ON PRIME DIVISORS OF I, n LARGE
L. J. Ratliff, Jr.

1. INTRODUCTION

The terminology in this article is, in general, the same as that in [2] (so all
rings are commutative with nonzero identity element). For convenience of discus-
sion, throughout this section, A is a Noetherian domain and I C p are ideals in A
such that I # (0) and p is prime.

Consider the following statement

(PDy): ¥ p is a prime divisor of Ik, for some k > 1,
then p is a prime divisor of I", for all large n.

This is known to hold when 1 is principal [2, (12.6)], and the original purpose of this
paper was to prove that (PDg) holds for all ideals in all Noetherian domains. Al-
though it is shown below that many ideals do satisfy (PDg), we have been unable to
show that all ideals do. However, it is hoped that the results which have been ob-
tained are of sufficient interest and importance to merit consideration by others.

A brief discussion of the results in this paper will now be given.

In Section 2, we prove that if p is a prime divisor of the integral closure (Ik)a
of I¥, for some k > 1, then p is a prime divisor of (I"),, for all large n (2.5).
From this, it is shown that p is also a prime divisor of H", for all ideals H such
that H, = I, and for all large n (2.6.1). After proving some further corollaries, it
is shown in (2.11) that, for all large m, I™ satisfies (PDg). In (2.14) and (2.15), we
show that (PDg) holds for certain ideals in a number of other important cases. Then
Section 2 is closed by proving three equivalences of the conjecture that (PD,) holds
for all ideals in all Noetherian domains (2.18).

In proving the results in Section 2, considerable use is made of the Rees ring
R=R(A, I) of A with respect to I (2.3). The failure to prove (PDg) is due to the
fact that & = (pA[t, u] N &, u)# may be an irrelevant prime divisor of u# (see
(3.1)). (If u# has no irrelevant prime divisor, then I satisfies (PDgy).) In Section 3,
(3.3) determines when & is contained in an (irrelevant) prime divisor of u#. Then
three equivalences to “u# has no irrelevant prime divisor” are given in (3.6.2), one
of which is “In*1:1 =17, for all n> 17,

In Section 4, we consider I**!:I and show that In*!:I=1I" for all large n (4.1).
After proving some corollaries of this, we show that if I is normal (that is,
(I"), =I" for all n> 1), then I":T™ =I2"™ for all n> m > 1; hence, u#® has no
irrelevant prime divisor and I satisfies (PDg), when I is normal ((4.7) and (4.8)).

Section 5 considers K + I", where K is another ideal in A. (Such ideals arise
in (2.18) mentioned above.) The prime divisors of K +I" (for n> 1) are
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characterized in (5.2), and then in (5.5) it is shown that ﬂ (K + 1) is the inter-
section of all p;-primary components of K contained in a prime divisor of K + IK
for some k > 1. Therefore, if A is local, then each prime divisor of K is contained
in a prime divisor of K + IX, for some k > 1 (5.8). The paper is closed by showing
in (5.10) that frequently, in a semi-local ring, p? # p(n), for all large n.

2. PRIME DIVISORS OF I", n LARGE

In this section, we consider a condition on ideals in a Noetherian ring A (condi-
tion (PD), which is more general than (PDg)), which we conjecture holds for all
ideals in A. We show that certain ideals do satisfy (PD), and this section is then
closed by giving three equivalences of the conjecture.

For each ideal I in a Noetherian ring A, consider the following condition

(PD): For each prime ideal p in A such that IAp is not nilpotent
and p is a prime divisor of IX, for some k > 1, it holds that
p is a prime divisor of 1", for all large n.

It should be noted that if I is such that IAp is nilpotent for every prime ideal p
which contains I, then I vacuously satisfies (PD) Also, (2.17) below shows that the
nilpotent condition in (PD) is necessary. Finally, it will be shown below that only
finitely many elements of Spec A are prime divisors of IX for some k > 1.

(2.1) CONJECTURE. Ewvery ideal in each Noetherian ving satisfies (PD).

The author has been unable to settle this conjecture. However, a number of
positive results have been obtained and will be given in this section. To prove our
first main result, we need the following two definitions and some facts concerning
them.

(2.2) DEFINITION. Let I be anideal in a ring A. Then the integral closure 1,
of 1 in A isthe set of elements x € A which satisfy an equation of the form
xk+b,xk-1+ .. +b, =0, where b; € I'.

It is clear that IC I, € Rad I, and it is known that I, is an ideal in A [5, Sec-
tion 6]. Further, it is readlly seenthat if S is a multlphcatlvely closed set in A,
then I, Ag = (IAg), . These facts will be used below without further mention.

(2.3) DEFINITION. Let I=(b;, -+, bx)A be an ideal in a Noetherian ring A,
let t be an indeterminate, and let u = 1/t. Then the Rees ving ®# = R(A, I) of A
with respect to 1 is the subring & = A[tby, ---, tbyx, u] of A[t, ul.

The following remark lists most of the properties of Rees rings which are
needed in what follows.

(2.4) REMARK. Let A, I, and R be as in (2.3). Then:

(2.4.1) The elements in R ave finite sums E_m citl, wherve ci € 11 (with the
convention that 1 = A, if 1<0). Therefore R is a graded Noetherian ving.

(2.4.2) u is a regulay element in R and MR N A =1, forall i>1.

(2.4.3) R /uR is (isomorphic to) the form ving of A with vespect to 1 [11,
Theorem 2.1].

