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In order to obtain existence theorems of periodic solutions of
the non-linear differential equation of the second order, Reuter [5]*
and various authors have discussed the boundedness of solutions.
The present author has also researched conditions for the bounded-
ness or the ultimate boundedness of solutions for the purpose of
using Massera's theorem (Theorem 2 in [4]) in the discussion of
the existence of a periodic solution ([6], [7] and [10]) . And utiliz-
ing the properties of solutions, the author has obtained necessary
and sufficient conditions for the boundedness of solutions ([8] and
[10]). A certain function which appears in these conditions resembles
that of Liapounoff's research [2] for the stability of the solution.

The author thinks that the stability and the asymptotic stability
correspond to the boundedness and the ultimate boundedness re-
spectively and in certain sense they are of the same concepts re-
spectively. Of course, with regard to the independent variable,
both are of the problems " in  the large", but with regard to un-
known functions, the former is of the problem " i n  the small " ,

while the other is of the problem " in  the larg e " . Now we will
discuss the boundedness and the ultimate boundedness. Massera
[3] and several authors have discussed problems reciprocal to Lia-
pounoff's condition for the stability. We will see that we obtain
some results analogous to those o f their researches. The author
has also obtained necessary and sufficient conditions for the stability
([9]) and of course we can obtain results for boundednesses analo-
gous to them.

Now we consider a system of differential equations,

*  Numbers is [ I refer to the bibliography at the end of the paper.
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dx  
=  F ( t ,  x ) ,

dt
where x  denotes an n-dimensional vector and F(t, x )  is a given
vector field which is defined and continuous in the domain

4 :  0<t<co , < C O ,

represents the sum of the squares of its components. And let

x =x (t ; x0, t)))

be a solution of (1) through the initial point (t0, x )).
Here we state the following definitions for the boundedness.
a) The solution x=x(t; xo, t„) issuing from (to, x0)  to the right

is said to be bounded, if there exists a positive number B such that
Ix (t ; x ), t0) I <B  fo r  t to. This B  may be determined for each
solution.

b) The solutions issuing from t=t o to  the right are said to
be equi-bounded, if for lx 0 1._<a, B  in a) is determined depending
only on a  but independent of the particular solution considered.

c) The solutions are said to be uniform ly  bounded, if for
every t0, B  is determined depending only on a  and independent
of to.

In the foregoing paper [8] we have obtained a necessary and
sufficient condition for the boundedness. Now we will modify it
so as to correspond to the considered conditions for the ultimate
boundedness. To simplify the statement, we assume that every
solution of (1) is unique for Cauchy-problem (cf. Theorem 3 and
Remark 1 in [8]) , then we have

in  order that ev ery  solution of  (1) is bounded, it is necessary
an d  suf f icient that there ex ists a function io (t, x) satisfying the fol-
lowing conditions in 4; namely

10 ço (t, x) > 0,
2 (t, x ) tends to infinity uniformly f o r t , when lx1--)00 ,
30 f o r an y  solution of (1), x= x (t) , the function ço (t, x(t)) is a

non-increasing function of t.
For the condition of the equi-boundedness we require moreover

4 °  there exists a positive constant lc such that

(2) 99 (to, x) (10
M v ided (K : arbitrary) .

(1)
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Moreover for the uniform  boundedness, 50 (t, x) m ay  be def ined in
lxl ._1?0

(R
0
> 0 may be sufficiently great) in 4  and K  in  (2) depends

only on K  and is independent of  t0 . Of course, we can assume that
yo (t, x) exists in J.

When so (t, x) is continuous with its partial derivatives of the
first order, the condition 3° becomes

a5
O

 +   a5° • F(t, x)at ax
where the dot represents a scalar product. In this case there is
K  for each t  such as for I K , we have 90 (t, K  by the con-
tinuity of ç, (t, x) and hence the solutions are equi-bounded.

The following example shows that the boundedness and equi-
boundedness are actually different concepts.

Example 1. Consider the following system in polar coordi-
nates,

r, _ r  y' (t, 0)0 ,  0 ,

g (t,
where g' (t, 0) is the derivative by t  and g (t, 0) is the function

y  ( j ,  0 )  ( 1  + 1 )  sin' 0 +  1  1 
sin' + (1— t sin2 0) 2 1+ sin ' 0 1 + t2 .

