THE CLUSTER SET OF THE PRODUCT OF TWO FUNCTIONS IN H^{∞}

G. Csordas and Hugh M. Hilden

Let I denote the set of all inner functions in H^{∞} , where H^{∞} is the Banach algebra of all bounded analytic functions on the open unit disk $D = \{z: |z| < 1\}$. Let I^* denote the set of all functions f(z) in H^{∞} for which the cluster set $C(f, e^{i\theta})$ at each point $e^{i\theta}$ on the circumference $C = \{z: |z| = 1\}$ is either the closed unit disk |w| < 1 or else a single point of modulus 1. This class of functions has been investigated in several recent papers (see, for example, [2] and [5]). In particular, A. J. Lohwater and G. Piranian [5, Theorem 3] have shown that the class I^* contains an outer function.

In [3], the question was raised whether I^* is a semigroup under multiplication. After some preliminary considerations, we show that I^* is not closed under multiplication (Theorem 2). The technique we use to construct functions in I^* - I leads to several surprising results. For example, we show that the norm of the product of two functions in I^* can be arbitrarily small. In the remainder of the paper, we discuss some of the consequences of Theorem 2 that underscore the differences between inner functions and functions in I^* - I.

We begin with a simple fact, which, for purposes of reference, we state without proof as a lemma.

LEMMA 1. Let $\{\lambda_n\}$ be a sequence of nonzero numbers in D. If the series $\sum_{n=1}^{\infty} |1-\lambda_n|$ converges, then

$$\left|1-\prod_{n=1}^{\infty}\lambda_{n}\right|\leq \sum_{n=1}^{\infty}\left|1-\lambda_{n}\right|.$$

Our next lemma gives an inequality for a Blaschke product whose zeros converge rapidly to C. Let $\{a_n\}$ be a sequence of points in D such that $|a_n| = r_{2n-1}$ $(n = 1, 2, \dots)$, where

$$r_n = 1 - 2^{-n^2}$$
.

Since $\{a_n\}$ is a Blaschke sequence, we can form the associated Blaschke product

$$B(z) = \prod_{k=1}^{\infty} b(a_k, z),$$

where

$$b(a_k, z) = \frac{\bar{a}_k}{|a_k|} \frac{a_k - z}{1 - \bar{a}_k z}.$$

Received April 10, 1971.

Michigan Math. J. 19 (1972).

We shall denote the nth partial product of B(z) by $B_n(z)$.

LEMMA 2. Let B(z) be the Blaschke product constructed above. Then

$$|B(r_{2n} e^{i\theta}) - B_n(e^{i\theta})| \le 2^{-3(n-1)}$$
 (n = 1, 2, ...)

for each point $e^{i\theta}$ on C.

For the proof of Lemma 2, we need two estimates. If $\left|z\right| \leq r_{2n}$, then

$$\left| B_{n}(z) - B(z) \right| \leq \left| 1 - \prod_{k=n+1}^{\infty} b(a_{k}, z) \right| \leq \sum_{k=n+1}^{\infty} \left| 1 - b(a_{k}, z) \right| ,$$

where the second inequality is a consequence of Lemma 1. Next, a familiar argument (see [4, p. 65], for example) shows that

$$\sum_{k=n+1}^{\infty} \, \left| \, 1 \, - \, b(a_k \, , \, z) \, \right| \, \leq \, \sum_{k=n+1}^{\infty} \frac{1 \, - \, \left| \, a_k \, \right|}{\, \left| \, a_k \, \right|} \cdot \frac{2}{1 \, - \, r_{2n}} \, .$$

Note that

$$\sum_{k=n+1}^{\infty} \frac{1-|a_k|}{|a_k|} \frac{2}{1-r_{2n}} \leq 6 \sum_{k=n+1}^{\infty} \frac{1-|a_k|}{1-r_{2n}} \leq 6 \cdot 2^{(2n)^2} \sum_{k=n+1}^{\infty} 2^{-(2k)^2} \leq 6 \cdot 2^{-3n}.$$

Therefore we have established the inequality

(1)
$$|B_n(z) - B(z)| \le 6 \cdot 2^{-3n}$$
 for $|z| \le r_{2n}$.