(2.4.4) For an ideal B in A, let B* = BA[t, u]l N #. Then
#/B* £#(A/B, (I +B)/B) [11, Lemma 1.1].
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(2.4.5) If p is a prime ideal in A and q is p-primavy, then p* is prime in R
and q* is p*-primary [11, Lemma 1.4]. Furthev, if B = ﬂ? d; ¢S a normal pvi-

mary decomposition of an ideal B in A, then B* = ﬂ% q’i" is a normal primary de-
composition of B* in # [11, Theorem 1.5].

(2.4.6) If H is a homogeneous ideal in R, then let H[;]= {b € A: bt' € H}, for
-0 <1i<e. Then I' D H[;] 2 H[i+)] 2 IH[;] [12, p. 11). If H' is another homogene-
ous ideal in #, then (H+H')[;) = Hyy+ HYype

We can now prove our first main result. This theorem gives information con-
cerning prime divisors of (I™), rather than of I". However, from this information
we will derive some results concerning prime divisors of I".

(2.5) THEOREM. Let 1 be an ideal in a Noethevian ving A such that height
12> 1, and let p be a prime divisor of (Ik)a,for some K> 1. Then p is a prime
divisor of (1., for all lavge n.

Proof. Let # = R(A, I), and let #' be the integral closure of & in its total
quotient ring 4. Then, for each k > 1, uk®' N A = (IK)_, as is seen by considering
equations of integral dependence (for example, see the last part of the proof of [6,
Theorem 3.7(4)]). Also, uk#' N # = (uk #), [7, Lemma 2.4(1)], so
(uk®), N A =(IK),, for all k > 1. Therefore, there exists a prime divisor P of
(uk @), such that P N A = p, and there exists a prime divisor P' of uk #' such that
P'N #=7P. Then P' has height 1 and, with z" = Rad #p, V¥ =Rp: /z" is a dis-
crete valuation ring [7, Corollary 2.11 and Proposition 2.7(1)]. Let z' =z" N &' and
z=2z'NA. Then z' =29 N #A', so z is a minimal prime ideal in A; hence, I & z
(since height 1> 1). Also, A/z C R/(zT N R)C R'/z' C T/29, ®'/z' is integral
over #/(z7 N #), and R/(zTN R) = R(A/z, (1 + z)/z), by (2.4.4). Therefore, by
the proof of [6, Lemma 3.2(1)] (from the third sentence on),

t* = trd (®'/P')/(A/p) > 1.

Thus, since t* = trd (%2/P)/(A/p) (by integral dependence) and u € P, tI & P.
Hence, there exists a homogeneous element ct € tI, such that ct ¢ P.

Also, since P is homogeneous (since (uk %), is), there exists a homogeneous
element h = bt™ (b € I'™) in & such that (u/k#®), :h®=P (so m > -k, since
h ¢ uk #). Therefore, for all i >0, P = (uk ), :bt™ c't* #. So

p=PNA=(uk®),:ptPc'tt @) N A = (HFK) ipcla,

since r € (I™*itK) :pei A if and only if rbcl e (Imtitk) =ymtitkger 0 A if and
only if (since bt™ and cltl arein @) rot™citt € K%' N & if and only if

r € ((uk#), :btmciti ®) N A. Therefore, there exist b € A, ¢ € I, and m > -k
such that, for all i> 0, p = (IP*itK) :pel A; so p is a prime divisor of (I?), for
all large n. gq.e.d.

In [10, Theorem 6.7], D. Rees proved that if A is a Noetherian domain in (2.5),
then p is a prime divisor of I, for infinitely many n. (2.6.1) sharpens this result.

(2.6) COROLLARY. Let A, I, and p be as in (2.5). Then:

(2.6.1) For each ideal H such that H, =1_, p is a prime divisor of H", for all
lavge n.
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(2.6.2) For each lavge m and each ideal K such that K, = (I'™),, p is a prime
divisor of K, for all large n.

Proof. (2.6.1) It will first be shown that p is a prime divisor of 1", for all
large n. For this, let #, #', P, and P' be as in the first paragraph of the proof of
(2.5), so that P' is a prime divisor of uk®', P =P' N & is a prime divisor of
(uk#),, p=P NA, and tI & P. Also, since P' is a prime divisor of uk®', Pisa
prime divisor of u# [7, Theorem 2.15]. Therefore, u®:h'® = P for some homo-
geneous element h' =dt™ € . Thus, with ct as at the end of the first paragraph of
the proof of (2.5), u®:dt™clt!® = P, for all i > 0. Therefore

p=PnA=(R:d™clti®z)n A = 1™t qclA,  forall i >0.

Hence, p is a prime divisor of I", for all large n. Since H, =1, it follows from
what has already been proved that p is a prime divisor of Hn for all large n.

(2.6.2) Let m be large, so p is a prime divisor of (I™), by (2.5). Since
K, = (I™),, it follows from (2.6.1) that p is a prime divisor of K", for all large n.
g.e.d.

The following remark will be used below.

(2.7) REMARK. The proof of (2.6.1) shows that if P is a prime divisor of
uR(A, I) such that t1 P, then p=P N A is a prime divisor of 1", for all large n.

Therefore, if I is such that tI is not contained in any prime divisor of u#(A, I),
then I satisfies (PD). This will be examined further in Section 3.

The next corollary to (2.5) relates the prime divisors of bB in the monadic
transformation B = A[I/b] to prime divisors of I™.

(2.8) COROLLARY. Let 1 be an ideal in a Noetherian ving A such that
(0):1=(0). Let b be a regular element in 1, and let B = A[1/b]. Then, for each
prime divisor Q of bB, Q N A is a prime divisor of 1", for all large n.

