VECTOR FIELDS AND CHARACTERISTIC NUMBERS

Raoul Bott

Dedicated to R, L, Wilder on his seventieth birthday.

1. INTRODUCTION

A well-known theorem of Heinz Hopf asserts that on a compact manifold the
properly counted number of zeros of a vector field equals the Euler number of the
manifold. The purpose of this paper is to show that when a vector field satisfies
certain differential equations, then there are other relations between the character-
istic numbers of the manifold and local invariants of the vector field near its zeros.

The two cases of greatest interest are (i) where the vector field is holomovphic
and (ii) where it defines an infinitesimal motion of a Riemannian manifold. In the
first case all the characteristic numbers will be seen to be determined by the zeros
of the vector field. In the second case the Pontrajagin numbers are determined—and
of course the Euler numbers—but the Stiefel-Whitney numbers are not. In short, the
local behaviour at the zeros of the vector field determines all the rational charac-
teristic numbers in both cases.

To describe these relations explicitly, when the vector field X behaves generi-
cally at its zeros, we recall first that the Lie derivative in the direction of X is a
well-defined differential operator 2(X) on all the tensor fields over M, and that it
has ovder 0 at the zevos of X.

Thus, in particular, £(X) induces a linear map L(X) of the tangent space TM to
M restricted to the set zero (X):

LP(X) = 8(X) | T, M (p € zero(X)).

The vector field X will be called nondegenervate if L(X) is nonsingular at all the
zeros of X, and the eigenvalues of L(X) will be referred to as the characteristic
roots of X at its zeros.

Second, we recall that a complex structure on M endows the real tangent bundle
TrM of M with a complex structure. The Chern classes of this C-bundle are
therefore well-determined elements c;(M) € HZI(M, Z). Suppose now that
&(c) = &(c;, **, cy) (m = dim ¢ M) is a polynomial in the indeterminates c¢; with
complex coefficients. By replacing c¢; with c;(M), we obtain a cohomology class
&{c(M)} in H*(M; C) whose value on the orientation class [M] will be denoted by
®(M). Of course, we define the value of a class u € H¥(M; C) on [M] to be zero if
u contains no elements of degree equal to the dimension of M. Hence &(M) = 0 un-
less ® involves monomials of “weight m” in the c;, that is, expressions of the form
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The values w,(M) are called the Chern numbers of M.

For our purpose it is convenient also to define the Chern classes of an endo-
. morphism A: V — V of a finite-dimensional complex vector space. By definition,
cj(A) is the ith coefficient of the characteristic polynomial of A; that is,

(1.1) 2intey(A) = det (1 +2A).

Once this is done, we define the value of & on such an endomorphism simply by

4

#(A) = &{cy(A), -+, c,(A)}.

With these conventions out of the way, I may state the main theorem.

THEOREM 1. Let X be a nondegenevate vector field that presevves a complex
structure on the compact connected manifold M. Then for every polynomial
®(cq, *+, C) (m =dimc M) of weight not greatey than m,

(1.2) 27 ®(L)/c (L) = &(M).
P

Heve P vanges ovey the zevos of X, and L denotes the C-endomorphism induced by
L(X) on the complex tangent space to M at P.

We state two immediate corollaries.

COROLLARY 1. A nonvanishing vector field X can preserve a holomovphic
structure on M only if all the Chevn numbeyrs relative to that structure vanish.

COROLLARY 2. If M admits a nonvanishing holomovphic vector field, then M
bounds.

Note finally that when & = c,,, (1.2) gives the Hopf formula—which in this case
simply asserts that c,,(M) is the number of zeros of X.

COROLLARY 3. When & has weight less than m, then the vight-hand side
vanishes.

For example,

27 1/c (L) = 0.
P

Theorem 1 is really a byproduct of M. Atiyah’s and my work on the generalized
fixed point theorem [1], and its history is as follows. A formula of this type was
first conjectured to me by V. Guillemin, who derived some special cases of it from
our fixed-point formula and the Riemann-Roch formula of Hirzebruch. Next, M.
Atiyah pointed out that there really were sufficiently many such special cases to
prove the theorem in general as a consequence of our fixed-point formula.

