THE EMBEDDINGS O(n) C U(n) AND U(n) C Sp(n),
AND A SAMELSON PRODUCT

Albert T. Lundell

In this paper we discuss the embeddings of the orthogonal group O(n) in the
unitary group U(n) and of U(n) in the symplectic group Sp(n) induced by the embed-
dings R c C and C C H, where R, C, and H are the fields of real numbers, complex
numbers, and quaternions, respectively. We {find that these monomorphisms are
homotopic to a composite mapping ’

om) & vt -1 2 v,

where ¢ is an analytic function (but not a homomorphism) and j is the usual inclu-
sion. A similar result holds for the embeddings U(n) — Sp(n), and we prove it
simultaneously.

A more detailed study of the map ¢: O(n) — U(n - 1) yields a further deformation
é: O(n) — U(2[(n - 1)/2]), which is a “best possible” factorization (here [k] denotes
the greatest integer in k). As we specialize further, the map ¢: O(2n + 1) — U(2n)
induces a map ¢': V.11 » — Sy5_1, Which in turn induces the classical €,-iso-
morphism m (V, +1, DE 'ﬂ'k( 4n.1)» Where @, is the class of 2-primary abelian
groups. The map ¢! can be made to yield some information on the 2-primary com-
ponent of ﬂk(V2n +1,2) We conjecture the existence of a similar map

O(2n + 1) — Sp(n)

that induces the ‘@z-isomorphism m (0(2n + 1)) = 7, (Sp(n)) of Harris [6], but work
on this is incomplete. A more detailed study of the maps ¢ for the embeddings
U(n) C Sp(n) should yield results on this conjecture.

Finally, we use our results to calculate the order of the Samelson product
< oLy, , 0 L2n>‘ € 7y, _,(0(2n)), where 3 is the transgression operator in the homo-
topy sequence of the fibration O(2n+ 1) — S,,, . We are able to do this up to a factor
of 2 for all n; and for n < 4, there is now sufficient knowledge of the homotopy
groups of the appropriate Stiefel manifolds to calculate the exact order of this prod-
uct. We are informed that by using entirely different methods, Mahowald [10] has
calculated the order of <8 lrns 0 LG> for n > 4.

1. NOTATION

Let F denote R, C, or H, where R is the field of real numbers, C is the field
of complex numbers, and H is the field of quaternions. We use d for the dimension
of F as an algebra over R, so that d =1, 2, or 4. By F™ we denote an n-dimen-
sional right vector space over F with a fixed basis and the usual inner product®
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(X, Y> = <(X]_) " Xn)’ (Y]_: ) yn)> = Zl> ikyk’

where X denotes the conjugate of x in F. We use O,, to denote the subgroup of
GL(n, F) that preserves this inner product. Since we have fixed a basis for F2, we
are given a def1n1te matrix representation of the group O, , and it is eas1ly seen that
if g € O, then g~ is the conjugate transpose matrix, which we denote by *g. Since
O, is a group of linear transformations and F™ is a right vector space, O,, operates
on the left, and we should regard x = (x5, *-, x,) € F* as a column vector. In any
case, O, w111 be one. of the groups O(n), U(n) or Sp(n), depending on the field F.

The inclusion mappings i: F2-K — F? defined by
i(X1’ e xn-k‘) = (Xl’ er, Xn-k’ O’ e O)

induce monomorphisms i: O,k — O, , and we denote the right coset space

0,/i(0O,_x) by O, . The spaces O, ) are homeomorphic to the Stiefel manifolds
of k-frames in Fn and we make this identification. The various mappings between
these coset spaces y1e1d the well-known fibre bundles (O hko P On 05> 0, 0,k- ﬁ)
and we recall that O, ; is the (dn - 1)-sphere Sg,.j, while On,n = On, if we let
Op denote the subgroup of O; consisting of the identity element.

Finally, the inclusions R C C and C C H induce monomorphisms
@¢c:O(n) — Um) and @y Um) — Spn),

which we denote collectively by ar: O, — O}, .

