THE CLUSTER SET OF THE PRODUCT OF
TWO FUNCTIONS IN H®

G. Csordas and Hugh M. Hilden

Let I denote the set of all inner functions in H*, where H® is the Banach alge-
bra of all bounded analytic functions on the open unit disk D = {z: |z| <1}. Let I*
denote the set of all functions f(z) in H* for which the cluster set C(f, eif) at each
point eif on the circumference C = {z: |z| = 1} is either the closed unit disk
|w| <1 or else a single point of modulus 1. This class of functions has been in-
vestigated in several recent papers (see, for example, [2] and [5]). In particular,
A. J. Lohwater and G. Piranian [5, Theorem 3] have shown that the class I* con-
tains an outer function.

In [3], the question was raised whether I* is a semigroup under multiplication.
After some preliminary considerations, we show that I* is not closed under multi-
plication (Theorem 2). The technique we use to construct functions in I* - I leads to
several surprising results. For example, we show that the norm of the product of
two functions in I* can be arbitrarily small. In the remainder of the paper, we dis-
cuss some of the consequences of Theorem 2 that underscore the differences be-
tween inner functions and functions in I* - I.

We begin with a simple fact, which, for purposes of reference, we state without
proof as a lemma.
LEMMA 1. Let {1, } be a sequence of nonzevo numbers in D. If the series

e}

221 |1 -2,| converges, then

< 2Z|1-a].

n=1

o0
1- I

n=1

Our next lemma gives an inequality for a Blaschke product whose zeros con-
verge rapidly to C. Let {a,} be a sequence of points in D such that |a,| =rp,_;
(n=1,2, ), where

2
r,=1-2"1".
Since {a,} is a Blaschke sequence, we can form the associated Blaschke product

B(z) = II b(ak, z) ,
k=1

where

51( dx - 2

b = .
(ak,Z) |ak| l—ékz

Received April 10, 1971.

Michigan Math, J. 19 (1972).

13



14 G. CSORDAS and HUGH M. HILDEN

We shall denote the nth partial product of B(z) by Bn(z).
LEMMA 2. Let B(z) be the Blaschke product constructed above. Then

|B(r,, eif) - B_(eif)| < 2300-1)  (n=1 2, )

fov each point eif on C.

For the proof of Lemma 2, we need two estimates. If !z] <r,, ,then

< 2 |1-ba, 2],
k=n+1

1- II ba, 2
k=n+1

|Bn(z) - B(Z)l S

where the second inequality is a consequence of Lemma 1. Next, a familiar argu-
ment (see [4, p. 65], for example) shows that

oC

1= oy 2
2 |1-blay,z)| < 2 T
k=n+1 kentl | 2] 2n
Note that
27 _ Iakl 2 <6 2 __ﬁ_lil_ < 6 - Z(ZH)Z 2 2-(2k)2 < g-93n
]a | 1-r, — 1-r - —
k=n+1 k n k=n+1l 2n k=n+1l
Therefore we have established the inequality
(1) |Bn(z) - B(z)] < 6273 for |z| < rpp.

Assume now that ]zl < 1. Then

I < Bn(Z) ] ; )
IBn(Z)l = k%;l Wb(ak,Z) _<_kZ:>l Ib(ak,Z)l .
n n 1- |ak|2
But Z)k':l lbl(a«k 9 Z)I = Z)k:].——:——-z_ ’ and hence
|1 - 3y 2]

n

N

n n
1+

27 Ib'(ak’ z)l < 27 jl_ < 2 < zn_l_____l___ < Z(Zn)2-3n+l .

k=1 k=11 - |ak] k=1 1 - Iakl " Tono1

Therefore

sup |Bh(z)| < 9(2n)2-3n+1
|<l<n

To obtain our second estimate, we observe that
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1
| Ba(ranet?) - Bp(el?)] = S B (tel?) at
2n

< (1-r,) sup |BL(z)] < 9-(2n)2 | 9(2n)%-3n+1
|2] <1

Hence,
(2) |B(r;, et ?) - B (e!))] < 2-2-3n.

Combining the relations (1) and (2), we obtain the inequality in Lemma 2.