My aim here has been to present a more direct proof in the framework of the
theory of “Real Characteristic Classes” as developed by Chern, Pontrajagin, and
Weil; this is done in Section 3, after some preliminaries in Section 2. Thereafter I
deal with the Riemannian case in Section 3, while Section 4 describes the Guillemin
argument, which one may now use in reverse to get at the Riemann-Roch formula for
a manifold that admits a nondegenerate holomorphic vector field. The amusing thing
about this very special case is that the Todd genus arises in it quite naturally: out
of our fixed-point formula.
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2. REVIEW OF CURVATURE AND CHARACTERISTIC CLASSES

I shall use the Chern-Weil theory of connections and characteristic classes in its
low-brow form as described in [2], for example, and I shall for the most part adhere
to the notation of that paper. To review matters briefly, let E be a complex vector
bundle over the manifold M, and let T& M be the complexified cotangent bundle of

M. A connection on E then is a differential operator
D: T(E) » I(T*QE) (T* = T¢M),
which, relative to functions, satisfies the derivation law
D(fs) = df®@s+1fDs (s e I).

(T" denotes C* sections, throughout; all manifolds, functions, and so forth will be
assumed to be C*, unless it is otherwise indicated.)

If one extends D as an antiderivation to the whole exterior complex of forms on
M with values in E, then D2 is easily seen to be linear over the functions on M,
whence D2 can be realized by multiplication with a 2-form K with values in the
endomorphism bundle of E. That is, for all s € T(E),

(2.1) D%s = Ks,

where K € I‘(/\Z{T’E M} ® End E) and A? denotes the second exterior power.

The form K is called the curvature of the connection D. If s = {sa} is a frame
for E over U, then K determines a matrix K(s) = [[Kqg(s)| of two-forms on U; it
is given by the formula

K sy = 2u Kag(s)sg ,
and if s! = As is another such frame, then
(2.2) K(s!') = A"1K(s)A.

The Chern forms of K are now defined in analogy to (1.1) as the coefficients of
the characteristic equation of K:

(2.3) 22 ¢y (K) = det(1+ak"l K) (k= 20 V1)

This determinant makes good sense, because it may be interpreted locally as the
determinant of the matrix of even forms 1+ Ak K(s), and in view of the invariance of
the determinant under inner automorphisms, the transformation law (2.2) implies
that the resulting form is independent of the frame s. Thus the c;(K) are well-
determined 2i-forms on M, and it is a basic fact in the Chern-Weil theory that
¢; (K) is closed and vepresents the ith Chevn class of E independently of the con-
nection undevlying the construction of K.

So much for a brief review of C* complex bundles and their characteristic
classes. When both E and M have a complex analytic structure, more is true. One
may then choose a Hermitian structure (, ) on E and exploit the basic incompati-
bility of this structure with the complex structure to induce a connection D on E
whose curvature form K is d"-closed, in the sense that relative to any holomorphic
frame s = {sy}
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(2.4) d"K(s) =0 and Ds = 0(s)® s with 0(s) of type (1, 0).
Here d" is, of course, the usual 9/8Z-part of the differential operator d:
d=d +d".
Indeed, define D in terms of the holomorphic frame s by the formula
= (d'N-N"1)s,
where N = N(s) is the matrix of inner products (si, s; j). Then 6(s)=d'N-N- -1 is

clearly of type (1, 0), and D%s = d" - 6(s) * s, whence K(s) =d" (s).

Finally, a remark on the complexification Tc M of the tangent bundle Tg M when
M has a complex structure: Here TcM =Tp M X C. On the other hand, because
T grM has a complex structure of its own, we may single out the subspaces
T' =T M and T" = T¢ M on which these structures agree and anti-agree. Thus

V-I®1=1QRY-TonT and Vv-1®1=-1Q+vV-1on T".

Then
(2.5) TcoM = TEM@TEM
and T' is in duality with the forms of type (1, 0) while T" is in duality with the
forms of type (0, 1).