2. THE MAPS a¢ AND THEIR DEFORMATIONS
In this section we define maps ¢: O(n) — U(n - 1) and ¢;;: U(n) — Sp(n - 1), and

we discuss some of their properties.
Let X (n) = {[x,q] € 0,] x,, #u}, where u € F and |u| = 1.
PROPOSITION 2.1. For each n2> 2, theve is a map X (n) — O

Proof. According to our conventions, the projection 7: O, — Sgn-1 picks out the
last column of a matrix in O, ; that is, 77([xp 1)=(x1n, X2n, ***, Xpn). Thus
m X,(n) = Sgn-1 - {u} where we use 1 to denote the restrlctlon of the projection
map. Since Sy, _; - {u} is contractible, there exists a cross section

n-1"°

04 Sdn-1"- {u} - 0,.
For g € X ,(n), set
du(e) = [oy 7(e)] ™"

Since n(g) = w0, 7(g) and 7 is the projection of a principle bundle, ¢,(g) € O, _;.
COROLLARY 2.2. For each n > 2, theve exist maps

qbc: O(n) — Umn-1) and brp Un) — Sp(n - 1).
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Proof. For n>2, a: O(n) — Xi(n) C U(n), where i € C, and
ot Uln) — Xj(n) C Sp(n),

where j € H. Thus we may define ¢c = ¢;0c and ¢y = ¢; 0p.
Let j: X, (n) — O, be the inclusion map.

PROPOSITION 2.3. If i: O,_; — Oy, is the inclusion homomoyphism, there
exists a homotopy j ~ i¢: X (n) — O, for n> 2.

Proof. Choose a deformation retraction r of Sy, _; - {u} onto {—u}, say
r(x, 0) = x, r(x, 1) = -u. Now define &,: X,(n) XI— O, by

&, t) = 0@) o, r(@(e), ] g,

where 0 is a path from the identity of O, to cu(f u). (We must choose o 4(-u) in
the component of the identity of O, in the real case.) Then &,(g, 0) = ¢,(g) and

®u(g, 1) = g.

COROLLARY 2.4. If i: O] _; — Oy, is the inclusion homomorphism, there exists
a homotopy ag ~ ¢g: O, — O, for n > 2.

Proof. Define @(g, t) = @i(ac(g), t) and ey(g, t) = ;(ay(g), t).

For subsequent calculations, it will be useful to exhibit some actual formulae.
As a cross-section 0 Sdn-1 " {u} — O, we may take

i x) |
X2
- -13
_ [0pq - % Q%q]
O'u(Xl, XZ, ".’ Xn) - . ’
Xn-1
| Px; PXxp - PXpy X

where Q=1 -X,u and P = uQQ! . since our projection 7m: O, — S5,_; is the map
7([xpql) = (%15, X2, ', Xpn), We easily calculate that for 1 <p, q <n, ¢ [qu])
is the (n - 1)-by-(n - 1) matrix [y,..], where

— -1
Ves = Xpg T Xrn(u - Xnn) Xns

for 1<r, s <n-1. Of course, in the case of the maps ¢ and ¢5, u will be re-
placed by i and j, respectively.

PROPOSITION 2.5. (i) If GC O,_;, then ¢5 |G = ar | G.
(ii) If g € O,.1, then ¢F(Xg) = ¢F(X)QF(g)-

Proof. Part (i) follows easily from the formulae, because Xpn=Xpq=0 for
1<p,q<n- 1 To see part (ii), observe that if g € O, _;, then

¢ (xg) = [0 7(xg)] 1xg = [0, 7(x)] 1xg = ¢ (x)g.

Applying this to ¢, we obtain the formula of (ii).
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COROLLARY 2.6. The maps ¢y induce bundle maps

% (On,10, T, On 05 Opog ie-g) = O 131,75 051 9105 O, _px-0)
for 2<0<k<n-1,
" (On 15 T, Oy, 05 O g xg) = (O _1/@ (0, 1), 7, 0,1 /25(0, ), O h-0,k-2)
for 1<9<k<n.

Proof. By property (ii) of Proposition 2.5, ¢ induces maps on the appropriate
coset spaces.

3. THE MAP O(n) — U(n)

From now on, we are concerned only with the maps derived from the inclusion
ac: O(n) — U(n). We therefore drop the subscripts, writing o, ¢, ¢!, --- for the
maps 0¢, ¢c, ‘l’c , **, respectively. Also, since we are no longer concerned with
the quaternions, multiplication of field elements is commutative.