Let w = f(z) be a function in H*, and let S be a closed, connected set lying in
|z| <1 except for one point e % on C. We say that a value w lies in the cluster
set Cgff, e 90) if the sequence {z,} used in defining C(f, ¢190) is turther re-
stricted to lie in S. If S is the radius drawn to the point eie0 , we denote the re-
sulting cluster set by Cp(f, eieo) and call it the vadial cluster set of f(z) at the
point ei % . Preliminaries.aside, we now prove the following theorem.

THEOREM 1. Lel {ei gm} be a countable set of points on C. Then theve
exists a Blaschke product w = B(z) such that

i6

{lw|] = 1} € Cyx(B,e'"m)  (m=1,2, ).

To prove the theorem, it suffices to show that there exists a Blaschke product

w = B(z) such that at each point el Im the radial cluster set of B(z) contains a
countable, dense subset of {|w| =1}.

Let {e1¢k} be a countable dense set of points on |w| = 1. By means of the
diagonal process, we can arrange the ordered pairs

(e9m &%) (m,k=1,2, )

’

if i
into a sequence S = S(n) = (e Min , € d)kn) such that each ordered pair appears in-

finitely often in the sequence.

Next, as in Lemma 2, we construct a Blaschke product w = B(z) whose zeros
satisfy the condition

la| =r,,.;, @=1,2,+;r_ =1-2717),

We choose the argument of a; so that

- 16,
i6 a) a - e .
B]_(el 1) = ~ ig = el¢1 5
la;] 1 - a,e’ !
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. 9 .
where the ordered pair (e' !, e1¢1) is the first term of the sequence S. Assuming
that the arguments of a, , -=-, a, _; have been chosen, we select the argument of a_
so that

B (1% = o¥m

H

where B,(z) is the nth partial product of B(z), and where the ordered pair

(elek 19m) is the nth term of the sequence S.

We now assert that the Blaschke product w = B(z) constructed above has the

required property. Let (elej , e1¢k) be an arbitrary ordered pair in S. Then, by
Lemma 2, the inequality

|B(r2nei9j) - ei¢k| < 2-3(n-1)

holds for infinitely many values of n. Consequently, emk € Cp(B, elej), and the
theorem is proved.

In the sequel, we shall use E and m(E) to denote the closure of E and the
measure of E. The proof of the main theorem (Theorem 2) of this paper is based on
the following measure-theoretic result.

LEMMA 3. There exists a sequence {E.} of paivwise disjoint, measurable
subsets of the closed intevval [0, 27| such that

(i) m(E,) <2r/27*!  (n=1,2, )
and

(ii) for each n, the set E, is melrically dense on [O, 271]; that is, for each sub-
intevval J of [0, 27], the measuve of J N E is positive.

We begin the proof of the lemma with an auxiliary construction. Let X denote
the closed unit interval [0, 1]. Let K1 be the open interval of length 1/4 centered at
1/2. Let K2 and K2 be the open 1ntervals of length 4~ -2 centered at the midpoints
of the two intervals whose union is X - K}. Let K3, K%, K3, and K5 be the open
intervals of length 4-3 centered at the m1dp01nts of the four 1nterva1s whose union is

X - (K3 UK3). Proceeding in this way, we obtain the set

o Zn—l
k=U U xl.
n=1 j=1

We remark that the construction of K is analogous to the construction of the comple-
ment of the Cantor set. It is evident that the subintervals {KJ} are pairwise dis-
joint and that the measure of X is

22279 =12,

j=1

m(K) —%
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Now let J be some bounded open interval, and let ¢5 be the order-preserving
affine transformation of the open interval (0, 1) onto J. We define the set T(J) by
the formula T(J) = ¢ ;(K), where K is the set constructed above. Since ¢ is an af-

fine transformation, it follows that m(T(J)) = —m(J) and T(J) =J. The definition of

T may be extended to any bounded open set. If G is a bounded open set of the real
line, then G can be written in a unique way as a union of pairwise disjoint intervals
{J,}. Hence we define

) = U 1w).