It {zi} is a local coordinate system over U, say, then the 9/9z; and 9/9Z; span
T' and T" respectively. Hence any real vector field X is locally of the form

0 - 0
XIU = Eaia—z;+ai£’
i

and X is holomorphic if and only if its projection X' on T'! is holomorphic, that is,
if the a; are holomorphic.

The inner product of a form 6 by a vector field is denoted by i(X) 8. Thus the
action of 2(X) on forms is given by

LX) = i(X)d +di(X).
A holomorphic vector field preserves the type of a form, whence
(2.6) ixX")a"+4d"i(xX') = 0,

for such vector fields.

3. THE PROOF OF THEOREM 1

Suppose now that X is a nontrivial kolomorphic vector field on the complex
manifold M. We choose a Hermitian structure on the holomorphic tangent bundle
Tt M to M, and we thus obtain a curvature form K on M, so that the characteristic
classes of M can be computed in terms of the Chern forms c..(K).

Now, if X generated a fibering, it would be easy to construct a metric on TzM
such that the resulting forms c¢,.(K) are basic relative to the fibeving, in other
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words, such that i(X)c,.(K) = 0. Our first aim is to show that in any case on the
complement of the zevo set of X the A"-cohomology class of c¢x(K) contains a form
¢.(K) such that

(3.1) (X" & (K) = 0.

Here, as throughout, the dash denotes projection on T¢ M.

Note that once this is done, Theorem 1 holds for nonvanishing X and forms & of
top weight. Indeed, because top forms in the image of d" have zero 1ntegra1s we
may then compute the numbers &(M) by integrating the forms & = &(&,, ez, ", Em)
on [M], where the &, are chosen to satisfy (3.1) on all of M. But then 1(X')<I> 0
because i(X') is an antlderlva,tlon On the other hand, in the top dimension i(X") is
injective at all points where X # 0. Hence & =0 on M and so ®(M) = 0, as Theo-
rem 1 asserts.

We begin with the following lemma.

LEMMA 1. Let K be the curvature of a Heymitian connection on T-M, and let
X be a holomorphic vector field on M. Then theve is a global section
L' € T End (T M) that agrees with L(X) | T& M on the zevo set of X:

(3.2) L' | zero(X) = L(X) | Tt M
and such that
(3.3) d"L' = i(X")K.

Proof. We may interpret a section of End (T M) as a differential operator of
degree zero, that is, one which is linear over the functions, from I‘(TC M) to
I‘(TC M). With this 1nterpretat10n let L' be defined by the relation

(3.4) L'-s

(X)'s -i(X)'D-s.

Then we must verify first of all that L' maps Ty M into itself, and that it is linear
over the functions. To see this linearity, we use the derivation property of D:

L' -fs = (X))@ s+f-¢(X)-s - i(X){df Rs+£fDs} = fL'-s

Now the stability of Tz M under L' follows from the fact that holomorphic sec-
tions s are preserved by E(X)

The property (3.2) is self-evident from (3.4), because i(X) is the zero operator
on the zero set of X.

There remains (3.3). By the foregoing, we may verify this relation for a local
holomorphic frame s. Then 4" - ¢(X)-s =0, so that

d"-L'-s = -d"i(X)Ds.

However, Ds is of type (1, 0), whence i(X) may be replaced by i(X'). Now, using
(2.1) and (2.5), one obtains the relations

(3.5) a"-L'-s = i(X')-d"D-s = i(X')-K-s.

Next suppose that



236 RAOUL BOTT

k
1

is a symmetric, multilinear, C-valued function of k arguments from the Lie algebra
of m X m matrices gf¢(m, C) into C, and that it is invariant under the adjoint sec-
tion of g¢(m, C) on itself. Thus

k
2 dxy, o0y [%, v] %) = 0 (x;, ¥y € g2(m, C)).

i=1

Such a function can naturally be extended to arguments x; that are forms on M
with values in the endomorphism bundle of a bundle E over M, and it then takes its
values in the forms on M.

Indeed, relative to a local frame s over V, such x; have matrix representatives
xi(s) on which ¢ may be evaluated to yield forms on V, and by the invariance hy-
pothesis (3.5) this form is seen to be independent of s.