The general solution of this equation is then
r = rot/ (t, 00), 0= 00,

If 00 = mn- (m  : integer) , the solution is

r= 
 r o

0 =  mir,
1+ t2

and if 8  mir, the solution may be written, if we put 7
1

r —rot 1 +  t 1  
\ 1+ 4-7)2 

+

1+72 1+ t 2 /

It is clear that every solution is bounded and if 0, is very near mir,
the solution will have a great value r for t= r which is as large
as we please, so that the solutions are not equi-bounded.

Clearly if n =1 , the boundedness and the equi-boundedness are
equivalent. Moreover if the system (1) is linear and the solutions
are bounded, they are equi-bounded. In fact, if we make the
equation into a homogeneous linear equation by the transformation
x =X +x (t), x (t) being a solution issuing from t= 0  to the right,

sin2 00 '

0=00 .



278 T aro Yoshizawa

we have

X (t ; Xo, 0) A (t) • X,,

where A (t) is a matrix and the dot represents matrix multiplication
with the column vector X , .  By this boundedness, every element

(t) of A (t) is bounded and hence there exists a positive number
B* such as A 0 (t)  < B * . From this the equi-boundedness is proved.

Thus when the system (1 ) is of the first order (n=1 ) or
linear, if the solutions are bounded, they are equi-b6unded, but
they are not necessarily uniformly bounded. Massera's Example
1 ([3])  shows this fact.

Example 2 .  Let

1 g (t) —
1+ m 4 (t— m) 2 •

Consider the first order linear differential equation

(3) x,_  g' (t)  x

•g (t) 

The solution of (3) satisfying the initial condition x=x„ when t= t, is

x—  0 g  (t)
g(t0)

and if we make t, large, g (t0) has a  value which is as near zero
as we please. Therefore the solutions are not uniformly bounded.

Theorem 1. W e suppose th at F (t, x ) in  th e  sy stem  (1 ) is
periodic of  t. I f  its  solutions issuing f rom  t= 0 are equi-bounded
and the solutions issuing from t> 0 are simply bounded, then they are
uniformly bounded.

P roo f. Without the loss of the generality, we can assume that
the period of F(t, x) is 1. Consider the solutions issuing from t= t0

to the right, where 0_< < 1. For any given positive number a,
all the solutions such as 1;1 (7e arrive at t=1 , since they are
bounded. Hence there exists a positive number P independent of
t, for which we have

lx (1 ; x 0 ,  to) I <P
(Theorem 3 in [1 ]). Thus it is sufficient to consider the solutions
such as Ix0 9  a t  t= 1 which are the same as the solutions such
as Ixo is p  at t=0 , because F(t, x) is periodic o f period 1. Since
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at t=0, the solutions are equi-bounded, there exists a positive num-
ber y  for g such as if Ixol ( 3, then lx(t ; x0,1 ) I < r.  Therefore for
the solutions x.-----x (t; x„ to) such as O S t o <1, Ix o IS  a ,  w e have
lx(t ; x0, t0) I < r .  On the other hand, the conditions of solutions for
to 1  are the same as those for 0 5 .t0 <1 by the periodicity of
F(t, x) . Hence we have lx(t ; x0, 4)1 <r so long as we have 1x01.< a.
Namely the solutions are uniformly bounded.

To simplify the statements, we give here som e prom ises. When
a continuous function 50 (t, x) below is defined in the domain

0 S t  < cc, R  ( R o may be sufficiently great),

50(t, x )  is said to be defined in 4*. so (t, x ) is always positive in
its definition domain and satisfies locally the Lipschitz condition
with regard to x. We represent

lim
1  

(t+ h, x+ hF(t, x )) so (t, x)
h  .0 h

by D . W e w ill say briefly so (t, x) has the property A  when
there exists a K (K may depend on K )  such that ço (t, x) /C (K ),
provided xi <K , where K  is an arbitrary positive number. More-
over we will say D,5) has the property B when there is a À such
as D„5o5-2 (K ) <0, provided x1 K.

Theorem 2 .  I f  50(t,x) is defined in  4 , r( t ,x )  tends to infinity
uniformly as ixi , co and in  the interior of  4 w e have D,i0 0, the
solutions of  (1) are equi-bounded.

Theorem 3 .  I f  io(t,x ) is def ined in  4*, v (t,x)---->co uniformly
as Ixi—*co and has the property A  and in the interior of  4* we have
DFso__<0, the solutions of (1) are uniformly bounded (cf. Theorem 1
in  [7]).

