ON THE BOUNDARY BEHAVIOR OF CONFORMAL MAPS

D. Gaier and Ch. Pommerenke

1. INTRODUCTION AND SUMMARY

Let f be schlicht in |z| < 1, and suppose that $c = \lim_{x \to 1-0} f(x) \neq \infty$ exists. Then $f(z) \to c$ as $z \to 1$ in any Stolz angle, hence also as $z \to 1$ in some domain G that is tangential at z = 1 (by this we mean that G contains every Stolz angle in a sufficiently small neighborhood of z = 1). In other words,

(1)
$$f(z) \rightarrow c \quad \text{as } z \rightarrow 1 \ (z \in G),$$

and as a consequence

Note, however, that G depends on f. George Piranian raised the following question: Does there exist a domain G tangential at z=1 that is *independent* of f and for which (1) or (2) holds. For example: Does (1) or (2) always hold for $G = \{|z-1/2| < 1/2\}$?

Our answer is negative in both cases.

THEOREM 1. Let $\{z_p\}$ be any sequence with $|z_p|<1$ such that $z_p\to 1$ and $\arg{(z_p-1)}\to \pi/2$ (p $\to\infty$). Then there exists a function f that is bounded and schlicht in |z|<1, for which $\lim_{x\to\,1-0}\,f(x)$ exists but $\{f(z_p)\}$ diverges.

THEOREM 2. Let G be any subdomain of |z| < 1 that is tangential at z = 1. Then there exists a function f, schlicht in |z| < 1, for which $\lim_{x \to 1-0} f(x) \neq \infty$ exists but f(G) has infinite area.

2. PRELIMINARY RESULTS

It will be more convenient to work in the half-plane $\Re z>0$ than in the disk |z|<1. So we assume that $\{z_p\}$ is a sequence with $\Re z_p>0$ and $z_p\to 0$, arg $z_p\to \pi/2$ $(p\to\infty)$.

Let 0 < h < 1, and let D be a simply connected domain in the half-plane u > h of the w = u + iv-plane that is symmetric with respect to the real axis, contains the point w = 1 and some rectangle $\{h < u < h + a, |v| < 1\}$. For $0 < \epsilon < 1$, let D_{ϵ} consist of the rectangle $R = \{0 < u < h, -4 < v < 4\}$ and of D, the two domains being connected by an opening of width 2ϵ ; that is, let

$$D_{\varepsilon} = R \cup (h - i\varepsilon, h + i\varepsilon) \cup D.$$

Let the schlicht function $w = f_{\varepsilon}(z)$, normalized by the conditions $f_{\varepsilon}(0) = 0$ and $f_{\varepsilon}(1) = 1$, map the half-plane $\Re z > 0$ onto D_{ε} .

Received October 8, 1966.

LEMMA. For every p_0 there exist $\epsilon > 0$ and $p > p_0$ such that

(3)
$$0 < \Re f_{\mathcal{E}}(z_p) < h \quad \text{and} \quad \Im f_{\mathcal{E}}(z_p) > 2.$$

Proof. Let the function $b(\epsilon)$ be determined by the equation $f_{\epsilon}(ib(\epsilon)) = 4i$. We shall first show that

(4)
$$b(\varepsilon) > 0$$
 continuously as $\varepsilon > 0$.