In our situation we may therefore meaningfully speak of the forms

¢K = ¢(K’ K: "ty K);
o) = () o, -+, ®),

(3.6) o) = (1;)¢(L', L', K, -, K),

o) = gL', L, i, 1Y)
Note also that all the forms c;(K)—and therefore all the forms genevated by
these—can be vealized as ¢ for a suiltable ¢. This follows directly if we polarize

and symmetrize the determinant polynomial. Hence (3.1) will be established once we
construct for each ¢ a form 7 ¢ defined on M = M - zero (X), such that

(3.7) i(X") [¢K+d"n¢] =0 on M.

We shall now give a recipe for 7, in terms of the forms ¢£§ ) constructed above.

For this purpose, let m be the 1-form of type (1, 0) determined by the ovthogonal
projective on X' in T' —that is, the form given on the vector field Y by the formula

7(Y) = (¥, XV)/|x| 2.
My claim is that then the form
ng = m{#{1) + o2 arm + -+ + of) (@nm)<-1}

has the desired property (3.7).

First we derive the basic identities
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~ (r) _ (r+1) =0 - k-1 (0=

(3'8) I(Xl) ¢K - d" ¢K (r - o) ) k 1’ ¢K ¢K),

(3.9) i(X"d"r = 0.

To establish (3.8), we use the antiderivative property of i(X') and the symmetry of ¢
to obtain the relation

i) gl = (5) (- molr, 1, -, L KOK K, -, K).
e

Next, using the same property of d" and (2.4), we see that

k

n (r+1) =
d ¢K r+1

or¢(L, ..., L; d"-L; K, -..’ K),
R

r+l

and this then yields (3.8). The other relation follows directly from (2.6), whence
iX)drg=-d"i(X")r=-d"-1=0.

Let us next define A as the sum
A= ol 4 @ @) 4ot gl @yt
Then, as a consequence of (3.8), we get the equation
d"A = i(X) {¢y + (@7},

from which it follows, in particular, that i(X')d" A = 0.

Hence, finally, one proves (3.7) by the reduction

XM g +d"n} = UX") (¢ +a"[a -A])

iX") {ox+ (@ 7)A - 7d"A}
= d"A -d"A + 7i(X")d"A = 0.
At this stage, it is also clear how the rest of the proof of Theorem 1 must gb, at

least for forms of weight m. Given a ®(c;, -+, ¢,,) of weight m, we may construct
the multilinear ¢ associated with & so that

o(M) = ¢x[M].
Next, let Mg be the complement of an €-neighborhood of the set zero (X), relative to
some Riemannian structure on M. Then, because ¢x is a smooth form on all of M,
and zero (X) is at least of codimension 2, we may write

(3.10) (M) = lim ¢x[M].
£—0

Now, since ¢k has top dimension, n¢ is of type (m, m - 1), whence

dav 17¢ = d?’,‘¢ .
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Applying Stokes’ theorem, we therefore obtain the equation

®M) = lim (¢py +d"ng)[Mg] - lim nglom].
£€—0 £€—0

The first term now drops out, by our previous argument, so that we are finally left
with

(3.11) (M) = - lim n¢[8M8].
£—0

In this way, then, the characteristic numbers ®(M) ave deteymined by the local be-
havioy of X along its zero set.

To derive the formula (1.2), it is therefore merely necessary to evaluate the
limit on the right-hand side of (3.11) when zero(X) consists of isolated points at
which X vanishes nondegenerately. The boundary oMg then simply consists of -
spheres S; about the exceptional points.

Let P be one of these, and let X, ***, A, be the eigenvalues of L. For
simplicity we shall first assume these to be distinct. We shall study the behavior of
7¢ near P in detail, and for this purpose it is convenient to introduce good coordi-
nates {z;} and good metrics on M and T'(M) near P. Precisely, we first choose
the z; so that, on a coordinate patch U containing P,

0
X'[U ~ E?\iziﬁ,
1

the ~ denoting equality modulo terms that vanish to at least the second order at P.