LEMMA 3.1, Let Vv, nt2,2 and W, +2,2 be the Stiefel manifolds of orthonormal
2-frames in real and complex (2n + 2)-space, respectively. If

@ Voni2,2 = Woniz,2
is induced by the map o, then o' is null-homotopic.

Proof. Represent the points of Ozn+2,2 by the symbols [y, x], where y and x
are orthonormal vectors. Let

e=1(00-,01 and e'=(0,0, -, 1,0)),

and choose [e', e] as the base point of Ozp4 . Since S;,4) is an odd-dimensional
sphere, we may define a function w: S;;,41 — Szn+l by w(x) =z, where z;; ) = X5
and zp; = -xp;_; for 1 <k <n+ 1. Note that if we define w(x) = [w(x), x], then™

®: (Spnt15 € = (Vany2,2, [€', e]) is a base-point-preserving cross-section of the
tangent sphere bundle of SZn+l Define F: V40 2 XI =Wy 45 o by

([ [exp (wit) (cy - isw(x)), x] (0<t<1/2),
F([y, x], t) = {
[exp (wmit) (ce' - isw(x)), exp (-mit) (ce +isx)] (1/2<t<1),
where ¢ = cos (nt) and s = sin(wt). Note that
F(ly, x], 0) = a'([y, x]), ¥(ly, x], 1) = [e', e],
F(le,e],t) = [er,e] for 0<t<1.

Thus F is the desired homotopy.

For application in the proof of the following theorem it is useful to observe that

F([y, e], t) = [£(y, t), el € Wppi2 2, Where f:S;, XI — 84,43 - {i}.
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We use Lemma 3.1 to prove the following theorem, which sharpens Corollaries
2.2 and 2.4.

PROPOSITION 3.2. For n > 0, there exists a map
é: O(2n + 2) — U(2n)

such that if j: U(2n) — U(2n + 2) is the inclusion, j$ is homotopic to a relative to
O(2n), and §| O(2n + 1) is the map ¢, described in Covollary 2.2.

Proof. The method of proof is to extend the map in Corollary 2.2. Let
7: O(2n + 2) — V2n+2,2 and 7' U(2n+ 2) — WZnJrZ,Z

be the bundle projections. Define F': O(2n + 2) X I — Wonsa,p by F'= F(r X 1).
Then F' is a null-homotopy, by Lemma 3.1. Now define G: O(2n+ 1) X I — U(2n + 1)
by

G(x, t) = A(x, t)[o; f(rn(x), 1 - O] " a(x),

where m": O, ,; — S, is the usual projection, 0;: S, .; - {i} — U(2n+ 1) is the
cross-section of Section 2, and A(x, t) is the unitary transformation with matrix

[ - exp (-27it) P 0

-exp(-27it) P 0
- 0 . .. 0 1.

(here P comes from the formula for o; f(n"(x), 1 - t) as in Section 2). We verify by
direct calculation that

T'G = F'|0(2n+ 1),
G(x, 0) = a(x), G(x, 1) = ¢(x), G(x, t) = a(x) for x € O(2n).
Now extend G to
G':0(2n+2)x-{0} UO(2n+1)XI — U(2n+ 2)
by setting G'(x, 0) = a(x). By a covering homotopy extension theorem [1, Theorem
2.4], there is a map &: O(2n + 2) X I — U(2n + 2) such that & extends G' and

m® = F', Set ¢(x)=&(x, 1). Since n'¢(x) = F'(x, 1) = [e', e], ¢(x) € U(2n). The
homotopy of j¢ with o is given by &, and since & extends G', ¢ | Oo(2n+ 1) = ¢.

Thus Propositions 2.2 and 2.4 are conveniently combined in the following
theorem.

THEOREM 3.3. For n > 2, theve exists a map
¢: O(n) — U(2[(n - 1)/2])

such that if j: U(2[(n - 1)/2]) — U(n) is the inclusion map, then
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i ~ a (rel O(2[(n - 1)/2])).

Proof. ¥ n is odd, we take ¢ = ¢. Otherwise, take 5 to be the map in Proposi-
tion 3.2.