Two theorems above are sufficient conditions for the bounded-
ness. Here we state the following definitions for the ultimate
boundedness.

a) For the solution x=x(t ; xo, to)  issuing from (to , xo)  to the
right, if there exist positive numbers B  and T  such that lx(t ; xo, 4)1
<B  for t the solutions of (1) are said to be ultimately
bounded, where B  is independent of the particular solution while
T  may depend on the solution. Here to is arbitrary.

b) The solutions issuing from t= to to  the right are said to
be equi-ultimately bounded, if for Ixo lS a ,  T  in  a ) is determined
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depending only on a  and to.
c) The solutions are said to be uniformly ultimately bounded,

if for every to , T  is determined depending only on a  and indepen-
dent of to .

For the ultimate boundedness we have
Theorem 4 .  I f  there exists a function F (t, x) defined in  4*

which tends to infinity uniformly for t as  lx1—> co and has the pro-
perty A  an d  if I) i rso has the property B, the solutions of (1 ) are
uniformly ultimately bounded.

Proof. Since 50 (t, co uniformly as co, there exists a
positive number R  such that if ix i >_ R(_>_Ro ), for a given G> 0 we
have G <ça (t, x) . Now we consider the domain LI** such as

OSt< co, ixl>_R.

Then there is a positive number B such that if 1x0 1

lx(t;x0,t0)1<B,

since the solutions of (1 ) are uniformly bounded by Theorem 3.
Now we consider x=x(t ; xo , to )  such as !x„15 a ,  where a is an arbi-
trary positive number and a> R. Then there exists a positive
number g depending only on a  and we have lx(t; xe , to) <j9 for

G t<  co. Considering 50 (t, x) in the domain 4*** such as

0 5 t < c o ,  R51x1 18,

there exists a positive number A depending on /9 such as 131i0S -2 ( 9),
because D,40 has the property B .  Now we take a function 50 (t, x)em ,
where N is a suitable positive constant. Then this function is positive
and tends to infinity uniformly as cc, since 50 (t, x)em > Ge".
Moreover we have

D e " (D + Nso) S e  ( — 2+ Nço) .

As 50 (t, x) has the property A , there is ic such as 50(4 x) /C(1.9) in
4*** • Hence determining N  such as

--2+NKSO,

we have

Choosing T  such that

D,soe'

Ice"° <Ge"̀ °+71,
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we can see that for any solution satisfying R <Ixo l< a  we have
IxI= R  at some t' (to t '  t o + T ) . Namely we can prove that
x(t ; x„ to)  <B  for t> to + T, where T is determined depending only

on a, since it is sufficient that we have

K  < Ge".
Therefore the solutions of (1) are uniformly ultimately bounded.

Corollary. W hen the solutions o f  (1) are umforntly bounded,
if  there exists a function so (t, x) in d* such that it has the ProPerty
A and D.,,ço has the property B, the solutions are uniformly ultimately
bounded.

We assume in Theorem 4 that 50(t, x ) has the property A , but
weakening this property, we have

Theorem 5 .  If v(t, x) tends to infinity uniformly as IxH co and
12„.90 has the property  B  an d  if  there exist some R  (>_R o)  and IC
such that io (t, x) . ./C for x i =R , the solutions of (1) are equi-ultimately
bounded.

Proof. If t--to (to : arbitrary) and Ixol R, there exists a positive
number B  such as

Ix(t ; xo , to)I <B
for t>.to . For any given a> R, we consider solutions issuing from
t= 4, Ixo l a .  I f  Ix0 I< R , of course, we have lx(t ; x0 , t 0) <B  for
t _ t o , and hence we assume that R <Ixo l< a .  Since there exists

max so (t0, x0) > 0,

we represent that value by M . And we take a positive number
such as

M < inf F(t, x).
I x1= i9

Then we can see that if the solution x =x (t; xo , to)  issuing from
t—to , R<I Xo l< a  to the right lies always in  IxI> R  for to, we
have Ix(t ; x0, to) I < 19 . Consider the domain to t, R <  xl<19. If
this solution lies always in this domain, there arises a contradic-
tion, because we should have by the property B

(t, x(t)) — (to, x (to)) S --) (t—t0).
Therefore for the solution x=x(t ; x0, to)  satisfying lx0 I_< a  we must
have at some t'
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lx(r ; xo, to)
Concluding, we see that if  lx„iSa , there exists T  depending only
on to and a for which we have

I (t ; x,„ to)1 <,B, if t T.
Thus the solutions of (1) are equi-ultimately bounded.

