GENERIC SURFACES IN E4
Richard L. Bishop and Michael Menn

1. INTRODUCTION

In this paper, we consider some structures existing on surfaces M that are
immersed in Euclidean 4-space E4 and whose normal curvature has a generic prop-
erty. Let Q be the vector bundle, of fiber-dimension 2, consisting of bilinear forms
orthogonal to the induced Riemannian metric. Then the second fundamental form
projects into Q to give a bundle map f: 1 — Q, where 1 is the normal bundle. We
show that the normal curvature & can be considered to be a function on M and that
it coincides with the determinant of f. We call an immersion k-vegular if dk is
never zero on the singular set S = k-1(0). For a k-regular immersion we show
that f has rank 1 everywhere on S. The results consist of various relations be-
tween the Euler numbers of L and M, the integral absolute normal curvature, an
integral weighted Gaussian curvature, the winding number of im f on S, the geodes-
ic curvature of S, and the rotation of ker f on S relative to parallel translation.
Some of the constructions are valid for any k-regular immersion; but for the
stronger results we assume M is compact and oriented.

2. THE VECTOR BUNDLES

We shall use the following notation for the various vector bundles arising from
an immersion ¢: M — E% of a 2-dimensional manifold in 4-space.

T is the tangent bundle.

T* is the cotangent bundle.

L is the normal bundle.

B = T* o T* is the bundle of symmetric bilinear forms.
I is the subbundle of B spanned by the induced metric.

Q is the orthogonal complement of I in B. If we view a bilinear form as a
symmetric linear mapping T — T, using the identification T*® T* = T® T* given
by the metric, then Q consists of those symmetric linear mappings whose two eigen-
values at each point are the same in magnitude and opposite in sign.

The second fundamental form of ¢ can be considered to be a bundle map
h: £t — B. We compose h with orthogonal projection into Q to obtain the map
f: £ — Q.

An orientation at any point of one of T, L, Q leads to an orientation of the other
two. This depends only on the fact that the ambient space E4 has a standard orien-
tation. We shall fix a convention relating the orientations of T, 1, Q, and our ex-
pression for the convention consists of isomorphisms between the bivector line
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2 2 2
bundles: /\“T ~ /AL ~ /\°Q. Specifically, if e, e,, €3, e4 is an adapted
frame at ¢(m) that gives the orientation of E4, and w!, w? is the dual coframe to
e;, e,, we set

q; = (wh)2 - (w2)2 and g, = wlw? (symmetric products).

Then the isomorphisms map e; N\ ey, e3 A\ eq, and q; /A q, to each other. Note
that all these bivectors have unit-length in the induced metric, so that the isomor-
phisms are also isometries.

If we rotate the frame e, e, through an angle 6, then the (orthogonal but not
normal) basis q;, q, is rotated through an angle 26.

Because the map f extends to a homomorphism of Grassmann algebras, the
isomorphisms make it possible to define the determinant. Specifically, for any con-
ventionally related ez, e4, q;, gy, we define

f(e3) Nfley) = (det ) q; Naq, .

3. CONNEXIONS

The bundles introduced at the beginning of Section 2 have induced connexions for
which parallel translation preserves the metric. The curvature of a bundle V with a

2
metric connexion is an so(V)-valued 2-form: N\°T - so{V). The metric gives a
2
standard isomorphism ¥ of so(V) with /\°V. Specifically,

(t,b(vl/\vz)v3,v4> = <v1/\v2,v3/\v4>.

2
When V has fiber-dimension 2 and /\2 V = /\ T, then the curvature is identified
2 2
with a real-valued function on M: the map /\2 T - so(V) ~ /\“V = /\ T is a
bundle map of a line bundle, and therefore it is given by a 1-by-1 matrix at each
point.

When V =T, we get the Gaussian curvature K.

When V = Q, the fact that bases in Q rotate twice as fast as bases in T leads
to the fact that the curvature of Q is 2K.

When V = 1, the curvature is the novmal-curvature function, denoted k.

THEOREM 1. k = det {.

Proof. We calculate both ¢ and det f in terms of local moving frames
E,, E,, E;, E4, with our conventional orientations, the dual coframe w!, w?, and
the corresponding moving basis Q;, Q, of Q.