Pyroof. If bB = B, then there is nothing to prove, so assume that bB is proper
and let Q be a prime divisor of bB. Then, with & = #(A, 1),

Z[1/bt] = B[bt, 1/bt] = (say) ¢,

s0 Q¥ is a prime divisor of b¥ =ud; hence, P = Q¥ N & is a prime divisor of
uZ, and bt ¢ P. Therefore, since Q N A = PN A, the conclusion follows from (2.7).

The final corollary to (2.5) shows an interesting fact concerning symbolic
powers of certain prime ideals. For this corollary (and also for (4.5) and (5.10)),
recall that if p is a prime ideal in a ring A and q is p-primary, then the n*" sym-
bolic power q(n) of q is the p-primary component of g ; that is, q(n) =qt A, N A.

(2.9) COROLLARY. Let p be a prime zdeal in a vegulay domain A. If
(%), # p'X), for some k > 1, then p™ # p'®), for all lavge n.

Proof. Since A, is a regular local ring, for all n > 1, p° Ap = =(p" A )a, so
PP Ay = (pM)a Aps hence, n c (p"), < p{®}. Therefore, if (p¥), # p(k) for some
k > 1 then (pk), has an imbedded prime divisor, say Q; hence, Q is an imbedded
prime divisor of (p?),, for all large n by (2.5). Therefore, p™ C (p™), C p{n), for
all large n, so p™ # p( ), for all large n. g¢g.e.d.

The following remark gives a known result which is closely related to (2.5).
Recall that an ideal I in a ring A is said to be of the principal class if 1 is
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generated by h elements, where h is the height of I. Also, I is said to be height
unmixed if all prime divisors p of I have height h.

(2.10) REMARK [8, Theorem 2.12]. Let A be a Noethevian domain which satis-
fies the altitude formula. Then, for each ideal 1 of the principal class in A, (I"), is
height unmixed, for all n > 1.

Therefore, if in (2.10) p is a prime divisor of (I¥),, for some k > 1, then p is
a prime divisor of I"™ and of (I"),, for all n > 1, since p is a minimal prime divi-
sor of I.

The second main result in this section shows that if I contains a regular ele-
ment, then all large powers of I satisfy (PD).

(2.11) THEOREM. Let I be an ideal in a Noetherian ving A such that
(0):1=1(0). Then, for each large m, the ideal B =1™ satisfies (PD).

Proof. Let W be the set of all p in Spec A which are prime divisors of I%,
for some n> 1. Then W is a finite set, since u™ #(A, I) N A = I" and the prime
divisors of u®# are the prime divisors of u#, for all n > 1. Thus, to prove the
theorem, it may be assumed that the maximal ideals in A are the ideals which are
maximal in W (since, for each n > 1, a prime ideal q in A is a prime divisor of

I" if and only if qAg is a prime divisor of I"Ag, where S = A - U {p: p e W}).
Therefore, assume that A is a semi-local ring with maximal ideals M, -+, My

and ICJ = n}f M;. Then, since a prime ideal q in A is a prime divisor of an
ideal H in A if and only if qA(X) is a prime divisor of HA(X), it may be assumed
that each A/M; is an infinite field.

Let z, *-*, z, be the prime divisors of (0) in A, so I & U1 Z; (by hypothesis).
Then, since I C J, the proof of [2, (22.3)] (with {z;, ---, zg} {Bl, .-+, Byt of [2])
shows that some superficial element b (of degree one) of I is a regular element
(The assumption that Rad I =J in [2] is not essential.) By definition, there exists
¢ > 0 such that (I"*1:pA) N I€ = I?, for all n > c. Hence, by [2, (3.12)] (since
(0):1=(0), I®"1:pA =17, for all large n (say n > n*). Fix m > n*, let B =I™,
and let # = #(A, B). Since B®tl:p™mA = Bn, for all n> 1, [15, (3.4) and (3.6)] say
that for each prime divisor P of u#®, tB ¢ P. Therefore, let p be a prime divisor
of Bk, for some k > 1. Then there exists a prime divisor P of u# such that
PN A=p. By (2.7), p is a prime divisor of B, for all large n. Therefore, B
satisfies (PD). q.e.d.

(4.3) reconsiders I as in (2.11) and gives a sharper conclusion.

The conclusion of (2.11) continues to hold if the condition “(0):1= (0)” is re-
placed by “if a prime divisor z of (0) contains I, then z is a maximal prime
divisor of I”, for each such z is a prime divisor of I", for all large n [9, (3.16.1)];
so on localizing to Ag, with S the complement in A of the union of the elements of
Spec A which are prime divisors of IX (for some k > 1) but are not prime divisors
of (0), one finds that (0)As:IAg = (0)As. From this and (2.11), the desired conclu-
sion readily follows.

(2.12) COROLLARY. Let 1 be a nonzero ideal in a Noethevian domain A. Then,
Jfor each large m, I™ satisfies (PD).

Proof. Clear by (2.11).

(2.13) REMARK. Let A and 1 be as in (2.11), and fix a lavge positive integer
m. Let S be the set of p in Spec A which arve prime divisors of 1™k, for some
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k > 1; and, for each n > 1, let Sy, be the set of q in Spec A which are prime
divisors of I™", Then:

(2.13.1) S, =8, for all large n.

(2.13.2) For all lavge n, S, =S,y,, for all k, h > 1; that is, if a prime ideal p
is a prime divisor of I™K  foy some k > 1, then p is a prime divisor of I™™2 | for
all h > 1.

Proof. (2.13.1) is clear by (2.11), and (2.13.2) follows immediately from
(2.13.1).