Assume now that $|z| \leq 1$. Then

$$\left| \, B_n'(z) \, \right| \; = \; \left| \, \sum_{k=1}^n \, \frac{B_n(z)}{b(a_k \; , z)} \, b'(a_k \; , \; z) \, \right| \; \le \; \sum_{k=1}^n \; \left| \, b'(a_k \; , \; z) \, \right| \; .$$

But
$$\sum_{k=1}^{n} |b'(a_k, z)| = \sum_{k=1}^{n} \frac{1 - |a_k|^2}{|1 - \bar{a}_k z|^2}$$
, and hence

$$\sum_{k=1}^{n} |b'(a_k, z)| \leq \sum_{k=1}^{n} \frac{1+|a_k|}{1-|a_k|} \leq \sum_{k=1}^{n} \frac{2}{1-|a_k|} \leq 2n \frac{1}{1-r_{2n-1}} \leq 2^{(2n)^2-3n+1}.$$

Therefore

$$\sup_{|z| \le n} |B'_n(z)| \le 2^{(2n)^2 - 3n + 1}.$$

To obtain our second estimate, we observe that

$$\begin{split} \left| \, B_n(r_{2n} \, e^{i \, \theta}) \, - \, B_n(e^{i \, \theta}) \right| \; &= \; \left| \, \int_{r_{2n}}^1 \, B_n'(t e^{i \, \theta}) \, dt \, \right| \\ \\ &\leq (1 \, - \, r_{2n}) \, \sup_{\left| \, z \, \right| \, \leq \, 1} \, \left| \, B_n'(z) \, \right| \, \leq \, 2^{-(2n)^2} \, \cdot \, 2^{(2n)^2 - 3n + 1} \, . \end{split}$$

Hence,

(2)
$$\left| B_n(r_{2n} e^{i \theta}) - B_n(e^{i \theta}) \right| \leq 2 \cdot 2^{-3n}$$
.

Combining the relations (1) and (2), we obtain the inequality in Lemma 2.

Let w=f(z) be a function in H^{∞} , and let S be a closed, connected set lying in |z|<1 except for one point $e^{i\,\theta_0}$ on C. We say that a value w lies in the cluster set $C_S(f,e^{i\,\theta_0})$ if the sequence $\{z_n\}$ used in defining $C(f,e^{i\,\theta_0})$ is further restricted to lie in S. If S is the radius drawn to the point $e^{i\,\theta_0}$, we denote the resulting cluster set by $C_{\rho}(f,e^{i\,\theta_0})$ and call it the radial cluster set of f(z) at the point $e^{i\,\theta_0}$. Preliminaries aside, we now prove the following theorem.

THEOREM 1. Let $\{e^{i\,\theta_{\bf m}}\}$ be a countable set of points on C. Then there exists a Blaschke product w=B(z) such that

$$\{|\mathbf{w}| = 1\} \subseteq C_0(B, e^{i\theta_m}) \quad (m = 1, 2, \dots).$$

To prove the theorem, it suffices to show that there exists a Blaschke product w = B(z) such that at each point $e^{i\theta_m}$ the radial cluster set of B(z) contains a countable, dense subset of $\{|w| = 1\}$.

Let $\{e^{i\phi_k}\}$ be a countable dense set of points on |w| = 1. By means of the diagonal process, we can arrange the ordered pairs

$$(e^{i\theta_{m}}, e^{i\phi_{k}})$$
 (m, k = 1, 2, ...)

into a sequence $S=S(n)=(e^{i\theta_{m_n}},e^{i\phi_{k_n}})$ such that each ordered pair appears infinitely often in the sequence.

Next, as in Lemma 2, we construct a Blaschke product w = B(z) whose zeros satisfy the condition

$$|a_n| = r_{2n-1}$$
 $(n = 1, 2, \dots; r_n = 1 - 2^{-n^2}).$

We choose the argument of a_1 so that

$$B_1(e^{i\theta_1}) = \frac{\bar{a}_1}{|a_1|} \frac{a - e^{i\theta_1}}{1 - \bar{a}_1 e^{i\theta_1}} = e^{i\phi_1},$$

where the ordered pair $(e^{i\,\theta_{\,l}},e^{i\phi_{\,l}})$ is the first term of the sequence S. Assuming that the arguments of $a_{\,l}$, ..., $a_{\,n-l}$ have been chosen, we select the argument of $a_{\,n}$ so that

$$B_n(e^{i\theta}k) = e^{i\phi}m,$$

where $B_n(z)$ is the nth partial product of B(z), and where the ordered pair $(e^{i\,\theta}{}^k\,,\,e^{i\,\theta}{}^m)$ is the nth term of the sequence S.

We now assert that the Blaschke product w=B(z) constructed above has the required property. Let $(e^{i\theta}j,e^{i\phi}k)$ be an arbitrary ordered pair in S. Then, by Lemma 2, the inequality

$$|B(r_{2n}e^{i\,\theta}j) - e^{i\phi}k| < 2^{-3(n-1)}$$

holds for infinitely many values of n. Consequently, $e^{i\phi_k} \in C_\rho(B, e^{i\theta_j})$, and the theorem is proved.

