AN ANALOGUE OF A PROBLEM OF LITTLEWOOD

H. Davenport and D. J. Lewis

A well-known problem of Littlewood (see [1], [2], [3]) concerning Diophantine
approximation can be stated as follows: for any real 6, ¢ and any € > 0, does there
exist a positive integer n such that

@ aflno | o < 2

Here |||l denotes the difference between @ and the nearest integer, taken posi-
tively. In view of the difficulty of the problem (and of even conjecturing the answer),
it may be of interest to consider the analogous problem for some other systems of
elements, which have many properties in common with the integers and real num-
bers.

Let K be any field, and let t be an indeterminate. Let N be any polynomial in t
with coefficients in K, say

(2) N=n0+n1t+---+nhf:h (ny, # 0),

and introduce the valuation

(3) IN|, = e"

Any rational function in t is expressible uniquely as a formal power series of the

type
(4) mhth+ s + Mg+ M _3 t7l s . ,

where the coefficients are in K and satisfy ultimately a linear recurrence relation.
We denote by P i the field of gll formal power series of the type (4), with arbitrary
coefficients in K, and we extend the definition of valuation in (3) to apply to such
series.

We regard P as analogous to the field of real numbers, and the rational func-
tions in t and polynomials in t as analogous to the rational numbers and integers
respectively. We ask whether, given ® and & in Pk there exists N of the form
(2) such that

(5) IN| N, [N |,

is arbitrarily small, where the double modulus sign denotes that the valuation is
applied to the fractional part of the series for N@® or N&, that is, to the part which
comprises only the negative powers of t.

We shall prove that if K is the field of real numbers (ov, a fortiovi, the field of
complex numbers), the answer is in the negative. Our proof applies for any infinite
field of constants; however, we are unable to solve the problem if K is the field of
residue-classes to a prime modulus.
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Since the integral parts of ® and & are irrelevant in (5), we make a slight
change of notation and write

(6) @=01t +0,t7% 4 e,

and similarly for ®. Then the fractional part of N® is

G L@t + L)t ™2+ -,
where
(8) Lr(e) =n09r+ n19r+1+ ---+nh9r+h,

and similarly for &.

We shall show that it is possible to choose real numbers 63, 62, «»- and ¢1, ¢2, *--
in such a way as to ensure that for every h=1, 2, --- andevery r> 0 and s> 0
with r + s = h + 1, the equations

©) Ly(@)=-=Ly(6)=0, Lj(¢)=-+=Lg¢)=0

have no solution in ng, +++, n;, except the trivial solution 0, ---, 0. It is to be under-
stood that, if r = 0 or s = 0, the corresponding set of equations in (9) is empty.

If this is so, the case r = h + 1 of the assertion states that, for any N of the
form (2) with n, # 0, it is impossible that

Ly(6) =+« = Ly 1(6) = 0.
Hence there is some r (0 < r < h) such that
Ly(6) =<+ =L.(0) =0, L. (6 #0.

It then follows from the assertion that there is some q < h+ 1 - r for which
Lq(¢) # 0. Thus

h r-1

INlg =€, [Ne|g=eT", [No|g>e Pt

b4
whence
] ¢ INe . INe ]l > 2.

Let A, s denote the determinant of the r + s linear forms in (9) in the
r+ s=h+ 1 variables ng, *--, n;. Then

91’ "t 6r+s

B % O02r_1+s

r,s ¢1, ..., ¢1‘+S

¢s’ Tt ¢Zs—1+r
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where if r = 0 the 0’s are absent and if s = 0 the ¢’s are absent. We have to
choose 6;, 62, **- and ¢7, ¢, --- to satisfy all the conditions

Ars#0 (r>0,8>0,r+s8>1).

For then the equations (9) will not be soluble in ng, -+, ny, with some n; # 0.
We note that

DAp s =021 145 Dr-1,s 2P2s5-14r Dr,s-1 + F(01, ***, 02r-2+s; P2s-2+1) »

where F is a polynomial with integral coefficients, and where it is understood that
Ag,0=1,and A_],s=Ar,-1=0. We pick out all those determinants Ar,s which
contain any of 92m-1" 07m s $2m-15 P2m and contain no §; or ¢; with j> 2m.
These are the determinants with

2r -1+s<2m, 2s-1+r<2m

and either 2r - 1+s>2m -1 or 2s -1+ r > 2m - 1. They are finite in number,
and each of them is of one of the six types

DOyn_1 + F(O1, >y 0225 D15 ***s P2m-2)»
Adpm-1 + F(Oy, >+, 0225 61, ***s $2m-2)
NOyn-1 + Dby 1 + F(Oys o0y 0225 15 **"s b2 2) s
Abpry + F(0y, =y 02015 $15 *** $am-1) 5
Dby + F(Or, 5 050015 8157 Do -1
DOz P2 -1 + D021 $2m + O2m G(O1, ***5 O2m 25 b1, =y d2m-2)

+ bam H(Op, =% O30 25 015 "5 b2y _2)
+ F(gl’ e, 92m-1 Y ST ¢2m_1),

where the various A’s (not all the same, of course) are instances of Ap,q Which in-
volve only 01, -+, 82m-2 and ¢1, *--, ¢2m-2, and where G, H and the various F’s
are polynomials in the variables stated. Not all six types need occur.

Suppose the unknowns 61, =+, O2m-2, ¥1, ***, d2m-2 have already been chosen
in such a way that all determinants that involve only these unknowns are different
from zero. We can then choose 82,,_1, $2m -1 92ms P2m SO as to ensure that all
determinants which involve these variables and no variable of greater suffix shall
be different from zero. For this means making a finite number of polynomials as-
sume non-zero values, each of these polynomials being of one of the six types de-
scribed above. None of these polynomials in 82,1, 82m, $2m-1, $2m vVanishes
identically, since each has at least one non-zero coefficient A. The set of points in
the four-dimensional real space of 62,_1, $2m-15 82m » P2m at which any such
polynomial vanishes is an algebraic set of dimension 3, and a finite number of such
sets cannot exhaust the space. This suffices for the construction, and we can there-
fore proceed by induction on m. For m = 1, we have only to choose 61, ¢;1, 62, ¢2
so that
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6p # 0, ¢1=f=0, 91¢2-92¢1¢0.

We note finally that it is further possible to choose 6, 92, «=» and ¢, ¢, *** SO
that the absolute values of 6; j and ¢; tend to zero rapidly as j — . Thus we can
construct '® and ¢ in the more restrlcted system of power series in t-! with real
coefficients which converge for all t # 0.
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