ON A CONJECTURE OF ERDéS, HERZOG, AND PIRANIAN
Gerald R. Mac Lane

Let P(z) be a polynomial whose zeros lie on |z| =1 and such that [P(0)|= 1.
It is easy to prove that there exists a rectifiable curve C in Izl < 1 which joins
z = 0 to some zero of P(z) on |z|=1 and on which |P(z)| < 1. Ina recent paper
Erdss, Herzog, and Piranian [1] have given simple explicit examples of such poly-
nomials for which C has to be crooked, i.e., for which the length of C has to exceed
1. One conjecture made is that there exists a finite constant L such that, for every
polynomial of the class considered, there is a corresponding curve C of length at
most L. The purpose of the present note is to prove that this is false. It is not dif-
ficult to show that for polynomials of a fixed degree n there exists a corresponding
finite, best possible constant L, with the property stated. By enforcing suitable
sinuosities in C we shall prove that Lp > .

THEOREM 1. Let A be a compact subset of |z| < 1 with the following property:
there exists a simply-connected domain A such that 0¢ A and A c Ac{|z| < 1}.

Then there exists an integer ny = ny(A) such that for each n > n, there is a poly-
nomial Pn(z) with the properities: 1) P,(z) is of degvee n and all of its zevos lie on
|z| = 1, 2) Pn(0) = 1, and 3) [Pn(z)|> 2 for z e A.

Before proving Theorem 1 we note three different types of sets A, any one of
which will serve to prove that Ly > oo,

‘Example 1. Let p, 0 <p <1, be a constant. Let A be the finite spiral
z=p@-eNelt, 27 <t T.

From Theorem 1 it follows that L, > p (1 - e~27)(T - 47) for n> n,. Since T is
arbitrary, L, > .

Example 2. Let N and o be given, where N is a natural number and 0 < o< 7.
Let 0<r,<r, <-.-<rpy<1. Let A consist of the interval [r,, ry] of the real
axis together with the N arcs

|z| = rn, 0<argz<27 - a, 1<n<N, n odd,
and

|z|=rn,a§argz327r, 1<n<N, n even.

Example 3. Let N, p,, p,, and h be given, where N is a natural number,
0<p;<p,<1, and 0<2h < p, - p,. Let A consist of the two circular arcs

{lz] = ps, 7/N<argz< 2n} and {|z]|=p,, 0<argz< 7},
the interval [p,, p,] of the real axis, and the N segments

arg z = n7/ N, plglzl_gpz—h, 1<n<N, n odd,
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and
arg z = nn/ N, p1+hg|z|gp2, 1<n<N, neven.

All three of these examples show that arbitrarily long parts of a curve C may be
forced to lie in an arbitrarily chosen neighborhood of z = 0. Thus the growth of Lj
is not due solely to the behavior of possible curves C as they approach |z[ = 1.
Similarly, in the construction of Erdds, Herzog and Piranian, C is devious near z = 0.
Theorem 1 is a simple consequence of the following theorem which, except for one
added conclusion, we proved in an earlier paper [2, Theorem IV].

THEOREM A. Letft D be a simply-connected domain in the z-plane, bounded by a
rectifiable Jordan curve I'. Let D,, ---, Dq be q mutually disjoint simply-connected
subdomains of D, and let 1) (z) be holomorphic and zero-free in Dy, 1 <k < q. Then
there exists a sequence of polynomials Qn(z), with all zeros on I", such that

rl_l)tg Qu(z) = fi(z), z € Dy,

uniformly in each compact subset of Dy, 1 <k < q. Furthermore, Q,(z) is of
degree n.

To derive Theorem 1 from Theorem A we take |z| <1 for D, and q=2. We
may assume that 0 ¢A. Let D, = A and let D, be a suitably small neighborhood of
z=0. Let f,(z) =3 and f,(z) = 1, and set Py(z) = Q,(z)/Q,(0).

The added conclusion referred to above is the last sentence in Theorem A, To
fill this gap we proceed as follows. We have from [2] merely a subsequence { Qn,}
of the desired sequence {Qn}. Also proved [2, §5], although not explicitly stated as
a theorem, is the following special case. Lef g(z) be holomovphic and zero-free in
D U I'. Then there exists a sequence of polynomials T,(z) such that T, is of degree
n with all zeros on I" and T,(z)>g(z) uniformly in every compact subset of D. Now
let g(z) =1. For 2n; < m < 2nj4, - 1, we define

Q@) = Qp, ()T, . (2).

It is clear that the sequence so defined does the job.

Finally, we note that Theorem A allows Theorem 1 and its corollary that L, >
to be generalized to domains bounded by rectifiable Jordan curves.
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