The connexion on 1 is given by the connexion 1-form w = wy = —w% , which de-
termines covariant derivatives of the local frame of 1 by the formulas
Dy E; = -o(X)E4 and Dx E4 = w(X) E3. Since the group O(2) of 1 is commutative,
the second structural equation says that the curvature 2-form has matrix (—dwg)

(r, s = 3, 4) relative to the frame E3, E4. The isomorphism y takes E3 N\ E4 into

the transformation with matrix ( (1) _01); therefore its inverse takes the curvature

2 2
9-form to dwE3 A E4. In turn this is carriedto dwE; A Ez via /\“ 1L ~ /A°T.
Thus, if we write © = w! A w2, the normal curvature is given by dw = k.



GENERIC SURFACES IN E4 119

To involve det f and prove it is k, we must consider the way the connexion on
1 is induced by the immersion and how the second fundamental form is defined.
Viewing ¢ and the E; as E%-valued functions on M, we can express their differen-
tials in terms of the frame E;, with coefficients that are 1-forms on M:

2 4
dp = 20 w¥E,, dE; = 2 w{EJ..

1
a=1 j=1

Because E; is a frame, w{ = —wJ%. We obtain the connexion on L by projecting
dE3, dE4 into L to get their covariant differentials DE3; and DEy4; therefore this
w3 agrees with the one above. The second fundamental form corresponding to a
normal field N is the inner product <dN d¢> hence the value of h on E.

2
h(E,) = (dE,, d¢) = 27 w20 = 25 hggr @% WP (r=3,4).
a=1 a,B=1

o

That the coefficients hyg, of w’ are symmetric in o and g follows from d2¢ = 0.

We obtain the expression for f(E.) by subtracting % Ea hoor < do, d¢> from

h(E.) so as to make the coefficients of w® w® opposite for @ =1 and 2:

1

1
H(E,) —2—(h11r hZZr)(w w! - wlw )+2h12rw1w2

1
=5(hy1y - hp2,)Q) +2h)5,Q;.

2
Thus, det £ = (h) )3 - hpp3)hypq - (hy14 - hppa)h)a3 = 201 (hg3hgos - hg23hg1s):
On the other hand,

2 2 2 2
0= dwg—E wg/\w;‘! = -k + Z) (BEIh ap3 @ ) (BZ} ha64w6)

2
K+ 2 (hy13hg24 - hyo3hy ) |R.
o=]1

Hence, k = det {.

COROLLARY. If the novmal curvature never vanishes, then 1 ~ Q. This iso-
movphism is given by f. When the manifold is oviented, f presevves orientation if
Kk > 0, and it reverses orientation if k < 0.
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Remarks. S. Smale [3] has proved that in the case M is the 2-sphere, the
homotopy classes of regular immersions correspond to the Euler numbers x(L1). In
general, for a compact orientable surface, x(L) is twice the Whitney self-intersec-
tion number of M [4], [1].

4. THE SINGULAR LOCUS OF A REGULAR IMMERSION

An immersion ¢: M — E? is Kk-vegular if k has no critical poins on its 0-
level k~1(0) =S (we call S the singular locus of ¢). It follows that for a k-regu-
lar immersion, S is a 1-dimensional submanifold of M.

PROPOSITION 1. For a k-vegular immevrsion, rank £ > 1 everywhere.

Proof. Using the rule for differentiating a determinant, we can represent the
differential d« as a sum of two determinants that have differentials in one column
and entries of a matrix representing f in the other. A point where f =0 would be in
S; but then each determinant in the sum for dkx would have a column of zeros, con-
tradicting dk # 0.

THEOREM 2. The k-rvegular immevrsions ave a vesidual set in C°(M, E%) with
respect to the Whitney C2-topology.

Proof. The theorem follows from Thom’s transversality theorem, once we es-
tablish that a k-regular immersion is a map ¢ € C®(M, E4) such that the 2-jet
jod: M — J,(M, E4) =J, is transverse to a finite number of submanifolds of J>.

The first condition is that ¢ be an immersion. The nonimmersion 2-jets form
submanifolds Z, and Z; of J,, where Z, has codimension 8 and corresponds to
points where d¢ = 0, and where 2, has codimension 3 and corresponds to points
where d¢ has rank 1.