(2.13.2) is a generalization of the result: if b is a regular element in a
Noetherian ring A and a prime ideal p is a prime divisor of bKA, for some k > 1,
then p is a prime divisor of bP A, for all h > 1 [2, (12.6)].

There are a number of more or less unrelated but important special cases when
a prime ideal is a prime divisor of I", for all large n. These are listed in the fol-
lowing two remarks.

(2.14) REMARK. Let 1 be an ideal in a Noethevian ving A and assume that
theve exists x € A such that 1" :xA = 1", for all n> 1. Then, for each prime ideal
pin A:

(2.14.1) If p is a prime divisor of (I, X)X A),, for some k> 1, then p is a
prime divisov of (I, X)™A),, for all lavge n.

(2.14.2) (I, X)A satisfies (PD).

Proof. It follows easily from the hypothesis that height (I, x)A > 1. Thus,
(2.14.1) follows from (2.5).

(2.14.2) (I, 9)®A:xA = (I, x(I, x)* DA :xA = (IP: xA, (I, P DA = (I, x)71 A,
for all n> 1. Therefore, for each prime divisor P of u#(A, (I, x)A), t(I, x) Z P
[15, (3.4) and (3.6)], so (2.14.2) follows as in the last three sentences of the proof
of (2.11).

(2.15) REMARK. Let I C p be ideals in a Noetherian ving A such that p is
prime, 1A, is not nilpotent, and p is a prime divisor of Ik, Sfor some kK > 1. Then
in each of the following cases, p is a pvime divisor of I", for all large n:

(2.15.1) p is a minimal prime divisor of 1.

(2.15.2) p is a prime divisor of zero.

(2.15.3) (0):1=(0) and (I*), =1*, for all n> 1.

(2.15.4) There exists b € 1 such that 11 :bA =17, for all n > k.

(2.15.5) A is a flat B-algebra (with B Noethevian) and 1= qA, for some pri-
mary ideal q in B.
(2.15.6) A = B[X] (X is transcendental over B) and 1= (H, )A, for some ideal

H in B and f € A whose content is B (that is,the ideal generated in B by the co-
efficients of £ is B).

Proof. (2.15.1) is clear, and (2.15.2) is given in [9, (3.16.1)].

For (2.15.3), let # = R(A, I). Then there exists a prime divisor P of u# such
that P N A = p (as in the second sentence of the proof of (2.11)). Further, by hy-
pothesis and (4.8), tI & P. Therefore, the conclusion follows from (2.7).
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(2.15.4) Let ¢ € A such that IK:cA =p. Then IK*ti:bicA =IK:cA =p, so p isa
prime divisor of IXx*i, for all i > 0.

(2.15.5) Let q be p'-primary. Then, since p' is a prime divisor of q", for all
n> 1, [2, (18.11)] says that p is a prime divisor of g"A =I", for all n> 1,

(2.15.6) follows immediately from (2.14.2).
(2.16) REMARK. With the notation of (2.15), the following statements hold:

(2.16.1) If A is an analytically unvamified local ving and height I > 0, then, for
all large m, (I™), satisfies the conditions on I in (2.15.3).

(2.16.2) In (2.15.4), p is a prime divisor of I*, for alln>k; in (2.15.5) p isa
prime divisov of 1, for all n > 1; and in (2.15.6) 1 satisfies (PD).

Proof. (2.16.1) follows from [13, Theorem 1], and (2.16.2) was proved in the
proofs of (2.15.4), (2.15.5), and (2.15.6).

The following example shows the necessity of the condition in (PD) that IA; not
be nilpotent. (Of course, if IA is nilpotent and p is a prime divisor of (0), then p
is a prime divisor of I", for all large n.)

(2.17) EXAMPLE. Let (R, M) be a regular local ring, and let
M = (bl’ T bk)R

with height M=k 2> 2. Let b=b;, let A= R/b%R, and let I =bM/b%2R. Then

p = M/b%R is a prime divisor of I' if and only if i = 1. To see this, note that M is

a prime divisor of bM, since bM:bR =M, so p is a prime divisor of I. Also,
=(0), and p is not a prime divisor of (0), since (0) in A is bR/bZR-primary.

On the other hand, it may happen that a prime ideal p in A is a prime divisor
of Ik, for some k > 1, and is not a prlme divisor of IJ for some j < k. For exam-
ple, thlS holds if I is prime and I¥ is not I-primary.

This section will be closed by proving three equivalences of Conjecture 2.1.
(2.18) PROPOSITION. The following statements ave equivalent:
(2.18.1) Every ideal in each Noethevian ving satisfies (PD).

(2.18.2) Every ideal in each local ving (R, M) such that R/M is infinite satis-
fies (PD).

(2.18.3) For each local ring (R, M) the following condition holds: if K and I
ave ideals in R such that M is a prime divisor of K+ 1K, for some k > 1, and, for
each j > 1, ¥ €K, then M is a prime divisor of K +1I™, for all large n.

(2.18.4) Fov each unvamified complete vegular local ring (R, M), the condition
in (2.18.3) holds.

Proof. It is clear that (2.18.1) = (2.18.2) and (2.18.3) = (2.18.4).

Assume that (2.18.2) holds, let (R, M) be a local ring, and let the hypotheses in
the condition in (2.18.3) hold. Let (S, N) = (R(X), MR(X)), let I* = IR(X), and let
K* = KR(X). Then it is readily seen that the hypotheses on (R, M), I, and K are
satisfied by (S, N), I*, and K*. Also, for each ideal H in R, N is a prime divisor
of HR(X) if and only if M is a prime divisor of H. Therefore, it may be assumed
that R/M is an infinite field. Then, in R/K, H = (I + K)/K is not nilpotent and M/K
is a prime divisor of HK, for some k > 1. Therefore, by (2.18.2), M/K is a prime
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divisor of H", for all large n, so M is a prime divisor of K + 1", for all large n.
Therefore (2.18.2) = (2.18.3).

