ON THE BOUNDARY BEHAVIOR OF CONFORMAL MAPS
D. Gaier and Ch. Pommerenke

1. INTRODUCTION AND SUMMARY

Let f be schlicht in |z| < 1, and suppose that ¢ = lim,_,_g f(x) # © exists.
Then f(z) — ¢ as z — 1 in any Stolz angle, hence also as z — 1 in some domain G
that is tangential at z = 1 (by this we mean that G contains every Stolz angle in a
sufficiently small neighborhood of z = 1). In other words,

(1) f(z) — ¢ as z — 1 (z € G),
and as a consequence
(2) the image f(G) has finite area.

Note, however, that G depends on f. George Piranian raised the following question:
Does there exist a domain G tangential at z = 1 that is independent of f and for
which (1) or (2) holds. For example: Does (1) or (2) always hold for

G=1|z-1/2| <1/2}?

Our answer is negative in both cases.

THEOREM 1. Let {z } be any sequence with ]zpl <1 such that zp, — 1 and
arg(zp - 1) —» 7/2 (p — ). Then there exists a function f that is bounded and
schlicht in |z| < 1, for which lim, _, | _o £(x) exists but {t(zp)} diverges.

THEOREM 2. Let G be any subdomain of |z| < 1 that is tangential at z = 1.
Then theve exists a function f, schlicht in |z| < 1, for which limy_, | _g £(x) #
exists but £(G) has infinite area.

2. PRELIMINARY RESULTS

It will be more convenient to work in the half-plane 9%z > 0 than in the disk
Izl < 1. So we assume that {zp} is a sequence with 9z, > 0 and zp — 0,
arg z,— /2 (p — ).

Let 0 <h <1, and let D be a simply connected domain in the half-plane u > h
of the w = u + iv -plane that is symmetric with respect to the real axis, contains the
point w = 1 and some rectangle {h <u <h+ a, lvg <1}. For 0<e <1, let Dg
consist of the rectangle R = {0 <u<h, -4 <v.< 4} and of D, the two domains be-
ing connected by an opening of width 2¢; that is, let

D, = RU (h - ig, h+ig) U D.

Let the schlicht function w = f¢(z), normalized by the conditions f;(0) = 0 and
f¢(1) = 1, map the half-plane 9%tz > 0 onto Dg.
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LEMMA. For every p, theve exist € > 0 and p > p, such that
(3) 0 < ‘E)tfs(zp) < h and ‘:sfs(zp) > 2.

Proof. Let the function b(e) be determined by the equation fg(ib(c)) = 4i. We
shall first show that

(4) b(e) N\ 0 continuously as € ™ 0.

(i) Monotonicity is clear, since g; < &, implies D81 c Dsz’ so that the har-
monic measure of the segment (-4i, 4i) with respect to w =1 is smaller in DSI
than in DSZ .

(ii) To see the continuity of b(e), we first extend f; across (-ib(e), ib(g)) by the
reflection principle. The z-plane, slit along z = iy (|y| > b(g)), will thus be mapped
by fz onto Dg, the union of Dy with its reflection about (-4i, 4i), plus this open seg-
ment. If now € gy > 0, the kernel K, of the regions in the z-plane with respect to
z = 0 is the plane slit along z = iy (]y| > limg ¢ 0 b(e)), while in the w-plane the

kernel with respect to w =0 is just =D, . By the Carathéodory kernel theorem
€o ’

the limit function will map K, onto K,, where z =0 and z =1 remain fixed and
whereby points on %z = 0 are mapped into points on 3w = 0, so that
z =i-limg\ €0 b(e) corresponds to w = 4i. Since this limit function will also map

9tz > 0 onto D80 with fixed points 0 and 1, it must be the function fSo , and it fol-

lows that i-lims\.SO b(e) =1i-b(gy). Likewise we can show that hms/"so b(e) = b(g,).