Let 'J,=J, - 2, UZy, and let 'J; be the projection of 'J> into J;. An ele-
ment of 'J; can be represented by (p, x, 7), where pe M, x € E4, and 7: Mp — E*4
is a linear imbedding. Thus, T(Mp) has an orthogonal complement L, in E4, and
the union of these forms a vector bundle L over 'J; having fiber-dimension 2. We
get an analogue of the bundle B by pulling back B via the projection J; — M, and we
still call it B. Over 'J;, we get an induced metric on B; now we can imitate the
process used to define Q so as to get a subbundle Q of B over 'J;, having fiber-
dimension 2. Then the second fundamental form can be regarded as a map
h: 'J, — L* ) B. More explicitly, h is given as follows. For X € 'J,, let (p, x, 7)
be the projection into 'J; . Choose coordinates ul and v on M such that 7 maps
the coordinate vectors at p into a 2-frame ey (@ =1, 2) in E*. Let w!, w? be the
correspon?fling coframe in M;. Let ¢ € C®(M, E%) be such that j2¢ =X, and let

0“¢

(p). Then we realize h(X) as an element of Hom (L., B) by
du guB T T

bapg =

2
hX)(n) = - 2 <n, ¢aﬁ>waw3.
o,B=1

(The minus sign is the same as in the formula II = dN - d$ = -N - d2¢.) The fiber of
'J — 'J1 is an affine space, and we can give it coordinates corresponding to the
Cartesian coordinates of the ¢5g. Hence h: 'J, — 1*® B is a bundle map over 'J;

for which the fiber map h;: 'J — if} X B, is an affine surjection.
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Composing h with orthogonal projection of B into Q, we obtain an affine sur-
jection bundle map f: 'J, — L*(® Q that is the 2-jet version of the previous map f.
In each fiber, the rank-1-values of f form a submanifold S of codimension 1. The
rank-0-values of f similarly correspond to a submanifold Z in 'J, having codimen-
sion 4. We can extend the structure defined on any immersion so that ¥ = det £ be-
comes a function on 'J, for which S U Z = k-1(0). Thus, if ¢ is an immersion, the
normal curvature of ¢ is given by k o j2¢. In terms of local frames, f is repre-
sented by a matrix (f,g) (@, 8 =1, 2), and the fact that f is an affine surjection
shows that these f;5 can be taken as part of a coordinate system on 'J,. Therefore
de = d(fyf,, - £f;,1,1) is never 0 on S. It follows that if j,¢ is transverse to S,
then the normal curvature of ¢ has no critical points on (j,¢)-1(S).

Now we claim that a k-regular map ¢ is exactly one such that j, ¢ is trans-
verse to Z,, Z;1, S, and Z. For the codimensions of Z,, Z;, and Z all exceed 2,
so that transversality to these means simply that j> ¢(M) does not meet them. Hence
it means that ¢ is an immersion, and the zero-level of its normal curvature is
(j,¢)~1(S). Finally, transversality to S is the remaining condition in the definition
of k-regularity. This completes the proof of Theorem 2.

For the remainder of this paper we shall assume that ¢: M — E4 is a k-regu-
lar immersion.

Remark. In the proof of Theorem 2, one of the key ideas is the introduction of
the universal second fundamental form for immersions M — E" as an affine bundle
map 'J, — L*X) B over 'J;. We can describe other generic properties of immer-
sions by specifying pointwise singular submanifolds of 1* () B. For some signifi-
cant cases, see [2].

We call attention to the restriction of f to the singular set S. The kernel of
i I S is a subbundle Z of L |S. We let Y denote Z', the orthogonal complement of
Z in L1 |S. The image of f|$S is the subbundle L = f(Y) of Q| S, so that Y and L
are isomorphic as line bundles on S.

Let C be a component of S. We can choose an orientation of C, represented by
a smooth unit tangent field E to C. We also have a smooth nonzero normal field
grad kK = F on C, so that TM | C has an orientation corresponding to that of C,

given by the ordered basis E, F. If we reverse the orientation of C, then we get the
other orientation -E, F for TM | C. It follows that 1 | C and Q | C also have cor-

responding orientations, and that Q | C has a distinguished section Q; , independent
of the choice of orientation on C, such that the eigenvalues of Q; are il/«/—z- and
-the eigenspace for the eigenvalue 1/V2 is spanned by E. The orientation of Q [ C

then determines another section Q; such that Q;, Q, is a frame. The “angle” 6 of
L is thus determined up to a multiple of m, and locally smoothly, by the requirement
that L is spanned by (cos 6)Q; + (sin 6)Q, . The derivative 6' of 6 with respect
to arclength is uniquely determined; in fact, this derivative does not depend on the
choice of orientation, because a reversal of orientation changes the sign of both 6