Consider the following sequences of bundles:
n () . .
gk,ﬂ' Vn,k = Vn,ﬂ_' with fibre vn—-ﬂ,k-ﬂ (1<2<k<n),
np g Wy & W, , withfibre W, o, , (1<2<k<n),

63 ¢ U)/O( - k) = U(n)/O(n - £) with fibre V, ; ; , (0<2<k<n).

THEOREM 3.4. The maps 5 induce the following commultative diagrams of
bundle maps.

(i) For 2< 0 <k< 2n+1,

2ntl o
Kk, { nklﬂl

N7

€Zn+2
kt+1,£+1

(i) For 1< 0<k<2n+1,

§Zn+1 on
k-l £2-1

N, SE

2n+2
k+1 £+1

Proof. As in Proposition 2.5, if g € O(2n), then #(xg) = ¢(x) a(g); thus ¢ induces
maps on the appropriate coset spaces.

We want to investigate the effect of the map $ on homotopy. We recall some
preliminary notions and introduce some notation. Let U and O denote the increas-
ing union of the groups U(n) and O(n), respectively According to Bott [4], 7, _,(U)
is an infinite cyc11c group generated by uZn 15 Ta,_1(0) is an infinite cyclic group
generated by o _1 5 and the maps a: O(n) — U(n) induce a map a: O — U such that

o0

a*(04n-1) = a'nu4n--1’

where a_=2 if n=1(mod 2) and a,,=1 if n =0 (mod 2). The homotopy sequence
of a f1brat10n 1mphes that for k > n, ”zn 1(U(k)) is infinite cyclic and is generated
by an element uZn 1 such that under the inclusion Uk) — U, ulzcn_1 ZH 15 to-
gether with € -theory, it shows that for k > 2n+ 1, m,,_;(O(k)) has an infinite sum-
mand generated by oﬁn_l such that under the inclusion O(k) — O,

k B(n,k)
Oyn-1 — 2 O 4n-1"
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Finally, B(n, k) is completely known; it is given in the following table:

k > 4n 4n - 1 4n - 2 4n - 3 4n—4_<_k_<_2n+1

n
n+1,24| 0 0 0 0 0
1 0 1 -- -- --
2 0 1 2 3 -
4 0 0 0 0 1

The first column follows from the homotopy sequence of a fibration, the first row is
due to Barratt and Mahowald [3], and the rest of the table follows from work of

Kervaire [9].

THEOREM 3.5. Letk>2n+ 1> 3, and let m = 2[(k - 1)/2]). Then the homo-
movphism

a"*: 7741.1_ I(O(k)) -7 4n_1(U(m))

has the property . (of ;)= 2B(n,k) a1

Proof. Consider the commutative diagram
1

Tan.100) % 74, _1(0)

. j(*

Ty () 2 7, (U)X 7, (0),

where the horizontal maps are induced by inclusions. The triangle is commutative,
because j¢ ~ a. The homomorphisms on the bottom line are isomorphisms, because
the groups are stable. Thus

2ﬁ(n,k) a'nujion—-l = ay i>'I<(014<1r1-1) = j:kj*a*(ollzn-l) = j’;‘j*(ZB{n’k) anuzl'l),

. st s g . s ~ 7 k _ Lk
and since j. j, is an isomorphism, ¢*(o4n_1) = 280 )anurfn_l.

We may use this theorem, at least the nontriviality of '5* or a,, to prove that
Theorem 3.3 is best possible in the following sense.

COROLLARY 3.6. There exists no map : O(n) — U(r) for r < 2[(n - 1)/2]
such that W ~ a, where j: U(r) — U(n) is the inclusion.

Proof. Let m =[(n - 1)/2]. Then 7, _ , (O(n)) r Ty, (U(2m)) is nontrivial,
but since r < 2m, 7, . 1(U(r)) X Tym.1(U(2m)) is the trivial map.