(iii) Assume that b(e) = @ > 0 (¢ — 0). Then the kernel of the slit z-planes with
respect to z = 0 would not degenerate for £ — 0, the functions f; would converge
uniformly, in a certain neighborhood of z = 0, to a function vanishing at z = 0, and it
would follow that |f5(6)| <h for all & < £, and some sufficiently small & > 0,
which we now keep fixed. On the other hand, we may consider the maps fg from
iz > 0 onto Dg with 1 as fixed point instead of 0. Since the kernel of the regions
D, with respect to w=1 is D, we see again by the Carathéodory kernel theorem
tlhat fsl( 6) must lie in D for sufficiently small &, and this contradicts the relation

f:(6)| <h.

Now that (4) is proved, we attack proposition (3). Let ¢ = z/b(e) and
$e(8) = fo(b(e)C) .

Making an analytic continuation as above, we see that w = ¢ (¢) maps P, the {-plane
slit along [-iw, -i] U [i, iw], onto Dy . Note that ¢5(0) = 0 and ¢4(0) > 0 for all

€ > 0. As £ — 0, the domains Dg converge in the Carathéodory sense to the
rectangle R= {-h<u<h, -4<v<4}. Hence ¢g({) — ¢(£) locally uniformly in P,
where ¢({) is the function that maps P onto R with ¢(0) =0, ¢'(0) > 0.

Consider the image S of the segment [3i, h/2 + 3i] under ¢-1. We choose
€og > 0 so small that

|9e(0) - #(©)| < h/2  for Les, 0<e<e,.

Because arg zp — 7/2 (p — =), there exists a point CP € S with arg CP = arg zp,
for sufficiently large p (say for p > p; > py). Using 7, — 0 (p — =) and (4), we see
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that we can determine € = £(p) > 0 such that zp = {pb(e) for p > pz > p1. We have
the relation

fe(z5) = 9g(8p) € [3i, h/2+3i]  (p>pp),

and this proves (3).

3. PROOF OF THEOREM 1
Let h0=2, 1>h1>h2>°">0,and
Ry = {u+ivih; <u<h,, -4<v<4} (k=0,1,-).

the function that maps %z > 0 onto H; and is real on the positive real axis, with
f,(1) = 1. By the lemma, we can choose a small &, and a point ZPl in our given

sequence such that
(5) h, < &Rfl(zpl) < hy, a“s,fl(zpl) > 2.

On the other hand, since f; (zp) — h, (p — o), there exists another point z q such
1
that

(6) h, < &)lfl(qu) < hy, %fl(qu) <1,

In the second step, let H, =H; U (hz - iSz ’ hz +i.€z) U Rz, with 0 < € <1,
Denote the normalized mapping function by f,. The choice of €, depends on two
conditions. First, the above statements (5) and (6) should remain valid with f; being
replaced by f,. This can be achieved by the Carathéodory kernel theorem, since
H, converges to H; as g, — 0. Furthermore, £, should be chosen so small that
there exists a point Z, (p, > p;) with

hy < Ry(z, ) <y, Sh(z, ) > 2.

This can be done by (3). Now &, is fixed, and we pick a point Zg, such that

hy < BG(zg) <hy,  $G(z ) <1

It is clear how the construction continues. The domains Hy converge (with re-
spect to w = 1) to a domain H, and the normalized mapping functions fi, and f
satisfy the condition f(z) — £(z). The function f maps the positive real axis into
itself. In particular, f(x) — 0 as x — +0. By the construction, we have the in-
equalities ‘

dfk(ij) > 2, ofk(ij) <1 G=1, 2, -, k).

Letting k — « for fixed j, we obtain the inequalities
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i“sf(zpj) > 2, 3f(ij) <1 (G=1,2 ).

Hence the sequence {f(zp)} diverges. This proves Theorem 1.

4. PROOF OF THEOREM 2

The construction in the last section has to be slightly modified. Consider infinite
strips Ty = {h;,; <u < h,}, instead of the rectangles R, . Also, let Sy be a closed
rectangle in Ty . We can make the numbers g, so small that S; C £, (G) for

j=1, -, k. Hence S; C£(G) for j =1, 2, . It US; has infinite area, then £(G)
also has infinite area.
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