THE DISTRIBUTION OF VALUES OF
MULTIPLICATIVE FUNCTIONS

W. J. LeVeque

1. INTRODUCTION. E. Landau [1] has shown that, as x > «, the number of posi-
tive integers not exceeding x which are representable as the sum of two squares is
asymptotic to

(1) Bx (log x) "/
where
1/2
B = (2'1 I7 "1—) :
p=3(mod 4) 1-p

P. Lévy [2] gave a simple heuristic derivation of (1) without determining B; his
argument also led him to the conjecture that, if r,(m) is the number of representa-
tions of m as the sum of the squares of two positive integers, and Ry (x) is the
number of m < x for which r,(m) = k, then

Bx e’9 ek

1/2
~ . where 68 =cl .
logl/2 x kv’ ¢ to8 x

In probabilistic terms, this means roughly that, out of the integers m for which
r,(m) > 0, those for which r,(m) has a specified:value have a Poisson distribution,
with parameter 6.

It will be shown here that this is not the case, and that in fact the asymptotic
behavior of Ry(x) depends rather strongly on the arithmetic structure of k, as well
as on its size. This is not very surprising, since r,, being a multiplicative function,
must be considered in probability language as a product of random variables, while
the usual theory applies to sums of random variables. Thus A. Wintner [3] has
shown that if f is an additive function [so that f(mn) = f(m) + f(n) whenever
(m, n) = 1] with the property that f(p) = 1 and f(p®)> 0 for all primes p and all
a > 1, then the number of solutions of f(m) = k which do not exceed x is asymptotic
to

x (log log x)k'l,
k-1)tlogx "’

this is a “Poisson distribution” with parameter log log x. In particular, if w(m) is
the total number of prime divisors of m, 7(m) is the number of divisors of m, and
f(m) = w(7(m)), then f satisfies Wintner’s hypotheses, so that the integers m for
which 7(m) has a specified number of prime factors are Poisson distributed; that
this is not true of the m for which 7(m) has a specified value is shown in §2.
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It is well known that, with the definition of r,(m) above, the equation
r,(m) = 7(m') holds if r,(m)> 0, where m' is the factor of m consisting of all
the primes of the form 4t + 1 which divide m. Because of this close relation, and
because of the independent interest in the T function, §2 is devoted to an investiga-
tion of the asymptotic behavior of the number Ty(x) of integers m not exceeding x
for which 7(m) = k. In §3, the estimation of Rk(x) is effected.

2. THE ESTIMATION OF Tk(x). It is clear that, for each k, the multiplicative
structure of the numbers m for which 7(m) = k is determined by that of k. Thus,

if k=2, then m =p; if k=3, m =p? if k=4, m =pq or m = p3, and so forth. In
o a
general, if 7(m) =k, then m is an integer of the form p; 1---prr, where pj, ***, Pr

are distinct primes and {(@; + 1)--- (@, + 1) is a factorization of k. Thus

@) T &) = I Tlay, -, o),
k

where T(xlal, ..+, @) is the number of integers m < x of the form p‘fl ...p‘l)fr
the primes pj, ---, pr being distinct; here (and hereafter)

Zt F (au’ ey aV)

k

b4

denotes a summation over all sets oy, .-+, o, of positive integers such that

(ap+ 1) (ay+ 1) =k, ay< - <ay,.

THEOREM 1. If a;=--=0,< oy < - < ay, then
1/ v-1
A x"tlog, x
®) T(ery, -, @) ~ =gy Tog X

as x >, where log, x = log log x and

v+1 o, 1/al
Ay = Aoy, - a>—a12: Pv+1 “*Pr ’

the summation " being over all sels of distinct primes Py,1, ***, P
distinct terms of the form written. Hence, if

which yield

r

1 4 v v
1 s 1
k=P1 ---Ps =P1 kl’

wheve the Py arve primes with P) < Pp < :+» < Pg, then

P -1)! v, -1
A, x( 1Y) log, !  x

4) Ty () ~ (v, - 0t log X ’

where
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1
AZ = ; Al(avl+1, sy, ar), ay= Pl - 1.

1

It is clear from (3) that the dominant terms in the sum occurring in (2) are
those in which, first, o, is minimal, and second, v is maximal; that is, those cor-
responding to the factorization

k = Pl '“Pl (av1+1 + 1) s (C!I.+ 1)
R

Vl
of k in which o) = «-- = ¢y, = Py - 1. This gives (4).
1 Vy 1

For a set of o&’s as described in the hypothesis, put

. a) ar s .
1 if n=p;" :--p,. for some distinct primes p,, ---, p_,
ap =

0 otherwise.