Next we choose a Hermitian structure on T'(M) so that
(Z) |za|2)7r | U ~ 22271z, dz; .
Setting d" 7 = w, we easily see that
m D1 m
(3.12) (E |za|2) powml o BBV S G gz (1) dz;) -+ dz,dz,
Aj i=1
while

k
(3.13) (E|za|z) 7-wkl~0 fork<m-1.

It follows that if the metric on M near P is chosen so that S; = {z | Zl Zg | 2=¢g } )
then the limit 7 [Sa] as £¢ — 0 depends only on the last term in the expansion of N -
Hence, by (3.12) and (3.13), we see that

p
(3.14) lim 74(Sg) = == ¢(L', LY, -+, L) (L'=Lyp),
€—0 *

where p_  is a universal constant depending only on m, given by the integral

Py = (m - 1)1 5 _Z) |dz || % -+ (2; dzy) -+ | dzg | 2.
2 ]Zai2=2 =
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Let us now apply this result to the computation of (M), where & is a polynomial
of weight m. Let ¢ be its polarization, so that

¢(A; ) A) = Q(CI(A)y T Cm(A))-

Then it is clear by (2.3) that &(M) = k"™ ¢(K, K, ***, K)-[M]. Applying (3.10) and
(3.14), we see that

- @(Li;)
M) = - —y
(I)( ) . pm P cm(LiD) ’
which agrees with Theorem 1 up to a universal constant. This constant can be eval-
uated either by a direct computation of p , or by an example. Indeed, if we grant
the Hopf formula, which corresponds to the case & = ¢, on complex projective
space, then we see that k™ p_ = -1, as was to be shown.

There remains the case where ¢ has degree k < m. To deal with it, we consider
the top-dimensional form

Y o= (d"m)" oy (r=m-k).

It is easily verified that i(X') {y + (d" w)m"kd" n¢} =0 on M. Hence, by our pre-
vious argument,
$(Lp)

Vil = Seny

On the other hand, y = d {#(a" ﬂ)r"l ¢, }, so that the left-hand side vanishes.
K

When the eigenvalues of Lp are not distinct (so that X l U need not be in diago-
nal form), the argument is entirely similar once one observes the identity

(Z}Aijdz-ldij>m = det | 25| (Edzidzj)m

4. THE RIEMANNIAN CASE

In this section, we consider the case of an oriented compact Riemann manifold M
that admits an infinitesimal isometry X, and this time our aim is to relate the zeros
of X to the Pontrajagin numbers of M. Recall therefore that these numbers may be
derived from the Chern classes of the complexified tangent bundle TcM = TR M ® C
in much the same way as before. If dim M = m, we start with a polynomial &(c) in
m variables, and we again define the value of ® on M as the integral of the form
®(c;(Tc M), c(Tc M), *--) on [M]. Note, however, that this time only the tevms of
weight m/2 contribute to ®(M). Thus & [M] =0 if dim M is odd. Actually,
®(M) = 0 unless the dimension of M is divisible by 4. Indeed, if E is obtained from
a real bundle ER by complexification, E = Eg &) C, then we can choose a connection
on Ep that preserves a Riemannian structure on ERr. As a consequence, the in-
duced connection on E will have a skew symmetric curvature tensor K(s) relative to
each orthonormal frame s. But then all odd terms in the expansion of
det(1 + A k-1K(s)) vanish, whence ¢;(K) = 0 for odd i.

To state our analogue of Theorem 1, we need one additional well-known fact. The
vector field X is an énfinitesimal isometry on M if and only if the Lie derivative
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¢ (X) acts skew-symmetrically on the vector fields on M relative to the Riemann-
ian norm ( , )—that is, if and only if

(2(X)Y, Z)+ (Y, 2(X)Z) = X(Y, Z) for X, Y, Z € I(TxM).

It follows immediately that the endomorphism L(X) determined by ¢(X) at the
zeros of X is also skew-symmetric. Hence det L(X) = 0 if the dimension is odd,
and it is a “square” when the dimension is even. We need a particular square root
of this determinant in the even case, namely, the one that is determined by the
orientation of M in the following manner:

Let M have dimension m = 2k, and let e, e,, *-*, e, be an orthonormal base
for TpM such that

Lpezi-1 = Ajez; (A€ R),

and such that, in addition, e, FANRILIVAN €,, is in the orientation of [M]

The product Aj **-A,, is then the square root of det Lp(X) we seek,.and we shall
denote it by detl/2 (LP) or cl/2(Ly). With this understood, we can formulate our

second theorem as follows.