Again we note that m(T(G)) = %m(G) and T(G) =

We have now set up the necessary apparatus, and we proceed with the construc-
tion as follows. Let

GO = (0, 27]') s Gl = T(Go) s . Gn = T(Gn-l) ,

Then it is clear that G, € G, _1, En = [0, 217], and m(G,) = 27/2™. Furthermore,
every subinterval of G, has length at most 27/4". If we set

FIZGO"Gl’ FZZGI'GZ’ Ty Fn:Gn—l'Gn’ Tt

then F, N F_ =@ for n #m, and m(F,) = 2n/2".

We assert now that if V is any subinterval of [0, 27]; then m(V N F,) > 0 for

sufficiently large n. To see this, select an n so large that 27/4n-1 < |Vl/2 where
|V| denotes the length of V. Since the midpoint of V belongs to G, _;, and since

each subinterval of G, _, has length less than |V|/2, it follows that V contains a
maximal subinterval J of G, _;. Therefore

m(VAF) =m(VN (G,_1 - Gp)) > m@@ N (G,_; - G,)).
But

m(T N G,y - Gy)) = m(J - T(@) = 3m(3) > 0.

n-1

This shows that m(V N Fn) > 0, provided n is sufficiently large.

Let Z denote the set of all positive integers, and let y/ denote a one-to-one
mapping from the Cartesian product Z X Z onto Z. If y(j, k) = n, then we set
F = ij. Next we define

o0
5, - Uy
j=1
The sets E; (k=1, 2, ---) are then pairwise disjoint and metrically dense in

[0, 27]. Finally, we select a subsequence {E,} of {E,} such that
m(E,) < 27/27+2 . This concludes the proof of Lemma 3.
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It is easy to verify that if f; and f, are two inner functions, then

sup |£)(2)f5(2)| = [£,185] = 1.
z€D

The following example, which we present in the form of an existence theorem, shows
that the norm of the product of two functions in I* - I need not be 1.
THEOREM 2. Theve exist functions t)(z) andiy(z) in T* such that |ff,| < 1.

Let {En} be a sequence of measurable subsets of C having the properties
listed in Lemma 3. Let {s,} be a countable dense subset of (-, 0]. We may as-

sume that the sequence {s,} is ordered so that the series 22 sZm(E ) converges.
Let

-1 ifx¢ U E,,
U, (x) =
s, if xeE,,
and
-1 if x ¢ U E,,
U,(x) = < s, if x e E, and s,,<-2,

-2-s, ifxeE, and s, >-2.

Note that U;(x) + Up(x) < -2. Since the functions U,(x) and U,(x) are in L2 they
can be extended harmonically to the open unit disk D. Denote by uj(z) and uy(z) the
bounded harmonic functions with boundary values U; and Uj,, respectively. Let
vi(z) (k = 1, 2) be a harmonic conjugate to uy(z) (k =1, 2) in D. Then the functions

uj+iv us+iv
e 1 1 e 2 2

g, = and g, =

are bounded and analytic in D. It follows now from the construction of g; and g,

that
lel = llesll =1 and  |lge,] < 1.

For each n, let K, be a subset of -E,, with the following properties:

(i) K, is a countable dense subset of C, and

(ii) if eif € K, , then lim._, | gi(reif) = exp {u(eif) +ivi(eif)} (k =1, 2).
The existence of the sets K, is assuréd by Fatou’s theorem and the assumption that

[~
each E, is metrically dense on C. Now, if we set E = Un=1 K,, then E is a
countable, dense subset of C. By Theorem 1, there exists a Blaschke product
w = B(z) such that

{lw] =1} ¢ c,B, eif)

for each eif in E. Let f;(z) = B(z)gi(z) and f,(z) = B(z)g2(z). Since multiplication
by B(z) is an isometry, we see that
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I = Jt2l =1 ana £, 5] < 1.

