SEMILOCAL GROUP RINGS AND TENSOR PRODUCTS
John Lawrence

1. INTRODUCTION

Two central problems concerning semilocal group rings have been attacked in
recent years. First, if F[G] is semilocal, is G locally finite? Second, if F[G] is
semilocal, is G a finite extension of a p-group, where char F = p? Virtually no
progress has been made on the first question, although S. M. Woods has proved that
G must be a torsion group [12]. The first question is by far the deeper of the two.
In fact, J. M. Goursaud and D. S. Passman have independently proved that an affirm-
ative answer to the first question implies an affirmative answer to the second ques-
tion. More explicitly, they proved that if F[G] is semilocal and G is locally finite,
then G is a finite extension of a p-group [3], [7]. However, the second question has
been answered in the affirmative in cases where an answer to the first question is
unknown. J. Valette proved that if F is an uncountable, algebraically closed field
and F[G] is semilocal, then G is a finite extension of a p-group [11].

Further results on local and semilocal group rings appear in [1] and [8].

Another problem that has been examined recently is the question when the tensor
product of algebras is local. In [10], necessary and sufficient conditions were given
for the tensor product of two commutative algebras to be local. Among other things,
M. E. Sweedler showed that if a tensor product A®F B of two commutative alge-
bras over a field is local, then one of the algebras must be algebraic over F. Sev-
eral of the results of Sweedler’s paper were generalized in [6], where it was proved
that in certain cases “local finiteness” is necessary (and not simply “algebraic?).

In this paper, we prove that if the tensor product of two algebras (not necessar-
ily commutative) over a field is semilocal, then at least one of the two algebras is
algebraic over F. We then use this result to answer affirmatively the second ques-
tion on semilocal group rings, in several new cases.

2. NOTATION, CONVENTIONS, AND BACKGROUND

All rings are associative with unity 1 # 0. The Jacobson radical of a ring R is
denoted by J(R). A ring is said to be semilocal if R = R/J(R) is Artinian. R is
local if R =R/J(R) is a division ring. In what follows, F will denote a field and G
a group; F[G] will denote the group ring of the group G over the field F.

Recall that a valuation v on a ring R is a map v: R = R" (R* denotes the
space of nonnegative reals) satisfying the conditions

1. v(1) =v(-1) =1, v(x) = 0 if and only if x = 0,
2. v(a +b) < max[v(a), v(b)], for all a, b € R,
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3. v(ab) = v(a) v(b), for all a, b € R.

If x is a prime in the unique-factorization domain R, then every nonzero ele-
ment a € R can be written uniquely in the form a = x"y, where x does not divide y.
Define v(a) = 2 ™. This is the x-adic valuation.

If R is a ring with valuation v, and M is a left R-module, then a valuation u
on M is a map u: M — R" satisfying the conditions

1. u(a +b) < max[u(a), u(b)], for all a, b € M,
2. u(ra) =v(r)u(a), forall r € R, a € M.
The following theorem is useful for defining valuations on modules.

THEOREM 1 [5]. Suppose that R is a left Ore domain, M is a lefi R-module
and N is a submodule of M. Then every valuation on N can be extended to a valua-

tion on M.

Assume that A is an F-algebra with subalgebra R, and that v is a valuation on
the module gRA. Let B be any other F-algebra with F-basis {b;}. Then we can
extend v to a valuation u on r{(A ®r B) by defining

u (E (a; ® bi)) = max {v(a;)}.
This is called the max-extension of v on R(AXF B). If @ = 27 (a; Q b;) € ARy B,
then supp a = {b;| a; # 0}, and a; is the coefficient of bj.

THEOREM 2 [5]. Let A be an F-algebva with subalgebra R, let v be a valua-
tion on rA such that v({f) = 1 for all nonzevo f € F, let B be an F-algebra with
basis {b;}, and let u be the max-extension of v on r(AX®g B). Suppose
a € AQRr B satisfies the conditions

1. all coefficients of o are in R,
2. 1 - «a is rvight-inveritible with inverse B,
3. ule) =s < 1.
Let 6(n)=1+a +.--+an. If there exists n such that

v(coefficient of bi in 6(n)) > v{coefficient of bi in a™),

Jov all m > n, then b; € supp B.
A lemma of Woods gives an interesting property of semilocal rings.

LEMMA 3 [12]. Let R be a semilocal ving. Given x € R, define a sequence
{xn} inductively by

- - 2
X =X, Xn+l = Xn "~ Xn -

Then, for some n, the element 1 - x, is vighi-inveriible (hence invertible) in R.

3. MAIN THEOREMS

In this section, we prove our main theorems. The first gives a rather general
class of elements that are not invertible in tensor products. We then use Woods’s
Lemma to prove the main theorem stated in the introduction.
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THEOREM 4. Suppose A and B ave nonalgebrvaic ¥-algebras. Let X € A and
y € B be transcendental elements. Then the element

1-1,x®7y) - 1,xQy2- - - &Rk  (f; € F)
is vight-invertible in A Xy B if and only if f, =1, =-- =1 =0.