THEOREM 2. Let X be an infinitesimal motion of a compact, oviented, even-
dimensional Riemann manifold M whose zevos arve nondegenevate. If &(cy, -, c )

is any polynomial of weight not gveater than m/2, then

2 &(L)/det!/2(L) = a(M) (L = Lp(X)),
P

where P vanges ovey the zevos of X.

The proof parallels our earlier argument. We begin by endowing Tgr M with the
unique connection D that preserves the Riemann structure on M and has zero tor-
sion. Next we extend D to all the tensor powers of TR M as a derlvatlon and ex-
tend it further as an antiderivation to the forms on M with values in TRp (M) Since

our Riemann structure identifies Ty (M) with its dual, we thus also have an induced
connection on TE (M) and on End {TE (M)}, and so forth.

The proper analogue of Lemma 1 is now the following:
LEMMA 2. In the situation undey discussion, the diffevential opevator
L=2gX) -iX)-D

is of degree zevo and so determines a section L of the endomovphism bundle
End (Tg M); this section agrees with I(X) on the zevo set of X:

(4.1) L | zero(X) = L(X),

and its covarviant devivative is given by the equalion
(4.2) DL = i(X)K.

Proof. The f-linearity of D follows immediately from the derivation properties
of 2(X) and D. The relation (4.1) follows directly from the definitions. To see
(4.2) most conceptually, one can argue as follows. The value of DL on a section s

of TR M is given by
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DL-s=D:-L:s-L-D-s
(4.3)
D- g(X)-s -D-i(X)'D-s - 8(X)-D-s+i(X)D2-s.

il

Now the connection D is canonically associated with the Riemannian structure on M.
Hence motions—and therefore also infinitesimal ones—preserve it. Thus

2(X)'D =D- &(X). Finally, since both terms of (4.2) are tensor fields, it is suffi-
cient to verify this relation relative to one local frame, and such a frame may al-
ways be chosen so that it is parallel to X, in other words, so that i(X)-D-s =0. But
then (4.3) reduces to DL s = i(X)D2-s, and here the right member equals i(X)K-s.

Our next lemma is the analogue of the identities (3.8) and (3.9), and it reads as
follows.

LEMMA 3. Let ¢ be as in Lemma 2, and define forms ¢§§) by

o = () oL, -, LK, -, K.

T

Also, let 1 be the one-form associated with the orthogonal projection of TRM onto
X. Then,on M - zero (X),

R _ +1
(4.4) 1(%) {5 = aplFt),
(4.5) i(X)dr = 0.

The proof is again quite similar. One needs the basic fact that generally

de(X,, =, Xk) = E ¢(X1, we, DXy, o0, Xk)
i

when the X; are even, end-valued forms, and finally, that DK = 0. Hence, in
particular,

k
aslg* = (L5 1) @+ oL, -, L DL K, -, K),

T

which by virtue of (4.2) immediately yields (4.4).

To see (4.5), we merely observe that the motion generated by X must preserve
7. Hence ¢ (X)r =0, which implies i(X)dr = 0, since i(X)7 = 1.

Just as in Section 3, this lemma leads to the following proposition.

Let w = dn, and set
ng = 1{6Q) + ¢@w+ -+ g F k11

Then i(X) (o + dn¢) =0on M - zero (X).

From here on, a procedure parallel to the one described in Section 3 leads to
Theorem 2. We shall leave these details to the reader, with only this comment. In
the Riemannian situation, ¢ need not be defined on all of #¢(m, C). If we refer back
to orthonormal frames, all the constructions already make sense when ¢ is an
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invariant form on the Lie algebra SO(m, R) C ¢¢(m, C). In this way one gets one
new form, which corresponds to the Euler class, and which one would need if one
wanted to use the Hopf formula to evaluate the universal constant that arises in the
evaluation of limg _, n¢(Ss).