and arclength s, leaving d6/ds invariant. Therefore, the integral S f'ds is an
C

invariant of L. on C, provided it exists; of course, it does exist when C is a circle,

and in that case it must be a multiple of 7. We call 5155 6' ds the singulayr index
C

of ¢ on C. The sum of the singular indices of ¢ on C, taken over all components

C, is called the singular index of ¢, and it is denoted o¢. It is a half-integer when
S is compact.
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The eigenspaces of a nonzero element of L form an orthogonal pair of tangent
lines at the base point in S. As we move along S, this “cross field” rotates relative
to E, F at a rate half as great as that of L.

5. EULER NUMBERS

Let V be one of the bundles T, 1, and Q, and let X be a section or a line sub-
bundle that has an isolated zero or singularity at p. Let W;, W, be a local moving
frame for V in a neighborhood of p, so that the bivector W; A W, determines an
orientation of V on that neighborhood, hence also an orientation of the neighborhood.
On a small, positively rotating circle around p, we may write

X =x(cos 6 W +sin 0 W),

where A > 0 for a section and A runs through IR for a line bundle. The total change
in 0 divided by 27 is a half-integer, the index of X al p, denoted ip(X). It is inde-
pendent of the choice of W, W, and the circle, because equally-oriented choices
are homotopic and there are compensating sign changes when the orientation is re-
versed. At a nonzero or nonsingular point p, let i(X) = 0.

When M is compact, the Hopf index theorem says that if X has a finite number

of zeros or singularities, then 2 ip(X) = x (V) is independent of the choice of X, and
it is called the Euler number of V. When V = T, this is the Euler characteristic

x (M) of M. For V =Q, we have the relation x(Q) = 2x(M). When V =1 and M is
orientable, x (1) is twice Whitney’s algebraic self-intersection number [1]. It was
shown by Whitney that every even integer can occur as the value of x(1) [4]. When
¢ is an imbedding, the self-intersection number is 0, so that x(1) = 0. Hence

x (L) = 0 when ¢ is regularly homotopic to an imbedding. For the 2-sphere, the
converse is true; in fact, two immersions are regularly homotopic if and only if they
have the same x (1) [3].

The Gauss-Bonnet theorem for V says that x(V) = —2-1; g kdy, where k is the
M

curvature of V. The integration is with respect to Riemannian measure dg, and k
is a function, not a 2-form, and therefore this result is also valid for nonorientable
M. It suffices to prove it in the orientable case, because in the nonorientable case
we get an induced immersion of the two-fold orientable covering ¢, , for which we

can easily obtain the relations

X(Vz) = 2x(V) and S‘ k,dp, = 2 S‘ kdu

t MZ [ M
by pulling back a section of V to get one for V, = ¢, * V, and by observing that
kZ = (I)Z * k.

The Gauss-Bonnet theorem can be proved by applying Stokes’s theorem to a
connexion form. The proof gives a version for a compact surface with boundary
S = oM. Normalizing X, we get a unit-length section E, and rotating E through
/2, we get a section F and hence an oriented [rame E, F. The connexion form w
for this frame is determined by the [ormula Dy E = w(Y) F for the covariant deriva-
tive of E with respect to the tangent vector field Y. If we had a line bundle X in-
stead of a section, then we would have two choices, E, F and -E, -F, where E and
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-E are the unit-length sections spanning X. These two frames give the same con-
nexion form w. The curvalure k of V is determined by the structural equation

dw = -k Q, where Q is the oriented volume element (2-form) of M. To apply Stokes’s
theorem, we excise a small disk Dp(s) of radius £ around each singular point p.

By considering the relation of E, F to a frame W, W, defined in a neighborhood of
p, one shows that

lim ‘S‘ w = Znip(X),

where the orientation of aDp(s) is the positive one, hence opposite to that induced
from M - Dy(e). The resulting Gauss-Bonnet theorem is

SM kQ = 271 271 (X) +SS w,

where S has the orientation for which its distinguished tangent, paired with the out-

ward normal, is an oriented frame for M along S. The interpretation of SS w is
this:
S w = the total rotation of X along S with respect to a parallel oriented frame
S
along S.

For a nonorientable M, we get the same result except that we replace S kQ
M

by S kdy and use an orientation of a collar for S to determine S w. Since a
M S

reversal of orientation of the collar (or a component of it) changes the sign of w

and reverses the direction of S, the boundary piece is independent of the choice of

orientation.