- (i) Monotonicity is clear, since $\epsilon_1 < \epsilon_2$ implies $D_{\epsilon_1} \subset D_{\epsilon_2}$, so that the harmonic measure of the segment (-4i, 4i) with respect to w = 1 is smaller in D_{ϵ_1} than in D_{ϵ_2} .
- (ii) To see the continuity of b(ϵ), we first extend f $_{\epsilon}$ across (-ib(ϵ), ib(ϵ)) by the reflection principle. The z-plane, slit along z = iy ($|y| \ge b(\epsilon)$), will thus be mapped by f $_{\epsilon}$ onto \widetilde{D}_{ϵ} , the union of D_{ϵ} with its reflection about (-4i, 4i), plus this open segment. If now $\epsilon \ge \epsilon_0 > 0$, the kernel K_z of the regions in the z-plane with respect to z = 0 is the plane slit along z = iy ($|y| \ge \lim_{\epsilon \ge \epsilon_0} b(\epsilon)$), while in the w-plane the kernel with respect to w = 0 is just $K_w = \widetilde{D}_{\epsilon_0}$. By the Carathéodory kernel theorem, the limit function will map K_z onto K_w , where z = 0 and z = 1 remain fixed and whereby points on $\Re z = 0$ are mapped into points on $\Re w = 0$, so that $z = i \cdot \lim_{\epsilon \ge \epsilon_0} b(\epsilon)$ corresponds to w = 4i. Since this limit function will also map $\Re z > 0$ onto D_{ϵ_0} with fixed points 0 and 1, it must be the function f_{ϵ_0} , and it follows that $i \cdot \lim_{\epsilon \ge \epsilon_0} b(\epsilon) = i \cdot b(\epsilon_0)$. Likewise we can show that $\lim_{\epsilon \ge \epsilon_0} b(\epsilon) = b(\epsilon_0)$.
- (iii) Assume that $b(\epsilon) \to \alpha > 0$ ($\epsilon \to 0$). Then the kernel of the slit z-planes with respect to z=0 would not degenerate for $\epsilon \to 0$, the functions f_ϵ would converge uniformly, in a certain neighborhood of z=0, to a function vanishing at z=0, and it would follow that $|f_\epsilon(\delta)| < h$ for all $\epsilon < \epsilon_0$ and some sufficiently small $\delta > 0$, which we now keep fixed. On the other hand, we may consider the maps f_ϵ from $\Re z > 0$ onto D_ϵ with 1 as fixed point instead of 0. Since the kernel of the regions D_ϵ with respect to w=1 is D, we see again by the Carathéodory kernel theorem that $f_\epsilon(\delta)$ must lie in D for sufficiently small ϵ , and this contradicts the relation $|f_\epsilon(\delta)| < h$.

Now that (4) is proved, we attack proposition (3). Let $\zeta = z/b(\varepsilon)$ and

$$\phi_{\varepsilon}(\zeta) = f_{\varepsilon}(b(\varepsilon)\zeta)$$
.

Making an analytic continuation as above, we see that $w = \phi_{\mathcal{E}}(\zeta)$ maps P, the ζ -plane slit along $[-i\infty, -i] \cup [i, i\infty]$, onto $\widetilde{D}_{\mathcal{E}}$. Note that $\phi_{\mathcal{E}}(0) = 0$ and $\phi'_{\mathcal{E}}(0) > 0$ for all $\varepsilon > 0$. As $\varepsilon \to 0$, the domains $\widetilde{D}_{\mathcal{E}}$ converge in the Carathéodory sense to the rectangle $\widetilde{R} = \{-h < u < h, -4 < v < 4\}$. Hence $\phi_{\mathcal{E}}(\zeta) \to \phi(\zeta)$ locally uniformly in P, where $\phi(\zeta)$ is the function that maps P onto \widetilde{R} with $\phi(0) = 0$, $\phi'(0) > 0$.

Consider the image S of the segment [3i, h/2 + 3i] under ϕ^{-1} . We choose $\epsilon_0>0$ so small that

$$|\phi_{\epsilon}(\zeta) - \phi(\zeta)| < h/2$$
 for $\zeta \in S$, $0 < \epsilon < \epsilon_0$.

Because arg $z_p \to \pi/2$ (p $\to \infty$), there exists a point $\zeta_p \in S$ with arg $\zeta_p = \arg z_p$, for sufficiently large p (say for p > p₁ \ge p₀). Using $z_p \to 0$ (p $\to \infty$) and (4), we see

that we can determine $\epsilon=\epsilon(p)>0$ such that $z_p=\zeta_p\,b(\epsilon)$ for $p>p_2\geq p_1$. We have the relation

$$f_{\varepsilon}(z_p) = \phi_{\varepsilon}(\zeta_p) \in [3i, h/2 + 3i] \quad (p \ge p_2),$$

and this proves (3).