Then
T|ay, -, @) = a,.
nSx
Put
= o o
_ n - S -— S
f(s): Z ann s = 2 pl 1 '--pr r
n=1
and

P(s) =) p°s;
P

then f(s) can be expressed as a polynomial in
P(s), P(2s), -+, P((oy + -+ + a.)s).
For example, if r = 1, then f(s) = P(w, s), while if r =2, @, = 1, and @, = 2, then

f(s) = P(s)P(2s) - P(3s). In general, this polynomial has rational coefficients, and
it does not involve any P(as) with a< a,. We write

(5) £(s) = hy (P (@;8))¥ + h (P (@y8)¥ ™! + - 4 by,

where now the coefficients hy are polynomials in various functions P(xis) with
each x; > «a,. In particular, it is easily seen that

1 W -Opg1s | -0s
(6) ho =—l,—! E py+]_ --.pr ,

and this sum can be written in the desired form.
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Let G(a) be the region of complex numbers s = ¢ + it such that
o> a—l(l - a/logb ot) for t > c/a,
o> a1 - a/log” ¢) = 0o for [t|< c/a,
o> a1 - a/log® (-at))  for t< - c/a.
It is well known (see, for example, [4], p. 179) that, for suitable positive numbers
a, b, and c, the zeta-function is regular in G(1) except for a pole of order 1 at
s = 1, and that ¢(s)# 0 for all s € G(1). Hence if G'(a) results from G(a) by
making a linear cut from 6, to 1/a, then log ¢(as) is regular in G'(a), except at

s =a™!, and log ¢(os) - log (os - 1)-! is regular throughout G(a). It is known also
(4], p. 239) that, for

t| > c/a and ao>1- a (log” latl)—l,
the inequality
log ¢(as)| < d log® |at]

holds, when the constant d' is sufficiently large.

We have

log ¢(as) - P(as) = E 1/mp%™s,

m,p

mZZ
and this series is absolutely convergent for ¢ > (2a)~'. Hence for a < 1/2 the
function P(as) - log (@s - 1)-! is regular in G(a), P(as) is regular in G'(a) ex-
cluding s = -1, and

[P(@s)| < d" 1og® |at|

for aft|>c and ao> 1 - a (log” et

For a sufficiently small and @ > a,, the pole of P(as) lies outside G(a,); we
choose a small enough to meet all requirements so far stated. Then the coeffi-
cients hy in (5) are regular throughout G(e,) = G. Hence f(s) is regular in G'
excluding s = a7!; for

Ialtl?_ c and a,0>1- a/log‘D o t],
the inequality
b
le(s)| < d log” [t]
holds; and there exist functions ¢,, -+, ¢,,, regular in G, such that the function

(7) £(s) - ¢,(s)log (s - 1)71 - -+ - ¢,,(s) log? (a;s - 1)7*

is regular in G. [In particular, ¢, (s) = hy, as given by (6).] By a well-known
theorem ([4], pp. 183-185),
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2+ico
27 Z a,log x/n =f xss'zf(s)ds,

qgg 2 -ica
the path of integration being the line ¢ = 2. By a standard argument (loc. cit. pp.
186, 240), this can be replaced by

6
x5 s 2f(s)ds - [ x5s-2f(s)ds + O(xB/log™ x),

27 S(x) = - jﬁ )

6

where 6 =6, and 8 = a7!, the path of the first integral is the upper edge of the
1

cut, that of the second is the lower, m is arbitrary, and

S(x) = E a,log x/n.
nSx

Now let 6 = 5(x) be a monotone decreasing function which approaches zero as
X > oo; later it will be chosen precisely. We have

x+06x ) x+0x 1
f T(u b e uT du =j E a u  du
xX

X n<u

n
o
LN
| K
&
]
o
t
[
o
3]
'
3
Crem—y
=
]
=]
e

n<x+0x nSx n
x+0x x+0x x+0x
= Eans u”du + E anj u!du
n<x x x n
x+0x
=Z a,log(1+ 6)+Z anlogﬁnﬁ(
nSx x

=log (1 + d) E a, + E anlogx -iI-IGX - E anlog(finbﬁ- }—;)
nSX n<x+0x n<x

= log (1 + ) E a, + S + 0x) - Sx) - log(1+8) }_ an
n<x n<x
= S(x + 6x) - S(x).

