is the split extension of a cyclic group
by a group of prime power order.

Let p, and p, denote the projections from D, X D, onto its factors. We now
divide the hyperelementary subgroups into two types and treat these cases separate-
ly.

Type I: For at least one value of i € (1,2}, p;(H) # D,. Assume p,(H) # D_;
the same proof will work for i = 2. We want to show that (Y X Y)/H has the
homotopy type of a manifold. Since H C p, (H) X D, it suffices to show that



190 ELLIOTT STEIN

has the homotopy type of a manifold. Note, however, that p, (H) is cyclic of order
1,2, or q, so Y/p,(H) has the homotopy type of S¥**, RP***, or some linear Z,
lens space, LY*>, Let N denote any of these three manifolds and form the normal
map

g=idXf:NxM—- N xY/D,.

When N = S¥*2 o(g), the surgery obstruction of g, is obviously zero. When
N = RP%*? o (g) = 0 by the following argument. Form the normal map

g’ =id X f: CP#"' x M— CP**' x Y/D,.

Since CP#*! is an oriented boundary, o(g’) = 0. Let W be a normal cobordism
from g’ to a homotopy equivalence. There is a circle bundle over CP**' with
total space RP**®, This induces a circle bundle over W whose total space is a
normal cobordism from g to a homotopy equivalence.

If LY*? fibres over CP¥*?, then once again we have that o(g) = 0. On the
other hand, the lens spaces which fibre over CP" generate the Z, bordism over
the bordism of a point. Thus, L. will be cobordant to some multiple of a fibred
lens space. By bordism invariance of the surgery obstruction, o(g) = 0. Therefore,
in all three cases o(g) =0, so NXY/D =Y/p,(H) X Y/D, has the homotopy
type of a manifold.

Type II: p,(H) = p,(H) = D,. An example of such a subgroup is the diagonal
A C D, X Dg; let us treat this example first.

The covering corresponding to A is the fibre product Y X by Y, the quotient
of Y X Y by the diagonal action of D,. There is a fibre bundle

&) Y——)YXDqY—>Y/Dq,

which we view as a stable spherical fibration over Y/D,. If we lift £ to Y/Z,
by the covering w, we get

(m*§) Y>Yx, Y>Y/Z,.

The action of Z, on Y is equivariantly homotopy equivalent to the antipodal action
on S**3 so w*¢ is fibre homotopy equivalent to the linear sphere bundle

S4j+3—> S4j+3 x22 Y__) Y/Zz.
In particular, w* & has a PL structure. By Lemma 3, £ has a PL structure, which

we denote by m. Thus, Y X p, Y has the homotopy type of E(y), the total space
of a PL sphere bundle. Consider the diagram
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M = E(f*n)————>E )

f
—Y/D,.

=

We can make f into a normal map. Since m bounds a PL disk bundle, f is null
cobordant and has zero surgery obstruction. It follows that (Y X Y)/A has the
homotopy type of a manifold.

For a typical subgroup of type II, we make the following group theoretic
observation, the proof of which can be safely left to the reader. f H C D, X D,
is hyperelementary and p,(H) = p,(H) = D_, then there is an automorphism
6: D, — D, such that

q?

(i\><id:Dq><Dq—>Dq><Dq

carries H onto a subgroup which is conjugate to A. By the classification of coverings,
we may regard conjugate subgroups as being identical. It can now be easily checked
that the proof above for A is left undisturbed by the automorphism 6 X id. For
example, we will have the same spherical fibration £, except that the action of
the structure group will be changed by 6. Clearly, this does not affect whether
there is a lifting to a PL structure. This takes care of subgroups of type II and
completes the proof of Lemma 5.

PROPOSITION 6. D_ X D, acts freely on S**% x §4*2,

Proof. After completing surgery on f X f M X M— Y /D, X Y/D,, we obtain
a PL manifold Z%*° =~ Y/ D, X Y /D,. Obviously, D, X D_ acts freely on the univer-
sal cover Z. We now show that Z is PL homeomorphic to S¥*% x §4*2,

Let h:Z— Y/D, X Y/D, be the homotopy equivalence which is normally
cobordant to f X f. The universal covering map h: Z— Y X Y is cobordant to f X f.
By construction, f X f is cobordant to a homotopy equivalence

h': S99 x §4*3 5, Y X Y.