For instance, as a simple example,
Example 3 .  We consider the first order linear differential

equation

(4) x' — —  x  .
t + 1

For this equation we put

(t, x) = (t+1) (x2 — R) +1,
where R is a positive constant. Then as this ç (t, x) satisfies the
conditions in Theorem 5, the solutions of (4) issuing from every
t= to are equi-ultimately bounded. The general solution of this
equation is x=x( (t„+1)/t+1 and hence, for a positive number R,
the solutions are clearly equi-ultimately bounded, though they are
not uniformly ultimately bounded ; for the solution such as 1.x„IS A
satisfies lxi <,R when

t> to + (4+1) ( 8  / —1) .

Therefore such so (t, x) as in Theorem 4 does not exist. The pro-
perty A  is not implied by the ultimate boundedness and the equi-
ultimate boundedness.

The solutions of x"--= —x are clearly uniformly bounded, but
they are not ultimately bounded. In this case, we have to consider
the system x'=y, y'= —x and we may define yo (t, x, y) =x2 +3/2. F o r
this io, DA0 has not the property B . Hence it seems that the pro-
perty B is required by the ultimate boundedness. On the other
hand, when the uniform boundedness of solutions is known already
and D i rio has the property B, even if jo  (t, x) has not the property
A, the solutions are ultimately bounded, since there arises a con-
tradiction by the relation

(t, x (t)) — v(0, x (0) —À t — co co)

and hence we have IxISR„ at some t. Therefore it seems that the
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property A  is a required condition for the uniform boundedness or
the uniform ultimate boundedness. Example 2 shows that the
assumption that ço (t , x) has the property A  cannot be dropped in
Theorem 4. For the equation (3), there exists a function so (t, x)
which satisfies all the conditions in Theorem 4 except the property
A , but the solutions of (3) are not ultimately bounded ; of course
they are not uniformly bounded as stated before.

Weakening the condition that D,so has the property B, we have
the following theorem.

Theorem 6 .  Suppose that the solutions of  the system  (1 ) are
uniformly bounded and  that io (t, x) is def ined in  d * an d  h as  the
property A .  Moreover we assume that there exists a Positive function
io* (t, x) defined i n  d * satisfy ing the following conditions ;  namely
—50* (t, x) has the property B and

(5) lirn (DE so+so*) =0

uniformly in  any  dom ain Ro SIxISK.
T hen the solutions of (1) are uniformly ultimately bounded.
Proof. By the uniform boundedness of the solutions, there

exists a positive number p depending only on a  such that if Ixo l
then Ix (t ; xo , to)  < j9. F o r  this p, a positive number y is so determi-
ned depending only on d that if Ix, 19, then Ix (t ; xo , to) I <r .  Namely
r is determined depending only on a .  Now considering in /?,_ 'xi

r, there is A such as so* (t, x) 0), for — so* (t, x) has the pro-
perty B . By (5), there exists T  such as

2 D,90 + 50*  (t>._T)
2

and hence I —  for t> T .  While for the solutions issuing
—  2

from ixo l._<p, t0 T  t o  the right, we can verify the uniform ultimate
boundedness in the same way as in the proof of Theorem 4. There-
fore for the solutions issuing from ix) <ciç t= t o (to : arbitrary), we
can verify the uniform ultimate boundedness.

If D,92 has the property B , there exists a so* (t, x ) stated in
this theorem, since it is sufficient to put 99*=—D9, but the ex-
istence o f so* (t, x )  does not imply that D.„99_ 0 .  Hence this con-
dition is weaker than the condition that Dpv has the property B.
Example 3 shows that the assumption that so (t, x) has the property
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A  cannot be dropped in this theorem. In fact, since the solution
of (4 ) such as x=x„ when t= to is x=x„ (to +1)/t +1, the solutions are
uniformly bounded and v*=

Theorem 7 . Suppose that o (t, x ) is def ined in  J*  an d  F(t,x)
—*co uniform ly  as lx1---*co and that there ex ist R  and K  such as
99 (t, x) __<K w hen lx i =R . M oreover suppose that io*(t,x ) is positive
an d  —so* (t, x) has the property  B  (v* m ay  be def ined in 4**) and
that

lim (1),50+99*) =0

uniformly in  any  dom ain I K .
T hen if  the solutions o f  ( 1 )  are  bounded, they are  ultimately

bounded, a n d  i f  they  are equi-bounded, they  are equi-ultimately
bounded.