But
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x+06x ‘
s Tulaj, -+, a)u ! du < T(x + 6x|ay, -+, ay)log (1 +6)

xX

= T(x + dx|ay, -+, @ X5+ 0(5)),

and
x+0x
S Tleg, =+, op)ut du > T, -, az )6+ 0(8)).
X ,
Hence
, . T|ay, -, axr)
(®) Hm SUp St + 6x) - SG}/6 < 1
and
T 5x
(9) lim inf (c + Oxlary, -, o)

X >0 {ﬁx + 0x) - S(x)} /6 >1,

and we need an asymptotic expression for S(x + 6x) - S(x). We have

27 {S(x + 6x) - S(x)}

B 8 B 0
= _(j + j )(x + 6x)s~%f(s)ds - (J + s )xss'zf(S)ds + O(xB/1og* x)
6 B 8 B

B 0
= -J p(x, 8, s)s-2f(s)ds - j p(x, 6, s)s-2f(s)ds + OB Nlog4 x),
0 B

where p(x, 6, s) = (x + 6x)S - x5. Using (7), we have

27i{S(x + 6x) - S(x)}

X

B 6
j + j )p(x, 5, s)s~%{¢,(s) log¥ (a,s - 1)1+ ¢, (8)log ¥~ (a,s - 1)}
6 B

+ OQtog V-2 (a,s - 1)-1)}ds + O(xP/log% x).

In moving across the cut, log (@,s - 1)~! must be replaced by log(a,s - 1)~! + 27i,
so that

27i{S(x + 6x) - Sx)}

B
= j p(x, 8, 8)s-2 ¢,,(s) {(log (a,s - 1)-1 + 271)Y - log ¥ (a;s - 1)-1}ds
7]
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+ j px, 6, s)s2¢,_; (s){(og (a,s - 1)-1 + 2m1) V-1 - log V-1 (a,s - 1)-1}ds
6
B
+ O(J px, 6 s)s-2log¥-2 (a,s - 1)'1ds) + O(xP/1log4 x)
6
B
=y j p(x, o, s)s’2<1>v(s)log”‘1 (a,s - 1)-las
e

B
+ O(S p(x,8,8)s %log V-2 (a,s - 1)'1ds) + OxP/logt x).
0

Now

B
J‘ p(x, b, s)s‘2<1>v(s)logy‘1 (a,s - 1)-1las
6

B
=L p(x, 5,5)87%¢,(s){log (1 - @, s)~! - mi} V-1 ds

B
=§ p{x, 6, s)s'2¢v(s)logy'1 (1 - als)'lds
6

B
+ 0([ px, 6, s)s %log¥-2(1 - als)'lds),
8

and

B
j p(x, o, s)s‘zc,lbl,(s)logu‘1 (1-a,s)"tds
6

B
J p(x, 6, s{ B 26,(8)+ O - s)}{logV-1(8 - s)-! + Olog V-2 (8 - s)~1)} ds
0

1

a%qb,,(s)jﬁ

B
plx, 6, s)logV-1 (8 - s)-lds + O(J p(x, 8, s)log¥-2(3 - s)'lds).
6 )

Moreover,
p-6

B
J p(x, 6 s)log¥-1 (B -s)lds = J px, 6, B - y)-log y)¥V-1 ay
g 0
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B-0
=J [+ oxPY - BN (logy) ¥ d
0

PB—G
=B xV{@+ 6B -1} (logy)’ ldy
J0 -

-B-0
= xB xY{(@ - y)5+ 0(6%)} (-log y)V "t dy
Jo

g-0 B-b
o xwomgw”dw-bﬁf xVy (-log )"~ day
0

B-0
+ 0(52 xﬁj x Y (-log y)V'ldy)

0

_5xB[1 + Of 6)] (B-0)10g x

-z V-1
o.Tog x (log, x - log z)” " dz

(B—B)log x
6 xB j' e % z(log, x - log z)¥ ~ldz

-
logs x 0

_5x8[1+ 00)] 1og? ! x f(ﬁ'e)bg *

e %dz
o, log x 0
(B—B)log x V-1
L0 6xP[1 + 0(6)] j eZlog z dz )+ O 5xBlog, " x
a,log x Jo log2 X

_5 xP log,V- 62xPlogt 6x3 logy-2 x
Xi0 .
log x log x log x
It follows that

) 6xBlogt-
log x

L0 8% xPlogl - oxPlogl-2 x + 0 xB
log x ~ logx log4 x )’

and for 6 = 6(x) = (log x)~% we obtain

S(x + 6x) - S(x) = a,V ¢, (8

S(x + 6x) - S(x)
5

xP log
log x

~a, v, (B)
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Here the function on the right is of sufficiently slow growth that it has asymptotically
equal values for asymptotically equal arguments; together with the relations (8) and
(9), this clearly implies that