In the sequel, we shall use \overline{E} and m(E) to denote the closure of E and the measure of E. The proof of the main theorem (Theorem 2) of this paper is based on the following measure-theoretic result.

LEMMA 3. There exists a sequence $\{E_n\}$ of pairwise disjoint, measurable subsets of the closed interval $[0,2\pi]$ such that

(i)
$$m(E_n) < 2\pi/2^{n+1}$$
 (n = 1, 2, ...)

and

(ii) for each n, the set E_n is metrically dense on $[0,2\pi]$; that is, for each subinterval J of $[0,2\pi]$, the measure of $J\cap E_n$ is positive.

We begin the proof of the lemma with an auxiliary construction. Let X denote the closed unit interval [0,1]. Let K_1^1 be the open interval of length 1/4 centered at 1/2. Let K_2^1 and K_2^2 be the open intervals of length 4^{-2} centered at the midpoints of the two intervals whose union is $X - K_1^1$. Let K_3^1 , K_3^2 , K_3^3 , and K_3^4 be the open intervals of length 4^{-3} centered at the midpoints of the four intervals whose union is $X - (K_2^1 \cup K_2^2)$. Proceeding in this way, we obtain the set

$$K = \bigcup_{n=1}^{\infty} \bigcup_{j=1}^{2^{n-1}} K_n^{j}.$$

We remark that the construction of K is analogous to the construction of the complement of the Cantor set. It is evident that the subintervals $\left\{K_n^j\right\}$ are pairwise disjoint and that the measure of K is

$$m(K) = \frac{1}{4} \sum_{j=1}^{\infty} 2^{-j} = 1/2.$$

Now let J be some bounded open interval, and let ϕ_J be the order-preserving affine transformation of the open interval (0,1) onto J. We define the set T(J) by the formula $T(J) = \phi_J(K)$, where K is the set constructed above. Since ϕ_J is an affine transformation, it follows that $m(T(J)) = \frac{1}{2}m(J)$ and $\overline{T(J)} = \overline{J}$. The definition of T may be extended to any bounded open set. If G is a bounded open set of the real line, then G can be written in a unique way as a union of pairwise disjoint intervals $\{J_n\}$. Hence we define

$$T(G) = \bigcup_{n=1}^{\infty} T(J_n).$$

Again we note that $m(T(G)) = \frac{1}{2}m(G)$ and $\overline{T(G)} = \overline{G}$.

We have now set up the necessary apparatus, and we proceed with the construction as follows. Let

$$G_0 = (0, 2\pi), G_1 = T(G_0), \dots, G_n = T(G_{n-1}), \dots$$

Then it is clear that $G_n\subseteq G_{n-1}$, $\overline{G}_n=[0,2\pi]$, and $m(G_n)=2\pi/2^n$. Furthermore, every subinterval of G_n has length at most $2\pi/4^n$. If we set

$$F_1 = G_0 - G_1$$
, $F_2 = G_1 - G_2$, ..., $F_n = G_{n-1} - G_n$, ...,

then $F_n \cap F_m = \emptyset$ for $n \neq m$, and $m(F_n) = 2\pi/2^n$.

We assert now that if V is any subinterval of $[0,2\pi]$; then $m(V\cap F_n)>0$ for sufficiently large n. To see this, select an n so large that $2\pi/4^{n-1}<|V|/2$, where |V| denotes the length of V. Since the midpoint of V belongs to \overline{G}_{n-1} , and since each subinterval of G_{n-2} has length less than |V|/2, it follows that V contains a maximal subinterval J of G_{n-1} . Therefore

$$m(V \cap F_n) = m(V \cap (G_{n-1} - G_n)) > m(J \cap (G_{n-1} - G_n))$$
.

But

$$m(J \cap (G_{n-1} - G_n)) = m(J - T(J)) = \frac{1}{2}m(J) > 0$$
.

This shows that $m(V \cap F_n) > 0$, provided n is sufficiently large.

Let Z denote the set of all positive integers, and let ψ denote a one-to-one mapping from the Cartesian product $Z \times Z$ onto Z. If $\psi(j,k) = n$, then we set $F_n = G_{ik}$. Next we define

$$\mathbf{E}_{\mathbf{k}} = \bigcup_{\mathbf{j}=1}^{\infty} \mathbf{G}_{\mathbf{j}\mathbf{k}}.$$

The sets E_k (k = 1, 2, ...) are then pairwise disjoint and metrically dense in $[0,2\pi]$. Finally, we select a subsequence $\{E_n\}$ of $\{E_k\}$ such that $m(E_n) < 2\pi/2^{n+2}$. This concludes the proof of Lemma 3.