Proof is omitted.
Remark. In this theorem, even if the solutions are uniformly

bounded, they are not necessarily uniformly ultimately bounded.
It is clear from Example 3. The condition "50 (t, co uniformly as

co " is not essential and can be replaced by other conditions,
because it is utilized only to show that the solutions such as ix„i
are uniformly bounded.

Theorem 6 may be modified as follows ; if the solutions of (1)
are bounded and 50* (t, x) K  (> 0) when R _< lx1 and (5) is true
uniformly for R o x  and if the condition " co uniformly as
1x1.--*00" is added to the properties of io (I, x) , the solutions of (1)
are uniformly ultimately bounded.

As we have seen in Example 1, the ultimate boundedness and
the equi-ultimate boundedness are different concepts, while we have
the following theorems.

Theorem 8 .  If  the  system  (1) is of  the f irst order and the so-
lutions are ultimately bounded, they are also equi-ultimately bounded.

Theorem 9 .  If  the sy stem  (1) is linear and  the  solutions are
ultimately bounded, they are also equi-ultimately bounded and besides
they are equiasymptotically stable (cf p. 706 in  [3]).

Proof. Since we can transform the equation into a homogeneous
linear one by the transformation x = X d-x (t), x (t) being a solution
starting from t=0  to the right, we may consider the equation to
be homogeneous from the beginning. Then the general solution
is of the form
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(t ; 0 )  = A  ( t)

where A (t) is a matrix and the dot represents matrix multiplication
with the column vector xo . If the solutions are ultimately bounded
for the bound B, all the elements of A ( t)  must tend to zero when
t---+ co : otherwise, for a certain element A, i  (t) and a positive number
a, there exists a divergent sequence {t„,} such as 1A, i  (t)1 a. For
a solution satisfying th e  initial condition x„,,=x — • • • =x o .i _,=

1 ,xo.p.,=•••=x0,n-0, B ,  we havea

lx,(t-) I >a•
a

since lx11=1A,, (t) I and hence it is not ultimately bounded for
the bound B .  Therefore all the elements must tend to zero as
t ,  co . Namely x = 0  is equiasymptotically stable. In this case, the
equi-ultimate boundedness and the equiasymptotic stability are same
concepts in the small.

Example 3 shows that in Theorems 8 and 9, from the ultimate
boundedness we may derive the equi-ultimate boundedness, but not
the uniform ultimate boundedness.

Theorem 1 0 . W e suppose th at  F( t ,x )  in  th e  sy stem  (1) is
periodic of t  and that every  solution of  (1) i s  unique for Cauchy-
problem . M oreov er w e assum e that there exists a positive number
K  such as if  Ix0I B, Ix(t ; x0 , 0)(<1c. T hen if the solutions are ulti-
mately bounded f o r th e  bound B , they  are  uniformly ultimately
bounded.

Proof. Without the loss of generality, we can assume that the
period of F(t, .r) is  1 . As the solutions are ultimately bounded for
the bound B , of course, they are so for the bound K . Now we
will show that they are uniformly ultimately bounded for the bound
K . Considering the solutions issuing from t= 0 , 1x1 a to the right,
we suppose that they are not equi-ultimately bounded for the bound
K. Then for any given k  (integer) there exist x: and tk  such that

th._.>_k  and

(6) Ix (tk ; xk", 0)1 K .

The points x,," have a point of accumulation xo and we have lx0 1 a.
By the assumption, there exists an integer N > 0 such as

Ix (N ; x„, 0)1 <B.
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Now at t= N, take a sufficiently small neighborhood U of x(N ; xo, 0)
and then all the solutions starting from a suitable neighborhood of
xo at t=0  go into U by the uniqueness of the solution. Therefore
there are indexes k as large as we please, for which

= Ix (N ; x:, 0)1<B.

On the other hand since x(t; N) =x (t — N ;11 „v , 0) by the perio-
dicity of the system, we have

(t ; x,„°, 0)1= 1x (t ; Xk, N)1 < K if t> N

which contradicts (6). Hence the solutions are equi-ultimately
bounded.

Then since all the solutions such as lx„I a, 0  t0 - 1 arrive
at t=1, there exists a positive number p such as Ix (1 ; x0, t0) I <P.
Thus it is sufficient to consider the solutions such as Ixo I p at t=1
which are the same as those such as Ixo l 5'9 at t=0 and hence we
have Ix(t ; xo, to) I <K (0  < t o  1) if t>__T +1, where T  is one for the
solutions such as Ix0 1._-< 9, to = 0 .  Therefore if 1+ T+t o _t, we have
Ix (t ; xo, to) I <IC (1X01___ a ) .  Namely the solutions are uniformly ulti-
mately bounded.