Blogl-1x
log x

" -
ey e o) xBlog k! x
“w-1mn Ppysl Pr logx °

T(xlal, ooy, ar)~011V¢V(3)

3. THE ESTIMATION OF Rk(x). Throughout this section the letters p and q
will be used exclusively to designate primes congruent to 1 and 3 (mod 4), respec-
tively. To emphasize this, the symbols “(1)” and “(3)” will be adjoined to summa-
tion and product symbols, when appropriate. We define

¢,(s) =H(1 - p_s)_1 for fis> 1,
(1)

€4(s) =H(1 - q-s)_1 for s> 1,
(3)

LE) =Y, (D% en+ D= JJa-p™" JTa+q®) for sis>1,

n=0 (1) (3)

P,(s)=) p® for %t s> 1.
(1) |

The series expansion for L(s) converges for 9% s > 0, so that it provides an analytic
continuation of L(s) over this latter region; L(s) is therefore regular for 9%is > 0.
Moreover, it is known ([4], pp. 462-466) that L(s) has all the properties asserted for
¢(s) in the paragraph following (6), in the region G(1), except that it has no pole at
s=1.

B

al -
As noted earlier, if n = 2% n'n", where n' = JIp; ton" = [Tq; ' then

T(n') if n" is a square.
rz(n) =
0 otherwise.

Thus if we again let (a; + 1)+-- (@ + 1) be a factorization of k in which
ay=-c=ay<ayy<-<Lay,

and put

a,

o
1 if n'=p 1 ceep,” with p;# Pj and n" is a square,

0 otherwise,
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and

o0
gls) = 2 b,n~%,
n=1

then g(s) is the generating function of those solutions of the equation r,(n) = k
which correspond to the given factorization of k. We have

g(s) ) Z"p—lals ."p;ars (1+2°S+ 2-2s 4 ...). H(]_ + q-Zs + q-4s 4 «0)
(1) (3)
= p;als--'p;ars 1-2-s)? 'H(l - q728)-1
(1) (3)
" o-ays -0 .S syl
=) p  cp (1-27%)7-g,@s)
(1)
Now
(11) ts) = (1 -27%) e (8)t,(s),
so that
eEIL(s) = (1 - 275)7 1 ¢4 (s) ¢, (28),
and
(12) £2(s) = (1 - 27%)€(s)L(s) /t,(2s).

Thus ¢,(s) is regular for % s > 1/2, except for a branch point at s = 1, and by (11),
the same is true of ¢;(s). Moreover, by the argument used before and by (12), the
functions P,(s) - log ¢,(s) and P,(s) - 2~ log(s - 1)-! are regular for %is > 1/2.
Consequently, writing

g(s) = {—j— X et " P  (ays) + O(Pl'v“l(als))}(l -275) e @s),
(1)

we see that the behavior of g(s) depends essentially on the relative sizes of a, and
2. Accordingly, we consider separately the cases o, =1, a, =2, a; > 3. In sum-
mary, the result is this:

THEOREM 2. a) If k is even, say k = Zvlk1 and Z{kl, then

; -1
£,(2) BRI 0 S P
Rk(x)~ vl-l;L E z Pv1+11 ***Pr ¢ log P .

b) If 21k, and 31k, then
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9 \v/2 a, -a.\l/2 1/2
Rk(X)N;V— 1/2(2) E E (pl ...pr ) -m.

k(1)
¢)If 21k and 3| k, so that k = 3V k,, where 21k, and 3{k,, then

2(\/2+ 1) Qy +1 ~ar\l/2 xl/zlogzle
R ~ ces AT ez © 4,
k(X) 1/2 ]} ' E Z (p Vfl‘l Pr ) logl/z x
k, (1)

Case a) k even. Here there exist factorizations of k for which a, = 1, and as
was seen in §2, the dominant terms in the estimate for R,(x) arise from those fac-
torizations in which o, is minimal and v is maximal: vV = V,.

The function P,(s) - 2 'log(s - 1)~} is regular in G(1) and, for
t|>c and o>1-alogP |t],
we have
IP,(s)| < d logP® [t].
Thus if we write
g(s) =¥, ()27 log¥ (s - 1)1 + -,

where the remaining terms are of lower order at s = 1 than the term written, and
where

=&y 118 -0,.s

(2s)
Y, (s) = ‘V—C.%IS—ZE)E Pys1 P

then the method used in §2 leads directly to a) in the statement of Theorem 2.