3. PROOF OF THEOREM 1

Let $h_0 = 2$, $1 > h_1 > h_2 > \dots > 0$, and

$$R_k = \{u + iv: h_{k+1} < u < h_k, -4 < v < 4\}$$
 (k = 0, 1, ...).

Let $H_0=R_0$ and $H_1=R_0\cup (h_1-i\epsilon_1,h_1+i\epsilon_1)\cup R_1$, with $0<\epsilon_1<1$. Let f_1 be the function that maps $\Re\,z>0$ onto H_1 and is real on the positive real axis, with $f_1(1)=1$. By the lemma, we can choose a small ϵ_1 and a point z_{p_1} in our given sequence such that

(5)
$$h_2 < \Re f_1(z_{p_1}) < h_1, \quad \Im f_1(z_{p_1}) > 2.$$

On the other hand, since $f_1(z_p)\to h_2$ (p $\to \infty$), there exists another point z_{q_1} such that

(6)
$$h_2 < \Re f_1(z_{q_1}) < h_1, \quad \Im f_1(z_{q_1}) < 1.$$

In the second step, let $H_2 = H_1 \cup (h_2 - i\epsilon_2, h_2 + i\epsilon_2) \cup R_2$, with $0 < \epsilon_2 < 1$. Denote the normalized mapping function by f_2 . The choice of ϵ_2 depends on two conditions. First, the above statements (5) and (6) should remain valid with f_1 being replaced by f_2 . This can be achieved by the Carathéodory kernel theorem, since H_2 converges to H_1 as $\epsilon_2 \to 0$. Furthermore, ϵ_2 should be chosen so small that there exists a point z_{p_2} $(p_2 > p_1)$ with

$$\label{eq:h3} {\rm h_{\,3}} < \, \Re \, f_2(z_{p_2}) < \, {\rm h_2} \, , \quad \ \Im \, f_2(z_{p_2}) > \, 2 \, .$$

This can be done by (3). Now ϵ_2 is fixed, and we pick a point $\mathbf{z}_{\mathbf{q}_2}$ such that

$$\label{eq:h3} h_3 < \, \Re \, f_2(z_{q_2}) < h_2 \, , \qquad \Im \, f_2(z_{q_2}) < 1 \, .$$

It is clear how the construction continues. The domains H_k converge (with respect to w=1) to a domain H, and the normalized mapping functions f_k and f satisfy the condition $f_k(z) \to f(z)$. The function f maps the positive real axis into itself. In particular, $f(x) \to 0$ as $x \to +0$. By the construction, we have the inequalities

$$\Im\,f_k(z_{p_j})>2\,,\quad \Im\,f_k(z_{q_j})<1\qquad (j=1,\,2,\,\cdots,\,k)\,.$$

Letting $k \to \infty$ for fixed j, we obtain the inequalities

$$\Im\, f(z_{p_j}) \, \geq \, 2 \, , \qquad \Im\, f(z_{q_j}) \, \leq \, 1 \qquad (j \, = \, 1, \, \, 2, \, \, \cdots) \, .$$

Hence the sequence $\{f(z_p)\}$ diverges. This proves Theorem 1.

4. PROOF OF THEOREM 2

The construction in the last section has to be slightly modified. Consider infinite strips $T_k = \left\{h_{k+1} < u < h_k\right\}$, instead of the rectangles R_k . Also, let S_k be a closed rectangle in T_k . We can make the numbers ϵ_k so small that $S_j \subset f_k(G)$ for $j=1,\,\cdots,\,k$. Hence $S_j \subset f(G)$ for $j=1,\,2,\,\cdots$. If $\bigcup S_j$ has infinite area, then f(G) also has infinite area.

Universität Giessen, Germany Imperial College, London, England