Proof. Let a = Z)ikzl f.(x® y)l. Extend the set {1, y, y2, ---} toan F-basis
S of B. Since x € A is transcendental, we have an x-adic valuation v on R = F[x].
Extend this to gA (Theorem 1), and let u be the max-extension of v on g(A X B),
using the basis S. Forall n€ N, let 6(n) =1+« + - +a®. Let B be the right in-
verse of 1 - @. Since 6(n) is a polynomial in (x (X) y), we have the formula

kn
6m) = 2 M ®yh).

i=0

For all sufficiently large n, say n > m, y" ¢ supp 8. Let

T= 2 fi(m)(xi®yi),

i=0

so that 7 is an initial segment of 6(m). Let 6(n) =7 + o(n), for n > m. Since

8(n) - 6(m) is a polynomial in (xX y) divisible by (x®& y)™*!, and since &(m) - 7
is also divisible by (x ® y)™*! | we see that o(n) is a polynomial in (x® y) divis-
ible by (x® y)m*1,

We now claim that for all n > m, o(n) is divisible by (x(X y)*. Observe that
for each t > n, at is divisible by (x (X y)t, so that it has no y! in its support, for
i <n. Thus, if yi is in the support of o(n) for m < i < n, then yi is in the support
of 8(n) (by the disjointness of the supports of 7 and o(n)). This yields the in-
equality

v(coefficient of y! in &6(n)) > v(coefficient of yi in at)

for all t > n, so that Theorem 2 yields the relation y! € supp 8, a contradiction.

We now restrict our attention to F[x]X) F[y]. There is a natural embedding of
this ring into the power series ring F[[x, y]]. In the power series ring, 1 - @ is in-
vertible with inverse B' =1+ a + :--. By our previous result, 8' = m, which implies
that 1 - o is invertible in F [x]®) F[y]. It is clear that a = 0, our desired result.

COROLLARY 5 [5]. Suppose A and B ave F-algebras and A is not algebraic.
Then J(AXRr B) N B is a nil ideal of B. (Heve B is identified with 1 Xr B.)

Proof. Suppose the two elements a € A and b € J(A) B) N B are transcen-
dental. Then 1 - (a(X b) is right-invertible, a contradiction. Since A is not alge-
braic, we may assume that b is algebraic. Since b is in the Jacobson radical, it is
nilpotent.

THEOREM 6. Suppose A and B ave F-algebras. If AQRw B is semilocal, then
eithey A is F-algebraic or B is F-algebraic.

Prﬂoof. If not, choose transcendental elements x € A and y € B. Let
a =(xXy). Now use Lemma 3 and Theorem 4 to reach a contradiction.
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4. COROLLARIES ON GROUP RINGS

PROPOSITION 7. Suppose G is a group and F is a field transcendental over a
subfield K. If the group ving F[G] is semilocal, then K|[G] is algebraic.

THEOREM 8 [9]. Let A and B be F-algebras. If AQRr B is semilocal, then
A is semilocal.

Note. A. Rosenberg and D. Zelinsky deal with algebras not necessarily contain-
ing a unity. Their theorem states that if A ®F B is semilocal, then either §(B) = B
or A is semilocal.

THEOREM 9. Suppose G is a group and F is a field transcendental over the
algebraic closure of its prime subfield K. If the group ving F|[G] is semilocal, then
G is a finite extension of a p-gvoup (char F = p).

Proof. By Proposition 7 and Theorem 8, L[G] is semilocal and algebraic,
where L is the algebraic closure of K. Thus L[G]/J(L[G]) is a finite direct sum
of matrix rings over L. Let ~: G — L[G]/J(L[G]) be the canonical map. Then
ker(-) ={g e G:1-g e J(L[G])}. Thus G/ker (-) is locally finite [2, p. 252];
hence, G/ker (-) is a finite extension of a p-group [3]. But ker(-) is a p-group;
hence, G is a finite extension of a p-group.

PROPOSITION 10. Let G and H be groups, and let F be an algebraically
closed field. If F[G X H] is semilocal, then either G is a finite extension of a p-
group, or H is a finite extension of a p-gvoup (char F = p).

Proof. F[G] and F[H] are homomorphic images of F[G X H], hence, semi-
local. The rest of the proof is similar to the proof of Theorem 9.

We can strengthen Proposition 10 slightly when the characteristic of F is zero.
I. N. Herstein [4] has noted that if F[G] is algebraic and char F = 0, then G is
locally finite. Therefore, if char F =0 and F[G X H] is semilocal, then either G
is a finite group or H is a finite group.
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