It is easy to verify that if f_1 and f_2 are two inner functions, then

$$\sup_{\mathbf{z} \in D} \left| \mathbf{f}_{1}(\mathbf{z}) \mathbf{f}_{2}(\mathbf{z}) \right| = \left\| \mathbf{f}_{1} \mathbf{f}_{2} \right\| = 1.$$

The following example, which we present in the form of an existence theorem, shows that the norm of the product of two functions in I^* - I need not be 1.

THEOREM 2. There exist functions $f_1(z)$ and $f_2(z)$ in I^* such that $\|f_1 f_2\| < 1$.

Let $\{E_n\}$ be a sequence of measurable subsets of C having the properties listed in Lemma 3. Let $\{s_n\}$ be a countable dense subset of $(-\infty, 0]$. We may assume that the sequence $\{s_n\}$ is ordered so that the series $\sum s_n^2 m(E_n)$ converges. Let

$$U_{1}(x) = \begin{cases} -1 & \text{if } x \notin \bigcup E_{n}, \\ s_{n} & \text{if } x \in E_{n}, \end{cases}$$

and

$$U_2(x) = \begin{cases} -1 & \text{if } x \not\in U \to_n, \\ s_n & \text{if } x \in E_n \text{ and } s_n < -2, \\ -2 - s_n & \text{if } x \in E_n \text{ and } s_n \geq -2. \end{cases}$$

Note that $U_1(x) + U_2(x) \le -2$. Since the functions $U_1(x)$ and $U_2(x)$ are in L^2 , they can be extended harmonically to the open unit disk D. Denote by $u_1(z)$ and $u_2(z)$ the bounded harmonic functions with boundary values U_1 and U_2 , respectively. Let $v_k(z)$ (k = 1, 2) be a harmonic conjugate to $u_k(z)$ (k = 1, 2) in D. Then the functions

$$g_1 = e^{u_1+iv_1}$$
 and $g_2 = e^{u_2+iv_2}$

are bounded and analytic in D. It follows now from the construction of \mathbf{g}_1 and \mathbf{g}_2 that

$$\|g_1\| = \|g_2\| = 1$$
 and $\|g_1g_2\| < 1$.

For each n, let K_n be a subset of E_n with the following properties:

- (i) K_n is a countable dense subset of C, and
- (ii) if $e^{i\theta} \in K_n$, then $\lim_{r \to 1} g_k(re^{i\theta}) = \exp\{u_k(e^{i\theta}) + iv_k(e^{i\theta})\}$ (k = 1, 2).

The existence of the sets K_n is assured by Fatou's theorem and the assumption that each E_n is metrically dense on C. Now, if we set $E = \bigcup_{n=1}^{\infty} K_n$, then E is a countable, dense subset of C. By Theorem 1, there exists a Blaschke product w = B(z) such that

$$\{|\mathbf{w}| = 1\} \subseteq C_0(\mathbf{B}, e^{\mathrm{i}\theta})$$

for each $e^{i\theta}$ in E. Let $f_1(z) = B(z)g_1(z)$ and $f_2(z) = B(z)g_2(z)$. Since multiplication by B(z) is an isometry, we see that

$$||f_1|| = ||f_2|| = 1$$
 and $||f_1 f_2|| < 1$.

To complete the proof of the theorem, it suffices to show that the functions $f_I(z)$ and $f_2(z)$ belong to $I^*.$ Let $e^{i\,\theta_{\,0}}$ be some point of C, and let $w_0=r_0\,e^{i\phi_{\,0}}$ be any point of the open unit disk $\,|\,w\,|<1.\,$ Since the sequence $\{\,s_n\,\}$ is dense on $(-\infty,\,0],$ we can find a convergent subsequence of $\{\,s_n\,\}$ such that

$$\lim_{n\to\infty} e^{s_n} = r_0,$$

where for simplicity of notation $\{s_n\}$ denotes the subsequence. Now, corresponding to each s_n of this subsequence, we select a point $e^{i\,\theta_n}$ in $E_n\cap E$ such that

$$\lim_{n\to\infty} e^{i\theta_n} = e^{i\theta_0}.$$

This is possible, because for each n the set $E_n \cap E$ is dense on C. Thus we see that at every point of the sequence $\{e^{i\,\theta_n}\}$, where $e^{i\,\theta_n} \in E_n \cap E$, the radial limit of $g_1(z)$ exists and, moreover,