4. THE MAP V, , — S, 3

We want to study the map ¢': V,, , — S,,,_3 induced from the bundle map

52’2 — n?l:i,l . We shall need some facts about Vn,z .
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Recall that V,, , is the set of pairs [y, x] of orthonormal vectors y and x in
real n-space. The topology of Vn 2 is induced from the embedding of V_ 2 1 in
(2n)-space: ly, x] — (X3, %5, ", X,, Y1, Y2, "5 ¥,)- We define two “hem1spheres”
and an “equator” on V,, , as follows:

+

Un,z - {[y, X] € Vn’zl yn > 0})

UI;,Z - {[Y7 x.] € Vn,Zl Yn < O}’

E .= 1lyxlev .|y, =o}.

n,2 n

Since the topoloty is induced from (2n)-space, it is clear that U+ and U_ , are
,2 ,2

open and separated in V,, ,, and the intersection of their closures is E, ,. Note
also that V,, , and S, 3 are both (2n - 3)-manifolds.

PROPOSITION 4.1. The map ¢': V| 27 S>3 tnduced by ¢ has the property
that ¢! | U+ is a homeomorphism onto an open subset of S, 3. Moreover, for
each |y, x] € U+ ,U U~ the set ¢'-1¢'([y, x]) consists of precisely two elements.

Proof. From the formula following Corollary 2.4, it is easily verified that
¢y, x]) = (u; +ivy, u, +iv,, ===, u, _; +iv, ;) €S, 5, where

U, = Y,- X X/ + %), vy = -(7,x)/(1+x%), for 1<p<n-1.

Set A_=1+ xﬁ, and observe that

Ev‘;‘) = y2(1 - x2)/AZ  and EUPVP = 2x y2/n2,

because 27 x2 X = 27 yZ =1 and 2J X, V) = 0. Now define

2 2
2 _ 2 _ AA2
A" = (E vk) + (Eukvk) = yn/Ax,
and set
= 2 — 2 /02
= EVP-'I-A = 2yL/A%.
Then
Bx, = Eupvp, Byl?‘1 = 2A2, Axp = VoV

Observe that B = 0 if and only if A = 0, and that this is equivalent to the condition
¥, = 0. Thus we can solve these equations for [x, y] provided the vector ¢'([x, y])
is not a real vector. In the case A # 0, we easily find that

Byp = Bup - vaukvk.

= MAY 27B X, = Eukvk/B X, = - AV «/2/B By = Bu -V (Eukvk),

where A =41 and 1 <p <n - 1. From this calculation it is clear that for

ly, x] € Un 2U U, ¢'- “1¢'([y, x]) consists of precisely two elements, correspond-
ing to the choice of A. If WCS,, 3 is the set of complex vectors none of which has
only real coordinates (this set is homeomorphic to S,,_3 - S,,_,), then the map

v,l/+: W — U;'l" , given by
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zp+(u +iv) = [t,VlL(u + iv), ’,l/;r(u +iv)],

where

prlr(u+iv) = (u1 - (vl/B) Eukvk’ e

- /B)Eu Vi AV2/B)
:,D+(u+iv) = (—v v2/B, -, —vn_lw} 2/B, (Z;u v )/B)

and where A and B are defined as above, is an inverse for ¢' | U+2. From the

formulae, it is clear that both ¢' and ' and a similarly defined map ¥~ are (real)
analytic maps.

THEOREM 4.2. For n> 2, the map ¢': Vn’z — S,,_3 has the following alge-
braic properties:

(i) degree ¢' =0 if n is even,
(ii) |degree ¢'| = 2 if n is odd.

Proof. Since ¢' is a local diffeomorphism on Un 2 U Un 2>, the local degree of
¢'at [y, x] € U+ U U is +1. By Proposition 4.1, the relation

¢"1¢'([Y, x]) = {[y, =], [y, x'1}

holds, on this set; therefore according to [11],

degree ¢' = deg[y’x] o' + deg[yl’x,] ¢! .

Thus degree ¢' = 0 or 2.