In either case, we denote § w by rotg X, since it represents the amount X
S

rotates on S relative to a parallel frame having the same orientation as E, F, where
E is a (chosen) unit tangent field to S and F is an outward normal.

6. SPECIAL SECTIONS OF THE BUNDLES

Returning to the structure of a regular immersion of a compact M, we extend
the subbundle Y to a subbundle of 1 having a finite number of singularities, and we
still call it Y. Then £(Y) = L is an extension of L to a subbundle of Q having sin-
gularities at the singular points of Y. The indices of the singularities of L are the
same as those of Y, at points where k > 0, and the opposite where & < 0. Thus the
Hopf theorem applied to L gives us the following.

LEMMA 1. 2x(M) = x(Q = 27, (sign «(p))iy(¥).

Now let M_ = k “1((-=, 0]). By the Gauss-Bonnet theorem for Y on M_ , we
have the formula
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27 ip(Y) =%(SM K - rotsY) ,

peEM._ -

where rotg Y depends on the fact that grad k is the outward normal. Similarly, on
M, = k~1([0, «)),

> ip(Y)=21_7T(‘S‘M K+rotSY')’

peM, +

where we have changed the sign on rots Y because here the outward normal is
-grad k. The following theorem is proved by taking the difference of these two
formulas, applying Lemma 1, and observing that rotg Z = rotg Y.

THEOREM 3. Let M be compact and k-vegularly immersed in E*; let
7 =ker (f | S); and let rotgZ be the rvotation of Z on S relative to parallel transla-
tion. Then

4rx (M) = S IKI +2rotg Z.
v M

We can obtain corresponding sections of L and Q by starting with a section of
Q@ and modifying it in a neighborhood of S so that it will be the image of a section of
L under f. The initial section Q; of Q to be modified is defined in terms of a
Morse function k that is an extension of k restricted to a neighborhood of S. We
force Q; to have an eigenvalue -1/ V2 with its eigenspace spanned by grad k. This
determines Q; uniquely, and Q; has singularities only at the critical points of k.
The index of each singularity of Q; is twice the index of dk at the corresponding
zero of dk.

The modification of Q; in a neighborhood of S is a weighted sum of Q) and a
section that is close to being the projection of Q; onto a smooth extension of L.
However, to ensure that the projection has only a finite number of zeros on S, we
must rotate Q; by a small angle Y that is a function on that neighborhood of S.

Choose an orientation of T l S. We consider only a sufficiently small tubular
neighborhood U of S onto which this orientation extends. In U, it makes sense to
rotate Q; by 7/2; this gives Q,, which together with Q; makes an oriented frame
for Q| U. Consider the restriction f, of f to the unit circle bundle in L | U. Above
S, the function <f1 , I > has a unique pair of maximum points +Y; in each circle,
namely, the unit vectors in the subbundle Y. Hence, if U is small enough, < f;, f1>
still has a unique pair of maximum points +Y; in each circle. Some easy calcula-
tions (involving the matrix for f with respect to a smooth local frame) show that
<f1 s f1> has a unique pair of minimum points +7, in each circle, for which
{(Z,,Y,)=0and {£(z,), #(Y,)) =0, and Y,, Z, can be chosen locally to be a
smooth oriented frame. For such a frame we can define smooth functions A, p, and
6 such that

£f(Y) = A (cos 0 Q) +sin 6 Q)), where X > 0,

I

£(Z)) = p(-sin 6 Q; +cos 6 Q).
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Hence det f =au = k, and on S the subbundle L is spanned by f(Y;). The require-
ment X > 0 makes A, hence p, independent of the choice of Y;, Z;. Moreover,

u|S:O and dy. S=%df{|Sisnever 0.

Let h be a function defined on allof M sothat 0 <h<1on M-S and h=1
outside U, and so that h = u2 in some smaller tubular neighborhood V. Let ¢ be a

function that is 0 oufside U, with Ia,bl < 1 everywhere, and such that cos (6 + )

has isolated nondegenerate zeros on S. Because the change in 6§ when we take -Y;
instead of Y, is a translation by 7, the nondegeneracy condition is independent of

the choice of Y; . Now define a section P of L l U by

P =

=

cos(6 +y) Y, —%sin(ﬁ +y) Z,.