The normal cobordism from h to h’ is simply connected and odd-dimensional, so
further surgery in its interior produces a h-cobordism from Z to S**2 x S4+2,

4. FURTHER PRODUCTS AND SOME REMARKS

We will merely sketch the proof of the remainder of Proposition 1, since most
of the details are the same as in the case already treated. Continue to denote
by Z the manifold produced in Proposition 6.

LEMMA 7. The surgery obstruction of f X id: M*¥*® X Z— Y/D, X Z is zero.



192 ELLIOTT STEIN

Proof. The argument is the same as in Lemma 5. If HC D, X D, X D, is
hyperelementary and p, (H) # D, for some i € {1,2,3}, then the proof for subgroups
of type I applies. If p,(H) = p,(H) = p;(H) = D,, then there are automorphisms
8, and 0, such that

6, X0, Xid: D, X D, X D,— D, X D, X D,

carries H onto a conjugate of the diagonal A. To see that (Y X Y X Y)/A has
the homotopy type of a manifold, consider the “external product” bundle:
(Y Xp Y) X (Y Xp, Y)
Ex9
Y/D, X Y/D,.
This bundle has the fibre homotopy type of a bundle v’ over Y/D, X Y/D,, whose
fibreis S X S**?and whose structure group is PL (S ¥*®) x PL(S**®),the product

of PL. homeomorphism groups. If 8: Y/D,— Y/D_, X Y /D, is the diagonal, then
3*(E X & has (Y XY X Y)/A as total space. As in Lemma 5, we form the diagram

E(f*8*n') —————— > E@G *v')

M Y/D,

Since PL(S**?) x PL(S**?®) c PL(D*%** x S%*%), the map between total spaces
is null cobordant (as a normal map), so E(® *n’) = (Y X Y X Y)/A has the homotopy
type of a manifold. The remaining details are left to the reader.

PROPOSITION 8. (D,)? acts freely on (S**°)°.

Proof. Completing surgery onf X id: M X Z— Y /D, X Z gives a PL manifold
T=(Y/ Dq)a. As in Proposition 6, the homotopy equivalence of universal covers,
T — Y X Z, is normally cobordant to an equivalence (S **?)® — Y X Z. The cobordism
is simply-connected and (47 + 2)-dimensional. After adding a Kervaire manifold
in the interior, if necessary, surgery can be completed on the cobordism to get
a h-cobordism.

Evidently, Proposition 1 follows immediately from Propositions 6 and 8.

Observe now that at least some of these actions can be smoothed. In fact,
since PL /O is 6-connected, the Poincaré space &z /D, has a smooth normal invariant.
Once a smooth normal invariant is obtained for Y, the surgery analysis proceeds
just as in the PL case, except that in Proposition 8 more care must be taken
with differentiable structures. Rather than pursue this in detail, we simply give
the following as an example.

PROPOSITION 9. For k = 2 or k = 4, there is a srmooth, free action of (Dq)k
on (S®)*. There is a smooth, free actionof (D,)*onS® x 8 x S?orS® x §? x 8%# =°,
where 3° is the Kervaire sphere.

The difficulty with =° disappears when k = 4 because =° x S? is diffeomorphic
to S° x 82
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It is reasonable to expect that if G has periodic cohomology, then G X G will
act freely on S" X S” for some n. However, the simple arguments given here,
which depend on having a group with a small lattice of conjugacy classes of
subgroups, do not immediately generalize. Of course, the larger question is whether
the condition that every abelian subgroup of G has rank less than or equal to
k is sufficient to imply that G acts freely on (S®)*. If true, such a theorem appears
very difficult, even to the extent of proving the analogue of Swan’s theorem for
actions on CW complexes. The smallest test case is the alternating group A,,
so we close with the following problem: Does A, act freely on S™ X S” or even
on a finite CW complex with that homotopy type?

Added in proof (December, 1978). The question above has been answered
negatively by Robert Oliver in “Free compact group actions on products of spheres,”
to appear in the proceedings of the 1978 Aarhus topology conference.

The theorem of Conner quoted in the introduction was proved in [3] only
when k = 2. In a private communication with Oliver, Conner has indicated that
his proof for k > 2 may have been incomplete. The general case is unsettled.
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