Finally, assume that (2.18.4) holds, let A be a Noetherian ring, and let 1 C p be
ideals in A such that IA, is not nilpotent and p is a prime divisor of Ik, for some
k > 1. Then it suffices to prove that p is a prime divisor of I", for all large n.

For this, it is sufficient to prove that pA, is a prime divisor of InAp, for all large
n. Therefore, assume that A is local and p is the maximal ideal in A. Let

(A*, p*) be the completion of A. Then, by [2, (18.11)], p is a prime divisor of I,
for all large n, if and only if p* is a prime divisor of I"A*, for all large n. There-
fore, assume that A is a complete local ring. Then there exists an unramified com-
plete regular local ring (R, M) and an ideal K in R such that A = R/K [1, Corol-
lary 2, p. 89]. Let H be the pre-image of I in R. Then M is a prime divisor of

K + HEX and, for each j > 1, HJ ¢ K (since I is not nilpotent). Therefore, by
(2.18.4), M is a prime divisor of K+ H", for all large n, so p is a prime divisor

of I", for all large n. q.e.d.

By [9, (3.15)], if (R, M) is a local ring and M is a prime divisor of an ideal K
in R, then for each ideal I in R, M is a prime divisor of K 4+ I", for all large n.
Thus, the conclusion in the condition in (2.18.3) holds when M is a prime divisor
of K.

Prime divisors of K +I™ will be considered in Section 5.

3. IRRELEVANT PRIME DIVISORS OF u#

In (2.7) and in the comment following it, it was noted that if tI is not contained
in any prime divisor of u% (A, I), then I satisfies (PD). In this section we investi-
gate when this condition on the prime divisors of u# holds. We begin with the fol-
lowing definition.

(3.1) DEFINITION. Let I be an ideal in a Noetherian ring A, and let
R =R(A, I). Then a homogeneous ideal H in & is said to be irrelevant if H con-
tains all homogeneous elements of sufficiently large degree; otherwise, H is said
to be velevant.

(3.2) REMARK. With the notation of (3.1), let
U={pesSpecA:1Cp} and U'= {P € Spec®: (u, tH®k C P}.

Then U' is the set of possible ivvelevant prime divisovs of uR, and theve exists a
one-to-one corvespondence between U and U' given by: p and P corvespond if and
only if p=P NA and P = (p*, WR, where p* = pAlt, u] N £.

Proof. It is clear that U' is the set of possible irrelevant prime divisors of
ufR. Also, if p € U, then tI C p* and & = (p*, u)# is a prime ideal in # (since
R/P = A/p, by (2.4.6)), so # € U' and & N A = p. On the other hand, if P € U',
then p=P NA € Spec A and I =u#® N A C p. Therefore

#=(p*, )R = (4 p tHh®x C P, and ®/P = A/p = R/P,

so # =P. g.e.d.

The following theorem determines when an ideal p € U is such that
& = (p*, u)# is contained in an (irrelevant) prime divisor of uZ.
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(3.3) THEOREM. Let 1C p be ideals in a Noethevian ving A such that p is
prime, let R =R(A, 1), and let & = (u, p, tI)R ( = (p*, WR). Then 2P is contained
in a prime divisov of W if and only if I*Tl cInN (Intl:p) N (In*t2:1) for some
n > 0.

Proof. Assume first that # is contained in a prime divisor Q of u#, and let
bt” (n> 0) be in # with uZ:bt" #=Q. Then b € I*, b ¢ In*! (since bt® ¢ uR),
and (p, tI)bt™® C u#. Therefore

bp Cutl®z N A = 17"l and bIcunt2® NA = [nt2)

sobeI”nIl:p)n 1*2:1), but b ¢ I*L,

Conversely, let b € I N (I?*1:p) N (In*2:1), with b ¢ I**! . Then bt? € &,
bt™ ¢ uR, bt"p C t*I! C ug, and bt C {n¥1nt+2 C ufR. Therefore,
uZ: bt .%’2 (u, p, thR = P and is a proper ideal; hence, & is contained in a prime
divisor of u#.

(3.4) COROLLARY. With the notation of (3.3), if 1C (I:p) N (12:1), then P is
contained in a prime divisov of uk.

Proof. This is merely the case n =0 in (3.3).
(3.5) COROLLARY. With the notation of (3.3), the following statements hold:

(3.5.1) If, for each n > 1, p is not contained in a pvime divisor of I, then p*
is not contained in an (z'mfelevant) prime divisov of uR.

(3.5.2) If I™"1:1=1", forall n > 1, then uR has no ivvelevant prime divisor.
Therefore 1 satisfies (PD) and theve exist k and b € IX such that ITnYK:pA = | L
Jor all n> 1.

Proof. (3.5.1) is clear by (3.3).

The first statement in (3.5.2) is clear by (3.3) and the fact that U' in (3.2) is the
set of possible irrelevant prime divisors of ug. Therefore I satisfies (PD) (by
(2.7)), and [15, Theorem 3.4] gives the existence of such k and b.

(3.6) REMARK. With the notation of (3.5):
(3.6.1) The converse of (3.5.1) is false.
(3.6.2) The following statements are equivalent:
(G) 111 =1" for all n> 1.
(ii) u has no irvelevant prime divisor.
(iii) Therve exist k and b € I¥ such that 1**k:bA =17, for all n > 1.