$$\lim_{r \to 1} |g_{l}(re^{i\theta_{n}})| = e^{s_{n}}.$$

But $f_1(z) = B(z)g_1(z)$; therefore, for each index n, we have the inclusion

$$\{|w| = e^{s_n}\} \subseteq C_0(f_1, e^{i\theta_n}).$$

Consequently, w_0 belongs to the radial boundary cluster set of $f_1(z)$ at $e^{i\,\theta_0}$, and a fortiori w_0 is in $C(f_1$, $e^{i\,\theta_0})$. (For the definition of the radial boundary cluster set, we refer the reader to $[1,p.\,98]$.) Since w_0 is an arbitrary point in |w|<1, and since $C(f_1$, $e^{i\,\theta_0})$ is closed and connected, we conclude that the cluster set $C(f_1$, $e^{i\,\theta_0})$ is the closed unit disk $|w|\leq 1$. A similar argument shows that the cluster set of $f_2(z)$ at each point $e^{i\,\theta}$ on C is also the closed unit disk. Therefore, the functions $f_1(z)$ and $f_2(z)$ belong to I^* , and the theorem is proved.

The following result is an immediate consequence of Theorem 2.

COROLLARY 1. I* is not a semigroup under multiplication.

If in the proof of Theorem 2 we alter slightly the definition of the function $U_2(x)$, we obtain the following surprising result.

COROLLARY 2. Let $f_1(z)$ be the function constructed in Theorem 2. Then for each $\epsilon>0$, there exists a function $f_2(z)$ in I^* such that $\|f_1f_2\|<\epsilon$.

Before we state the next corollary, we introduce the following definition. We shall call a function f(z) in H^{∞} a generalized divisor of zero if there exists a sequence $\{h_n\}$ of functions in H^{∞} such that

$$\inf \, \left\| \, h_n \right\| \, > \, 0 \qquad \text{and} \qquad \lim_{n \, \to \, \infty} \, \left\| \, fh_n \right\| \, = \, 0 \, .$$

COROLLARY 3. The functions constructed in Theorem 2 are generalized divisors of zero.

Remark. In [2, p. 25], we constructed a function f(z) in I^* - I whose set of omitted values in |w| < 1 has positive (logarithmic) capacity. On the other hand, it is well known [1, p. 35] that the set of values omitted by a nontrivial inner function in |w| < 1 is at most of capacity zero. In a recent private communication, Professor George Piranian has shown to one of the authors that the set of omitted values of a function f(z) in I^* - I can consist of a single point. A minor modification of our arguments shows that a function in I^* - I can assume every value of |w| < 1.

As a final application of Theorem 2, we consider the extreme points of the unit ball $\,\Sigma\,$

$$\Sigma = \{f \in H^{\infty} : ||f|| \le 1\}$$

in H^{∞} . (See [4, p. 136] for the definition of extreme points.) It is known [4, p. 138] that every inner function in H^{∞} is an extreme point of Σ . On the other hand, our next theorem shows that functions in I^* - I need not be extremal.

THEOREM 3. There exists a function in I^* - I that is not an extreme point of Σ .

We present an outline of the proof. First consider the sequence $\{s_n\}$ used in the proof of Theorem 2, and modify it so that it satisfies the growth condition

$$\log (1 - e^{s_n}) > -n$$
.

Next we repeat verbatim the relevant parts of the proof of Theorem 2 to obtain the function $f_1(z)$ in I^* - I. It follows then from the relation

$$\int_{-\pi}^{\pi} \log(1 - |f_1(e^{i\theta})|) d\theta > -\infty$$

and a result of Hoffman [4, p. 138] that $f_1(z)$ is not an extreme point of Σ .

Theorem 2 shows that I* is not a semigroup under multiplication.

REFERENCES

- 1. E. F. Collingwood and A. J. Lohwater, *The theory of cluster sets*. Cambridge Univ. Press, Cambridge, 1966.
- 2. G. Csordas, *The Šilov boundary and a class of functions in* H^{∞} . Dissertation, Case Western Reserve University, Cleveland, Ohio, 1969.
- 3. ——, A note on a result of A. J. Lohwater and George Piranian. Math. Ann. (to appear).
- 4. K. Hoffman, Banach spaces of analytic functions. Prentice-Hall, Englewood Cliffs, N. J., 1962.
- 5. A. J. Lohwater and G. Piranian, Bounded analytic functions with large cluster sets. Ann. Acad. Sci. Fenn. Ser. A. I. 499 (1971), 5 pp.

University of Hawaii Honolulu, Hawaii 96822