Let me also remark that one can extend Theorem 2, somewhat.artificially, by
simply postulating the formulae (4.2) and (4.5) on which the proof rests. Thus one
postulates a form L and a connection D on TR (M) such that

(4.6) i(X)K = DL,

as well as a one-form 7 such that #(X) =1 and &(X)m = 0. A vector field X for
which a 7 with these properties can be found might be called projectible. Now the
property (4.6) is certainly valid if X preserves the connection D, Thus for pro-
jectible vector fields that presevve a connection, Theovem 2 is valid,

Quite possibly, the projectibility hypothesis is superfluous, here.

5. CONCLUDING REMARKS

We conclude by explaining briefly the relation between Theorem 1 and the fixed-
point theorem of Atiyah and myself.

First of all, recall our formula in the instance of a holomorphic endomorphism
f: M — M that is /ransversal —in other words, whose graph meets the diagonal
transversally.

Let Hi(M; Q) be the cohomology of M in the sheaf of germs of holomorphic

functions, and denote the homomorphism induced by f on Hi(M; Q) by Hi(f). Finally,
at a fixed point of {, let df denote the kolomorphic diffevential of f at P:

df: TpbM — TpM.

With this undevstood, our formula reads

(5.1) 27 (-1)* trace HY(f) = § H(_l—l—d_fp) )

whevre the sum is taken ovey the fixed points of 1.

Now, following Guillemin, consider (5.1) when f is replaced by the family of
maps

f, = etx,
obtained by integrating a holomorphic vector field X. First one observes that at the
ZEeros {P} of X

dft]P = etLP,

so that if X is nondegenerate in our sense, then f; is transversal and the fixed
points of f; correspond precisely to the zeros of X, at least for small values of |t|
Hence (5.1) takes the form
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_ 3 (-1)t i tX =E————1—.
(5.2) (-1)*trace H'(e") = et - o)

Now the left member of (5.2) is easily seen to define a real analytic function of t, for
t near 0. The right member, on the other hand, is a finite sum of Laurent series in
t. Hence the singulav parts of these sevies must cancel out as we sum ovey P, and

the constant tevms must add up to the left member at t =0. But for t =0, etl =1,
so that the left member reduces to

x(M; @) = 25 (-1)' dim H'(M; ),

which is usually called the arithmetic genus of M. To understand the right-hand
side, define the functions ¢, on gf(m, C) by

) sl
. det(1 - &) t o (y) +t ¢1(y) + (y € g4(m, C))

--that is, let ¢ be the coefficient of t~ “MFK n the Laurent expansion of

cm(y)det (1 - etY)-1 . Then ¢, is homogeneous of degree k in y € ¢2(m, C) —and
also invariant because the determinant is invariant. Hence there exist polynomials
Ty(cy, *+-, ¢,y) of weight k such that

¢ (y) = Tylei(y), =+, ep(y)) (k< m),

and these are essentially, by definition, the Todd polynomials.
Equating the constant terms in (5.5), one gets the formula

T (L)

X(M; 2) = 20—y

where T, is the mth Todd polynomial. Now, if we apply our Theorem 1, we obtain
the Riemann-Roch formula of Hirzebruch:

(5.5) x(M; Q) = T, [M];
or alternatively, if we assume (5.5), we get the special case of Theorem 1 corre-
sponding to & = T,

Applying this procedure to sufficiently many of the sheaves
a

(where ., denotes the sheaf of germs of holomorphic r-forms on X) and using some
standard K-theory, one can derive sufficiently many verifications of Theorem 1 to
prove it in general.

A similar argument can be devised to prove Theorem 2 from the fixed-point
formula. Actually, one gets more in that way than we obtained in the present treat-
ment. Using the invariance of the de Rham cohomology groups under deformations,
one then finds in addition that under the hypotheses of Theorem 2 the identity
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o(L) _
p cpy2(L) ’

is valid for certain forms & of degree greater than m/2.

It would be interesting to explain this phenomenon (which occurs for the L-
polynomials) directly in our framework, as indeed it would be interesting to explain
all of the other results about the characteristic classes of the tangent bundle, such
as the divisibility theorems, in a more directly differential-geometric way.
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