(iv) 1Mt =120 @2t p) N (A™2:10), for all n> 0 and all p € Spec A such that
I1Cp.

Proof. (3.6.1) Let (R, M) be a regular local ring, let I =M, and let
#=R(R, M). Then M is a prime divisor of I?, for all n> 1, (M tM) 2R =M* & u®,

and uZ is pr1me (since the form ring # of R w1th respect to M is a domain and
by (2.4.3) ¥ = R /u®).

(3.6.2) (i) = (ii), by (3.5.2); (ii) <>~ (iii), by [15, Theorem 3.4]; and (ii) <> (iv),
by (3.3). Finally, if (iii) holds, then Intk:Ik = I" (since b € 1K), Therefore

Pcrthiacrtiirtc eIk = ) forall n> 1,
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so (i) holds.

Each of the equivalent conditions in (3.6.2) implies that I satisfies (PD), by
(2.7).

The condition in (3.3) becomes simpler when I = p, as is shown in the following
corollary.

(3.7) COROLLARY. Let p be a prime ideal in a Noethevian ving A, and let
R =R(A, p). Thern uR has an ivvelevant prime divisor if and only if theve exists
n> 0 such that p?t!l c p? n (p°+2:p).

Proof. Assume that Q is an irrelevant prime divisor of u®, so (u, tp)# C Q.
Therefore p C Q N A, so (p*, u)& = (u, p, tp)® C Q. Therefore, by (3.3), there
exists n> 0 such that prtl c pn N (pntl:p) N (pnt2:p) = p2 N (pn+2:p).

The converse follows easily from (3.3).

(3.8) REMARK. With A and p as in (3.7), the following statements are equiva-
lent:

(i) p*tl:p =pn, for all n> 1.
(ii) u (A, p) has no irvelevant prime divisor.
(iii) There exist k and b € pX such that pntk:bA = pn, for all n > 1.
(iv) pnt! =pnn (pnt2:p), for all n> 0.
Proof. Clear by (3.6.2) and (3.7).

This section will be closed by using (3.3) to determine when (p*, u)# is an ir-
relevant prime divisor of u#.

(3.9) COROLLARY. Let A, 1C p, and R be as in (3.3). Then (p*, WR is an
ivvelevant prime divisor of uR if and only if
+1 +1 . +2 .
I AL C InAp n (m Ap.pAp) n (™ Ap.IAp) .
Proof., Let S=A - p. Then
‘%S ;%(Ap, IAp) and (p*, U.)z%s = (pAp[t, u]n '%S, u)'%s = ((pAp)*, U)%S.

Therefore (p*, u)# is an irrelevant prime divisor of u# if and only if (p*, u)#g
is an irrelevant prime divisor of u%g; hence, the conclusion follows from (3.3)
applied to 1A, (since (p*, u)# g is a maximal ideal).

4. NOTES ON 1**! . 1=1"

The condition in (3.3) for u# to have no irrelevant prime divisor involved
I**1:1, In this section, we investigate ideals of this form. (4.1) shows that if I con-
tains a regular element, then Int1:1 =17, for all large n; so there are only finitely
many values of n in (3.3) that have to be checked.

(4.1) THEOREM. Let I be an ideal in a Noethevian ving A such that
(0):1=(0). Then Intl:1=1", for all lavge n.

Proof. Let W be as in the proof of (2.11). Then, with

s=a-U {p:pewl},
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(0)Ag:IAg = (0)Ag and I"Ag N A =1", for all n> 1, so, by [16, Proof, p. 220), it
may be assumed that A is semi-local and I C J, the Jacobson radical of A. Like-
wise (considering A(X)), it may be assumed that A/M is an infinite field, for all
maximal ideals M in A. Then, by the second paragraph of the proof of (2.11), there
exists b € A such that I**1 :pA =10, for all large n. Therefore

P crtl:rctlipA = 17

so I™1:1=1", for all large n. q.e.d.
The condition (0):I = (0) in (4.1) is necessary, for if A is local and (0):I # (0),

then [1(@m*!.1) = ( nln“):l =:12 () =1) I", so I"1:1 « I, for infinitely
many n.

(4.2) COROLLARY. If I is a nonzevo ideal in a Noethevian domain A, then
"1 =1, for all large n.

Proof. Clear by (4.1).

(4.3) COROLLARY. Let1 be an ideal in a Noethevian ving A such that
(0):1=1(0). Then, for all lavge m, uR(A, I'™™) has no irvvelevant prime divisor, 1™
satisfies (PD), and theve exist k and b € I™F such that (I™)"*k:pA = (I™)2, for
all n> 1.

Proof. Let B =1I™. Then, since (H:I):J = H:1J, it follows from (4.1) that
Bntl:B = B™, for all n> 1. Therefore, the conclusions follow from (3.5.2).

For the next corollary to (4.1), recall that if I is an ideal in a ring A and if S
is a multiplicatively closed set in A, then the S-component Ig of 1 is the ideal
Is= {x € A: xs € I, for some s € S} of A; that is, Ig=IAg N A.

(4.4) COROLLARY. Let I be an ideal in a Noethevian ving A, and let S be a
multiplicatively closed set in A such that (0)g: Ig=(0)g. Then In+kS: IkS =1"g, for
all lavge n and all k > 1.

Proof. Let B=S-1 A, Then, in B, (0):IB = (0) (by hypothesis), so

Intl1B:IB = I"B, for all large n by (4.1). Thus, I**kB:1kB = InB, for all large n
and all k > 1. Therefore, the conclusion follows by contracting to A.

(4.4) is a little awkward, but it becomes much more manageable when I is pri-
mary. Specifically, we have the following corollary to (4.1) which was proved by
P. Samuel in [14].