Case b) 2 'fk and 3 ’I’k. Since in this case a, > 3, the last factor in the repre-
sentation (10) of g(s) now predominates (that is, has the pole with greatest real
part). We write g(s|a;, --*; a,) in place of g(s), and put

-as -Qrs

g6 =Y g6lay, o a)=0-291 N P p T p, T £,28) = 9s) 4,(28).
k k(1)
Then ¢(s) is regular for 0 > 1/3, and
g.(s) = z nS = E c,n”%,
n=]

n
1, (n)=k

where c, is 1 or 0 according as r,{n) is or is not equal to k. We again have
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2+tica )
27712 cn log x/n=j x5s-2g(s)ds.

n<x 2-ico

From (11) and (12) it is easily seen that
E(s) = (1-275)¢(s)t,@s)/L(s),

so that {; has a branch point at s = 1:

1/2
£,(s) = (%cgﬁ)) c-1)Y2%, ..

and
£,@s) = (€,@)/m) % (s - 172)7 /% 4 ..
Hence the function
gi(s) = (§3(2)/7r)1/2¢(1/2)(s _12)° Y2,

has a branch point at s = 1/2, but is otherwise regular for ¢ > 1/3. The situation
is now almost identical with that encountered by Landau in his proof of (1); parallel-
ing the development there, one easily obtains the statement b) in Theorem 2.

Case c) 2 'I’ k, 3 ] k. Here a; =2 for some factorizations of k; considering
such factorizations, we write

"2 -2s ~®yp +18 —@,.s -s5,-1
gs)= 3. p; s"‘pvlspvlﬂl wepy - -(1-27°)7 (@)
(1)

" - .S

- s
1 V.+1 r rseel v
A 2 Py +t Py, (1-2 ®)" P Y2s) E,(28) + -,
(1)

where the remaining terms involve lower powers of P,(2s), where
3L v, +1 < -+ L @y, and where the function

" -@y 15 -0rS
21/2 x(s) =%(1 —275)t 3 p,,lﬂ1 T3
' (1)

is regular for ¢> 1/3. This time g has the expansion

-1/2

g(s) = X(1/2) (s - 1/2)" Y %10g?t (s - 172)7 " + -,

where the remaining terms are of lower order at s = 1/2 than the term written.
Thus if 0 = 91/2, then
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Zﬂ'i{ E bnlogxq:lt3X - 2 b, log x/n}

n_<_x+ ox nSx

1/2
~ -j plx, 5, s)s™2 X(1/2) (s - 1/2)"1/210g"1 (s - 1/2) ! as
9

9
- S o, 8, 8)s 2 X(1/2)(s - 1/2)" /210”1 (s - 1/2) “lds,
1/2

where the first integral is taken along the upper edge of the cut, and the second

along the lower edge. In going from the lower to the upper edge, (s - 1/2) 1/2
changes sign, and the logarithm increases its argument by 27i, so that if we put

S,(x) = Z bnlog x/n,
n_<_x
then
S,(x + 6x) - S,(x)

1/2
=~ Xé;/f) px, 8, 8)s (s - 1/2)'1/2{10g Vis - 172)7"
0

+[log (s - 1/2) "'+ 21ri]lvl} ds

1/2
=—X_<21~;{—2_)- p(x, 6’ S)S—Z{[log(llz - S)—l - '”i]V1

(7]
+[log(1/2 - s)~1 4 mi) v‘} (1/2 - s)'l/zds

1/2
-x(1/2)7r'1J o, 6, 8)s°2 (1/2 - )"/ 210g¥1 (1/2 - s)"Lds.
9

By means of the reductions of §2, this last expression is easily shown to be asymptotic
to

~1/2-0
4x(1/2)x 257! j xYy~1/2(1/2 - y)(-log y) 1 dy,
0

and this in turn is asymptotic to

1/21,6V 1/24. .V
2716 X(1/2) [(172) - X108 X _ o 0 -1/25 y(q /9).X L 7log 1 X
log 1/2x logl/z x

Thus, for suitably chosen & = 6(x), it follows that if R(x|o V41 *tts @) is the
number of integers less than or equal to x and of the form
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ay +1 o,
2 1
(Pl'"Pyl) Pv,+1 ""Pr

then

1/2 " -1/2
L AV 2 Py Py '

v (1)
1

and c) follows in the usual way.
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