In the case where n is even, we know by Lemma 3.1 that @' is null-homotopic,
where a': V, , = W, ;. Also, 1f i't 8.3 = W, , is the inclusion, then i'¢' ~ a'.
Therefore, in homology, ik ¢} = @, = 0. Smce iy : Hyp 3(Szn-3) — H2n 3(W,,2) is
an isomorphism, ¢, = 0, and degree ¢'=

In the case where n is odd, say n = 2k + 1, consider the diagram

714k_1(0(2k + 1)) ?ﬁ 114k_1(U(2k))
Loy L m

Tar-1 (Vors z) ¥ Typ-180c1)

lh ! h
¢

H4k—1(V2k+1,2) H4k-1(S 4k-1)’

where h is the Hurewicz homomorphism. By Theorem 3.5,

2k+1y _ of3(k,2k+1 2k
$x(0g3 1) = 2 )aku4k 1

and by [5], ﬂlk(u4k P =%(2k - 1)1e,, ,, hence

2ktly _ 4 9B(k,2ktl1)

Ty 34 (0431 a 2k - Dy,
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Now h' is an isomorphism, so that h'wny ¢, # 0. By commutativity of the diagram,
¢xhme # 0, so that ¢} # 0. We conclude that Idegree ¢'| =2,

COROLLARY 4.3. Forn> 1, the map ¢" Vioy)  — Syn., induces a €,-
isomorphism ¢, : Wj(V2n+1,2) = T§(S4n-1) for all j.

Proof. Since degree ¢' =+2, ¢i: Hj(Vznt1,2) — Hj(S4n-1) is a @2-isomorph-
ism for all j. An application of Whitehead’s theorem for %, yields the result.

Since ¢kt M45_1(V2n+1,2) = T4n-1(S4n-1) is nontrivial, there exists a generator
041 € 7T4n-1(Vzn+2,2) of infinite order.

THEOREM 4.4. For nz 2, ¢,=<(94n__1) =i83.n lyn-1: and (ﬁ'*(g:)’) =i4L3.

Proof. Let vy, 1 € Hyy, 1(Vany1,2) and sy, ) € Hyy, 1(S4,.1) be generators.
For notation, we refer to the lower half of the diagram in the proof of Theorem 4.2.
According to James [7, Theorem 7.3], for n> 2, h(6y, 1) =+4a, v, _y, and
h(63) = +2v;. Since ¢' is of degree +2, we see that éph(04, 1) =+8a,s,,_; and
¢xh(63) =+4s;. But h' is an isomorphism; hence ¢4(6,4, ;) =+8a, ty, ; for
n> 2, and ¢x(63)=+415.

Let E: m(S,) — m.;(S,,;) be the suspension homomorphism. We can sharpen
Corollary 4.3 as follows.

COROLLARY 4.5. For n> 2, 8a,Em(Sy,_z) C ¢kmy1(Vopy o), and
4Em (S;) C ¢y (V3 5)-

Proof. ¥ 8a EX € 8a Em (S, ,), then
('b""(elln-l o Ex) = (Banl’éln-l) oEA = 8a’n("étn--l o E}) = 8anE7t.

The proof for n = 1 is similar.

5. A SAMELSON PRODUCT

The first portion of this section will be concerned with the homotopy sequence of
the bundle (Vzn.11.2, P, S2n, San-1)- We use A to denote the homotopy transgres-
sion in this sequence. |

LEMMA 5.1. If A € myy,_1(Vany1,2) is an element of finite order, then
p*(A) € my, 1(8,,) is of order at most 2.

Proof. Recall that 74,_1(S;,,) = Z + Eny,_2(S;,-1), where E is the suspension.
Thus p,(\) = EB = t,, ©EB, and

0 = Ap,(A) = A(Ly, ©EB) = AL, o =21, , 08 =2(, op)=28,
by James [7, Lemma 3.6]. Since p,(\) is the suspension of an element of order at
most 2, p,(A) is of order at most 2.
Let w,, =[t,,, t;,] € 1y, 1(S,,,) be the Whitehead square of t,, € 7, (S,.).

PROPOSITION 5.2. For n > 2, theve is a genevator 04, 1 € my, 1(Vy, 41 5)
such that p*(64n_1) =a w, .