(4.5) COROLLARY. Let q be a p-primary ideal in a Noethevian ving A such
that p is not a prime divisor of (0). Then q(ntk);q(k) = gq(ntk); gk = q(n), for all
lavge n and all k > 1.

Proof. Fixalarge n and k> 1 andlet H = q(n+k):q(k). Then H = q(n), by
(4.4). Also, H C q{ntk): gk, which is p-primary, and
HAp = qn+kAp:qkAp = (q(n+k):qk)AP,

so that q(ntk):qk = q@n), g e.d.

The following remark shows that some prime ideals do satisfy the hypothesis of
(3.5.2).

(4.6) REMARK. Let (R, M) be a regular local ving, and let p be a nonzevo
prime ideal in R such that p™ = p(n), Jor all n > 1. Then theve exists b € p such
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that p"t1:bR = p?, for all n > 1. Thervefore, p* 1:p =p™, for all n> 1.

Proof. There exists b € p such that p®*!R,:bRy, = p"Ry, for all n > 1 [17,
Lemma 6, p. 402]. Therefore, by hypothesis and w1th B bR, ﬂ R,

p® = p**1:Bc p™l:pR, forall n>1

(see [16, Proof, p. 220]). Fix n and let H = anrl :bR. Then H is p-primary and
HR, = = pntl Rp:bRp =pnRp, so H = p(n) = pn, Therefore, since b € p, for all
n>1, pntl: p pt. g.e.d.

The next result is related to (4.1). Recall that an ideal I in a ring A is said to
be normal if I" = (I"),, for all n> 1.

(4.7) PROPOSITION. Let 1 be an ideal in a Noetherian ving A such that
(0):1 =(0), and assume that 1 is normal. Then I":1™ =1""™ for aqll n> m > 1.

Proof. Fix n>m>1 andlet H=TI"(1":1"). Then H =1", since H C I" and
"™ cI": ™. Therefore, I™(I":I™) =" 1""™_, Now (0):I = (0), so, by [3, Theo-
rems 2 and 3],

m-m c . m c (In-rn)a — In—m,

by hypothesis. Therefore, I":I'™ =I""™  for all n> m > 1.

(4.8) COROLLARY. Let A and 1 be as in (4.7). Then uR(A, 1) has no ir-
relevamt prime divisor, 1 satisfies (PD), and theve exist k and b € IX such that
™K pA =10 for all n> 1.

Proof. This follows immediately from (4.7) and (3.5.2).

An alternate proof of (4.8) can be given by verifying the following steps: if I is
normal, then (u®), = uf; hence, every prime divisor of u# has height one and is
relevant.

The last result in this section applies (4.8) to analytically unramified local
rings.

(4.9) COROLLARY. Let 1 be an ideal in an analytically unvamified local ving
R such that height I > 1, fix a lavge integer m, and let B = (I™), . Then u#(R, B)
has no irvelevant prime dwzsor B satisfies (PD) and theve exzst k and b € Bk
such that Botk:bA = B2, for all n> 1.

Proof. B is normal [13, Theorem 1], and (0):B = (0) (since height B > 0 and
Rad R = (0)), so the conclusions follow from (4.8).

5. NOTES ON K +1I"

In (2.18), three equivalences of (2.1) were given, two of which concerned prime
divisors of K +I™. In this section, we characterize these prime divisors in (5.2),
and then the main result (5.5) gives some further information concerning them.
Finally, in (5.10) it is shown that frequently in local rings p? # p{n).

To prove (5.5), we need the following two lemmas. To explain the setting for
the first lemma, let I be an ideal in a Noetherian ring A, and let # = #(A, I).
Then, as has been noted in the proof of (2.11),
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W = {p € Spec A: p is a prime divisor of I¥, for some k > 1} C
W' = {P N A: P is a prime divisor of u®}.

(5.1) shows that, in fact, W= W"'.

(5.1) LEMMA. Let 1 be an ideal in a Noetherian ving A, let ®# =R(A, 1), and
let P be a prime divisor of WR. Then p =P N A is a prime divisor of 1k, for
some k > 1. Therefore, with W and W' as above, W=W"'.

Proof. There exists a homogeneous element bt™ (b € I™) in &£ such that
uZ:btm R =P (so m> 0, since bt™ ¢ u®R). Then

p=PNA=@uR:bt™R)NA=T"":p4A,

so p is a prime divisor of ot , for some m > 0. The last statement follows from
this and the comment preceding this lemma.

(5.2) characterizes the set of prime divisors of K +1IX (k > 1).

(5.2) COROLLARY. Let K and 1 be ideals in a Noethevian ving A, let
R=R(A, 1), and let K* =KA[t, u] N R. Then

{P N A: P is a prime divisor of (K*, u)R }
= {p € Spec A: p is a prime divisor of K + X, for some k > 1}.

Proof. #/K* = R(A/K, (I1+K)/K) by (2.4.4), so the conclusion follows from
(5.1).

The following lemma is a useful result. Its proof, from the third sentence on,
is essentially the proof given by D. G. Northcott and D. Rees for [4, Lemma 6].

(5.3) LEMMA. Let z be a prime divisor of (0) in a Noethevian ving A, and let
b be a regular element in A such that 1 = (z, b)A # A. Then, for each minimal
prime divisor p of 1, p is a prime divisor of bA.

