COMMON PERIODIC POINTS OF COMMUTING FUNCTIONS

A. J. Schwartz

INTRODUCTION

Let f and g be continuous transformations of I =[0, 1] into itself that commute:
f(g(x)) = g(f(x)) for all x in I. It is an unanswered question of considerable interest
whether there always exists a common fixed point: x = f(x) = g(x). An affirmative
answer has been obtained under certain severe restrictions on f and g (see, for
example, [1]). The purpose of this paper is to prove that there always exists a point
x such that x = £f(x) = g™(x) for some n, under the additional, mild assumption that f
has a continuous derivative.

PRELIMINARIES

For any function h and any x in I, let h®x = x and h¥x = h(h¥-1x) for k> 1.

We shall consider the semigroup of transformations (k, x) — gkx (k=0, 1, ---),
where g is a continuous transformation of I into itself. By Ox we denote
{gkx: k> 0}, the orbit of x, and by Cx the closure of Ox. We shall say x is
periodic if g"x= x for some n> 0. By P we denote the set of periodic points.

A subset Y of I is called invariant if gY is contained in Y. A closed, invari-
ant, nonempty subset is called minimal if it contains no proper subset that is also
closed, invariant, and nonempty.

A point x in I is called recurvent if x is in Cgx, that is, if gkx comes arbi-
trarily close to x for arbitrarily large values of k.

We shall assume that f is a transformation of I into itself and that it has a con-
tinuous derivative f'. We also assume that f commutes with g: fg = gf. By F we
denote {x: fx = x}, the set of fixed points of f.

We do nof consider the transformation semigroup generated by f, and for this
reason we have dispensed with the prefix g in terms such as g-invariant, g-minimal,
g-periodic.

We now consider some elementary facts concerning minimal sets.

PROPOSITION 1. Ewvery closed, invariant, nonempty subset contains a minimal
set,

Proposition 1 is proved by applying Zorn’s Lemma.

PROPOSITION 2. If Y is minimal andy isin Y, then Cy =Y,

This follows from the fact that Cy is a closed, invariant, nonempty subset of Y.
PROPOSITION 3. If Y is minimal and y is in Y, then y is rvecurvent.
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PROPOSITION 4. If Y is minimal and is not the orbit of a peviodic point, then
Y is perfect.

Since each y'in Y is in Cgy but not in Ogy, no y in Y is isolated.
PROPOSITION 5. F contains a minimal set.

If x is in F, then gx = gfx = fgx is also in F. Thus F is a closed, invariant,
nonempty set.

PROPOSITION 6. If Y is a perfect subset of F, then f'y =1 forall y in Y.
Let {y,} be a sequence in Y - y such that yn— y. Then

f'y = lim[(fy, - fy) Ay, - ¥)I = 1.

A THEOREM ON MINIMAL SETS

The following theorem may be deduced from a result of Jewett [2]. We give here
a proof that is much shorter and avoids ergodic theory.

THEOREM 1. Every minimal set is contained in the closure of P.

Proof. Let Y be a minimal set. If Y is the orbit of a periodic point, then the
conclusion is obviously valid. We thus consider the case where Y is not a periodic.
orbit.

Let € > 0 be given. Let b=inf Y. Since b is in Y and Y = Cgb, there exist
integers N and M such that b < gNtMp < gNp <p + €.

Since Y is minimal and is not a periodic orbit, gMb > b. It follows from the
continuity of gM that there exists a point e in (b, g% b) such that gN e = e, Since
b < e <b+ ¢, we have established the existence of periodic points arbitrarily close
to b.

Now, for each y in Y, it follows from Proposition 2 that |gKb - yl < &/2 for
some integer K. Since gK is continuous, there exists an ¢' > 0 such that
g¥x - g¥b| <e/2 if |x - b| <&'. From what we have shown above, it follows
that there exist a point z and an integer L such that |b - z| <&' and glz = z.
Thus gKz is a periodic point at a distance less than £ from y.

COROLLARY. A minimal set is nowhere dense.

THE MAIN THEOREM

THEOREM 2. Let Y be a minimal subset of F. Then Y is contained in the
closure of (P N F).

Proof. ¥ Y is a periodic orbit, we have finished. If Y is not a periodic orbit,
it is perfect, and f'y = 1 for all y in Y, according to Propositions 4 and 6.

Let € > 0 be given. We may assume that & is so small that |f'u - f'v| < 1/2
if |[u-v|<e.

Choose y; and y, in Y and x such that y; <x <y, <y; +¢ and g™x =x for
some n. If fx = X, we have finished. ¥ fx # x, choose z; and z, in F so that
v1 <2z <x<2z3; <y and (z1, z2) contains no point of F. Thus fw > w for all w
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in (z,, z,) or fw <w for all w in (z;, z,). We may assume without loss of gen-
erality that fw > w. On the other hand,

fz, -fw =z, -fw = f'w'-(z, - W)
for some w' in (w, z}), and

1 1
oyt 1 P —
f'w' > f'z, 5 5

so that fw <z,.
Thus {fXx} is an increasing sequence in (zj, z,) with a limit ¢. Since
fo =lim fktlx = ¢ ¢ isin F. Infact, £ =z,. On the other hand,
g”fkx = fkghx = f*x  for each k,

so gitf = ¢,

Thus we have found an element ¢, such that g™¢ = ¢ and f¢ = £, lying within ¢
of y; and y,. Since y,; or y, could be any element of Y, the proof is complete.

COROLLARY. Iff isa Cl-functz’on that commutes with a continuous function g,
then there exists a point x such that fx = x = g™x for some integer n.

Proof. According to Proposition 5, F contains a minimal set Y, which by defini-
tion is not empty. Thus, according to Theorem 2, there is apoint y in PN F. It
follows from the definition of P and F that fx = x = g”x for some integer n.
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