Proof. According to James [7, relation (7.4)], there exists an element 6,4, _;
such that p, (64, 1) =a,w,,. We want to show that 64, _; is a generator. Suppose
that n # 2, 4, so that 74, ;(S;,) is generated by w,, and elements of finite order.
Let 0' € 1T4n_1(VZn+1'Z) be a generator of infinite order, let p,(6') = qw,, + 8,



THE EMBEDDINGS O(n) C U(n) AND U(n) C Sp(n) 143

where B is of finite order, and suppose that 04,_; =r0'+ o, where « is of finite
order. Then

a’ann = p*(e 411-].) = rqun + rB + p*(a)7

and rq =a, and rf = -p,(@). If n=0 (mod 2), then a, =1 =rq, so that
|r| = la|l =1, and 6,,,_; is a generator. I n=1 (mod 2), then a, =2=rq. If
|r| = 2, then -23 = p(a), and

0 = Ap(0') = Alaw,,, +B8) = [t,, 15 N5n.11 + 28
= [LZn—l’ nZn-1]+A(L2n o EB') = [LZn-l7 7;'Zn--l] +28°,

where 7,,,_; is the generator of 7, (S,,_ ;). By [7, Lemma 3.5], [t,,_1, 7 2n-1] # 0,
so that 28’ #0. Thus [t,__y, 7 2n.1] = 2B' € 274,_(S7,_1), which is impossible, by
[7, Lemma 5.2]. We conclude that |r| =1 and 64,.; is a generator.

In the cases n =2, 4, m4,_1(Sz,) is generated by an element y,,, of infinite order
and an element A, of order

k=12 n=2) or k=120 (n=4),

and by [8, p. 128], w,, = 2y, + Ay, . Also, since n is even, p,(04n.1) = Wz, . Sup-
pose 04,_1=r6'+a, where 0' and a are defined as above, and suppose

P, (0') =qry, +8A,,, pyl@)=t, . By Lemma 5.1, t =0 or t=Kk/2; in either case,
t is even. We have the relations

w, =2y, A, =p (0, ) =p(ro'+a)=ray,,+@s+in,,,
and hence rq = 2. If |r| = 2, then 2s +t =1 (mod k), and since t is even, this is
impossible; therefore Irl =1, and again 04, _; is a generator.

PROPOSITION 5.3. Let 0Z%t1 € 7, ,(0(2n+1)) be a genervator of infinite
ovdev, let m: O(2n+ 1) = V.44 5 be the usual bundle projection, and let
04n-1 € T4n-1V2nt1,2) be a genevator selected as in Lemma 5.2. Then

ﬂ*(oigti) = iIv‘[n64n-l +8,
where B is of finite ordey and M, =1, M, =6, M, ="T!/4, and M, = (2n - 1)!/8 for
n#l, 2 4.

Proof. We use the commutative diagram
by

17y Ly
Py

”4n-1(V2n+1,2) = Ty,

4n-l)’

together with the calculations in the proof of Theorem 4.2. In particular,

2n+l 1
+ 2P (20t )a'n(zn “ D gy g = T, (dhnt) = ¢>L77*(022t1)

¢,L(Mn94n-1 +B) = +8a, M, Ly, 3,
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for n > 2. I n =1, a similar calculation shows that +4t5 =+4M; L3. Since tg, ;
is a generator of 7r4n_1($ 4n-1) = Z, we can solve these equations for M_.

THEOREM 5.4. Let 9t,, € 7, _1(0(2n)) be the characteristic element of the
bundle 7": O(2n+ 1) — S, . Then the Samelson product

<a Lon> @ LG) € T4p.2(0(2n))

is of order either a,M, or 2a, M, .
Proof. The map n" factors as 7": O(2n + 1) A, V2n+1,2. B, S, ; therefore

2n+ly _
ﬂ*(o4n—1) - ia'mIVIann-l- LZn ° EB’

where B is of order at most 2, by Lemma 5.1. But from [2] we know that
(Btyn, 3ty =+8w,, . Thus

0= aﬂ*(oig’ji) =+a M 9w, +3(t, oEB) =1+ (aa,_n, aL2n>+(aL2n) of.

Thus if =0, {(dt,_,
We remark that by entirely different methods Mahowald has shown that for
n#1,2, 4, the order of (9t,,,dL,,) is a,M, . Using the detailed knowledge of
the necessary homotopy groups in low dimensions, one can prove that the order is

a,M, for n=1, 3, and that it is 2a,,M,, for n = 2, 4,
COROLLARY 5.5. The Samelson product (dt,,,dL,.) is of even order for
n> 2.

These last results generalize Theorems 9.1 and 9.2 of James [7].

dt,, ) has order a M, , and otherwise it has order 2a M, .
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