Since cos(6 +¢), Y, sin(6 + ), and Z; all change sign for the other possible
local expression, P is defined independently of such choices. Therefore

£(P)

%cos(G + ) - a(cos 6 Q1 + sin 6 Q)

—%sin(ﬁ +y) - p(-sin 6 Q) +cos 0 Qp)

[cos (6 +¢)cos 6 +h sin(6 +¢)sin 6]Q
+ [cos (6 +¢)sin @ - h sin(6 +¢¥)cos 0]Q,.

When h =1 and ¥ = 0, this reduces to Q;. Hence P can be extended as £-1(Q;)
outside U, except for singularities at the zeros of dk.

Now we determine the zeros of P and f(P) in U. Clearly, if P = 0, then

% cos(6 +¢) =0 and %sin(e + ¢) = 0, hence h/p = 0. The only such points are
those on S at which cos(6 + ) = 0. Thus the zeros of P in U are isolated, and
they coincide with the points on S where 6 + { is an odd multiple of 7/2. More-
over, there are no other zeros of f(P) on U, because they would have to be on S;

hence cos(6 +y¥)cos 8 =0 and cos(8 + ¥)sin 6 = 0.
Now we show that the indices of f(P) at the zeroson S are 0. Let
*=cos Y Q) - sin Y Q. Then
(£(P), Q*) = 2[cos2(6 + ) +h sin?(6 +y)] > 0.
In a neighborhood of a zero of f(P), this inner product is positive except at the zero.
Since Q* is never zero in such a neighborhood, the index of f(P) is 0.

Let p € S be a zero of P. Then d(6 + ) and du are linearly independent at
p, so that the components of P,

u=-Al—cos(9 + ) and v=-%sin(9+w)=-u sin (0 +y),

can be taken as coordinates in a neighborhood of p. Thus, relative to the orienta-
tions on T, and L, given by the bases 3/du, 3/dv and Y, Z; , we see that
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P =uY; +vZ; has index 1. The actual index of P relative to the conventional
orientations is either 1 or -1, depending on whether 9/0u, 3/8v agrees or dis-
agrees with our chosen orientation on T,. Calculating du Adv at p (where

cos (8 + ) = 0), we get }% d(6 +y) A du, so that the coordinates (u, v) give the same

orientation as (6 +y, p). This agrees or disagrees with the orientation on Tp ac-
cording to whether 6 + ¢ is increasing or decreasing at p in the positive direction
on S. It follows that the total change of 6 +¢ on S is 7 times the sum of the in-
dices of P on S. But the restriction It,b] < 1 makes the total change of 6 + ¥ the
same as that of 8, which is 270. Combining the indices of P on the rest of M with
those on S, we obtain the proof of the following proposition.

LEMMA 2. x(1) = 27, (sign k(p)) i,(f(P)) + 20.

COROLLARY. If M is compact and oviented, then o is an integer (not half an
odd integer).

Proof. By [1], x(1) is an even integer, and by construction all ip(f(P)) are
even.

We can evaluate the sum in Lemma 2 in terms of integrals of the Gaussian
curvature on M_ and M, , by using the Gauss-Bonnet theorem for Q on these mani-
folds with boundary. The connexion form w for the frame Q;, Q, of Q is twice the
connexion form for the corresponding frame of T. On S, this corresponding frame
has for its first member the the unit tangent field E of S. This means that

S w =2 ‘g kg, where kg is the geodesic curvature of S. But
S S
2 SS kg = ZI‘OtsE = I‘OtsQl,

and 270 is the total rotation of L relative to Q; . Since the rotation of L relative
to a parallel field is the sum of the rotation of L relative to Q; and the rotation of

Q, relative to a parallel field, we get the equation 2 Ss kg + 270 = rotg L. The re-

sults are the formulas in the following theorem, which is also valid in the nonorient-
able case, by virtue of the double-covering trick.

THEOREM 4. Let M be compact and k-vegularly immersed in B4, let
L =im(f|S), let kg be the geodesic cuvvatuve of S, and let o be the singular index.
Then

ax(L) = 5 (sign K)K+25 kg+27m =5 (sign k) K+ rotg L.
M S M

Remark. By imposing another transversality condition on j3 ¢, we could ensure
that cos € in the proof of Lemma 2 has isolated nondegenerate zeros on S. Then we
could take ¥ = 0. Moreover, the singular index ¢ would then be simply half of the
net number of times 6 goes through cos 6 = 0 in the algebraic sense.
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