Proof. The hypotheses continue to hold in Ay, so it may be assumed that A is
a local ring and p is the maximal ideal in A. Suppose that p is not a prime divisor
of bA, so that bA = bA:p. Hence, bA =bA:z (since (z, b)A is p-primary). There-
fore, there exists x € z such that bA:xA =DbA. Then xy =0 € bA, for some
O0#ye A soye bA; say y=by;. Then 0=xy = xby;, so xy; = 0; hence,
y1 € bA, whence y € b2 A. Repeating this procedure, we see that y € b" A, for all n.

Thus, y = 0 (since A is local); contradiction. Therefore, p is a prime divisor of
bA. g.e.d.

The following corollary to (5.3) sharpens [17, Lemma 1, p. 394].

(5.4) COROLLARY. Let K be an ideal in a Noetherian ving A, and let b € A
such that K:bA =K. Then, for each prime divisor q of K and each prime ideal p
in A which is a minimal prime divisov of {(q, b)A, p is a prime divisor of (K, b)A.

Proof. This follows immediately from (5.3) on considering A/K.
We can now prove the main result in this section.
(5.5) THEOREM. Let K and 1 be ideals in a Noethevian ving A, and let

K= ﬂ% q; be a normal primary decomposition of K, where q; is p;-primary. Then
the following ideals ave equal:
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(5.5.1) I; = N (K +1).

(55.2) I, = n {qi: p; +1# A} .

(5.5.3) I3 = ﬂ {q;: there exist k > 1 and a prime divisor p of K +I¥ such
that p; C p}.

Proof. 11 =1, by [16, Theorem 13, pp. 217-218], and it is clear that I, C I5.
Finally, let i be such that p; +1 # A, and let

p; = p;Aft, uln #, where # = ®(A, 1).

Then pf is a prime divisor of K* =KA[t, u]N % by (2.4.5). Let Z = (p¥, u)#.
Then Z[p)=p; +1+# A (see (2.4.6)), so Z is proper. Therefore, since K*:u® = K*,
(5.4) says that there exists a prime divisor P of (K*, u)# such that Z € P. Thus,
p;k_c_ P, so p; = pf NACPNA, and PN A is a prime divisor of K + I¥, for some
k > 1 by (5.2). Therefore I3 C I,.

(5.6) REMARK. The proof of (5.5) shows that if p; is a prime divisor of K

such that p; +1 # A, then theve exist k > 1 and a prime divisor p of K + Ik such
that p; C p (and conversely).

(5.7) COROLLARY. With the notation of (5.5), ﬂ (K +1I™) = K if and only if,
for each i =1, ..., g, there exist k > 1 and a prime divisor p of K + IXK such that
p; S p (k and p depend on i).

Proof. Clear by (5.5), since I} =13.

(5.8) COROLLARY. With the notation of (5.5), assume that A is a semi-local
ving and 1 C J, the Jacobson radical of A. Then, for each i =1, ---, g, there exist
k > 1 and a prime divisor p of K +1IX such that p; Cp (k and p depend on i).

Proof. Since A is semi-local and I C J, I3 =1; = K, so the conclusion follows
from (5.7).

The following corollary, which generalizes [17, Lemma 1, p. 394], is a somewhat
unexpected result. ((5.9.3) applied to I = bR, with b regular, gives [17, Lemma 1,
p. 394), since the prime divisors of bR and b™"R are the same.)

(5.9) COROLLARY. Let 1 be an ideal in a local ving R. Then, for each prime
divisor z of (0) in R:

(5.9.1) There exist k > 1 and a prime divisor p of IXK such that z C p.

(5.9.2) With m and n lavge and B =I™1 | theye exists a prime divisor p of B
such that z C p.

(5.9.3) If (0):1=(0), then z C p in (5.9.1) and (5.9.2).
Proof. (5.9.1) follows immediately from (5.8) with K = (0).

(5.9.2) By (2.13.2), a prime ideal p in R is a prime divisor of Bk, for some
k > 1, if and only if p is a prime divisor of BJ, for all j > 1. Therefore, the con-
clusion follows from (5.9.1).

(5.9.3) is clear from (5.9.1) and (5.9.2), since z C p and p contains regular
elements.

This paper will be closed with the following result.
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(5.10) PROPOSITION. Let A be a semi-local ring, and lét 21, -+, Z4 be the
prime divisors of (0) in A. Let p be a prime ideal in A such that p C J, the

Jacobson radical of A, and U z; € p. Then:
(5.10.1) p» # p{n), for some n> 1.

(5.10.2) If p & U z;, then p® # p\®), for all large n.

Proof. Let # = R(A, p), and let Z = (z*, u)®, where z is a prime divisor of
(0) in A suchthat z & p. Then Z is proper, as in the proof of (5.5). Let P be a
minimal prime divisor of Z. Then P is a prime divisor of u# by (5.3), so
Q=P N A is a prime divisor of pk, for some k > 1 by (5.1). Also, z C Q, so
QD p; hence, k > 1 and pk # p(k), Thus (5.10.1) holds.

(5.10.2) Assume that p & U z;, and suppose that every minimal prime divisor
P of Z is irrelevant. Then tp C Rad Z, so t'p! C Z, for some i > 1. Therefore

p' = (t'p[;) € Z[) = (2 N pY) +p'*! € (z N ph) +Jp* Cpl,

so by the lemma of Krull-Azumaya [2, (4.1)], p! =z N p! C z, a contradiction.
Therefore, some P as above is relevant, so that Q =P N A is a prime divisor of
p?, for all large n by (2.7). Thus, p® # p{®), for all large n. q.e.d.

It is clear that if A is a local ring which has at least two prime divisors of
zero and if no prime divisor of zero has height greater than 1, then all but a finite
number of height-one prime ideals in A satisfy the conditions on p in (5.10).
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