To complete the proof of the theorem, it suffices to show that the functions fl(z)

and f,(z) belong to I*. Let e'90 pe some point of C, and let wg = r e'?0 pe any
point of the open unit disk |w| < 1. Since the sequence {s,} is dense on (~e, 0],
we can find a convergent subsequence of {s,} such that

S
lim e ®

n-— co

_ro,

where for simplicity of notation {sn} denotes the subsequence. Now, correspond-

ing to each s, of this subsequence, we select a point el On in E, N E such that
lim e'%n = &%

n — oo

This is possible, because for each n the set E, N E is dense on C. Thus we see

that at every point of the sequence {ei gn}, where e’ On € E, N E, the radial limit of
g,(z) exists and, moreover,

Sn

lim |g1(re19n)| = e

Ir — l
But f,(z) = B(z) g,(z); therefore, for each index n, we have the inclusion

{|w| =esn} c Cp(f1 ,eig

n)
Consequently, wy belongs to the radial boundary cluster set of f;(z) at etf0 , and

a fortiori wy is in C(f;, eigo). (For the definition of the radial boundary cluster
set, we refer the reader to [1, p. 98].) Since w, is an arbitrary point in |w| <1,

and since C(f;, 6190) is closed and connected, we conclude that the cluster set

C(f,, 6160) is the closed unit disk le < 1. A similar argument shows that the
cluster set of fz(z) at each point ei® on C is also the closed unit disk. Therefore,
the functions f;(z) and f,(z) belong to I*, and the theorem is proved.

The following result is an immediate consequence of Theorem 2.

COROLLARY 1. I* is not a semigroup undey multiplication.

If in the proof of Theorem 2 we alter slightly the definition of the function U,(x),
we obtain the following surprising result.

COROLLARY 2. Let fl(z) be the function constrvucted in Theovem 2. Then for
each € > 0, theve exists a function £,(z) in I* such that ”fl £, || <eg.

Before we state the next corollary, we introduce the following definition. We
shall call a function £(z) in H® a genevalized divisor of zevo if there exists a se-
quence {h,} of functions in H* such that

inf [|hyll > 0 and  lim |fn,|| = o.

n — oo
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COROLLARY 3. The functions constructed in Theovem 2 ave genevalized
divisors of zero.

Remark. In [2, p. 25], we constructed a function f(z) in I* - I whose set of
omitted values in |w| < 1 has positive (logarithmic) capacity. On the other hand, it
is well known [1, p. 35] that the set of values omitted by a nontrivial inner function in
|w| <1 is at most of capacity zero. In a recent private communication, Professor

George Piranian has shown to one of the authors that the set of omitted values of a
function f(z) in I* - I can consist of a single point. A minor modification of our
arguments shows that a function in I* - I can assume every value of |w| < 1.

As a final application of Theorem 2, we consider the extreme points of the unit
ball =
2= {teH™: || <1}

in H*. (See [4, p. 136] for the definition of extreme points.) It is known [4, p. 138]
that every inner function in H* is an extreme point of Z. On the other hand, our
next theorem shows that functions in I* - I need not be extremal.

THEOREM 3. Theve exists a function in I* - 1 that is not an extveme point
of Z.

We present an outline of the proof. First consider the sequence {s,} used in
the proof of Theorem 2, and modify it so that it satisfies the growth condition

log (1 - esn) > -n.

Next we repeat verbatim the relevant parts of the proof of Theorem 2 to obtain the
function f;(z) in I* - I. It follows then from the relation

SH log(1 - |£,(eif)])do > -e

-
and a result of Hoffman [4, p. 138] that f,(z) is not an extreme point of =.

Theorem 2 shows that I* is not a semigroup under multiplication.

REFERENCES

1. E. F. Collingwood and A. J. Lohwater, The theory of cluster sets. Cambridge
Univ. Press, Cambridge, 1966.

2. G. Csordas, The Silov boundary and a class of functions in H®. Dissertation,
Case Western Reserve University, Cleveland, Ohio, 1969.

, A note on a rvesult of A. J. Lohwatev and Geovge Pivanian. Math. Ann.
(to appear).

4. K. Hoffman, Banach spaces of analytic functions. Prentice-Hall, Englewood
Cliffs, N. J., 1962.

5. A. J. Lohwater and G. Piranian, Bounded analytic functions with lavge cluster
sets. Ann. Acad. Sci. Fenn. Ser. A. I. 499 (1971), 5 pp.

University of Hawaii
Honolulu, Hawaii 96822