When this theorem holds good, considering in 0 t<T+1,
for the solutions such that a, O _<  t0 1 , there exists a positive
number (9 such as lx(t ; x0, t0) I <P  for 0_t_<T+1 , since all the
solutions are continuable. I f  t>._T+1, w e have lx(t ; to)  I </C.

After all there is k such as Ix (t ; xo, 4)1 <k for 0 .  Hence by the
periodicity, there exists a positive number r for which we have
Ix (t ; x0, t0) I <r, provided Ixo l< a (to : arbitrary). Namely the solutions
are uniformly bounded.

In the stability, the definition of the asymptotic stability con-
tains the condition that the solution is stable (cf. p. 706 in [3]) .
In  Example 1, solutions tend to r= 0  as t--*co, but r = 0  is not
stable and hence it is not said to be asymptotically stable. If we
will make the ultimate boundedness correspond to the asymptotic
stability, we may add the equi-boundedness of solutions to the de-
finition of the ultimate boundedness. If so, Massera's Example 4
([3]) shows that the ultimate boundedness and the equi-ultimate
boundedness are different concepts. When the definition of the
ultimate boundedness is modified as this, Theorem 10 may be stated
simply "if the solutions are ultimately bounded, they are uniformly
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ultimately bounded ".
As a corollary of Theorem 10, we have
Corollary. Suppose that F(t, x) in  the system (1) is periodic of

t  and every solution is  unique for Cauchy-problem . If the solutions
issuing from  t=0  are  equi-bounded an d  all  the solutions are ulti-
mately bounded, they are  uniformly ultimately bounded.

Theorem 11 . Suppose that F(t, x) in the system (1) is bounded
w hen 11;1 is bounded an d  that there ex ists ço(t, x) 0  defined in
satisfying the following conditions ;

10( t ,  x) co uniformly as x — œ ,
2° /)2_._0,
30 f o r a p o s it iv e  num ber R  which may be sufficiently great,

DA , has the property B , i f  lxi 1?.
T hen the solutions o f  (1) are ultimately bounded.
The proof is omitted, since it is similar as one of Theorem 4

in [3]. Remark that if we make jx1 large suitably, we have io>0
for jxl>.R*, since ic--> co, and then we have to use R= max (R, R*) .
The solutions are ultimately bounded for the bound 2R . Example
2 shows that the boundedness of F(t, x) cannot be dropped in this
theorem.

Now in order to consider the reciprocal problem of Theorem
4 or Theorem 5, w e assume that F(t, x ) in the system  (1) has
continuous partial derivatives o f  the  f irst order w ith  respect to x.
Hence, of course, every solution i s  unique for Cauchy-problem.
Then we have the following theorem.

Theorem 12. If  F(t, x) is periodic of  t and the solutions issuing
f rom  t=0  are equi-bounded and the solutions are ultimately bounded,
then there ex ists a positiv e function ço(t, x) def ined i n  4* (R , be
sufficiently  great) which is continuous with its Partial derivatives of
the f irst order and tends to infinity uniformly as IxH  cc and satisfies
the following conditions ; namely

1° ç 0 (t, x) has the property A,
aio2 '  —  + F(t, x ) h as  the property  B , w here the dot

dt 4ta x
represents the scalar product.

P ro o f. N ow  w e suppose that the solutions are ultimately
bounded. Then by Theorem 10 they are uniformly ultimately
bounded. Hence we assume that the solutions are uniformly ulti-
mately bounded for the bound B .  Moreover by Theorem 1, the
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solutions of (1 ) are  uniformly bounded. In order to construct a
function G  ,  at first we put

sup Ix( ; x0, t0) I =f(72)..o<to<00

f ( )  is uniquely determined, since the solutions are uniformly
bounded. f ( i )  is non-decreasing with respect to 72. Then if  we
put

sup I F (t, x(,) = g (2) ,
ost<oe

f (v)
then g (0  is R-integrable, because g (0  is non-dec, easing. Let h ( )
be

(s) ds ---= h (r,) ,

then h  ( )  is continuous and clearly we have g (j) h  (72 ) . Mor-
eover if we put

.S1+ (s) ds -= k ,

then k (>2) is continuous and differentiable with respect to 7; and
we have h k  .  Now we consider a function of 7; for 72_>_0
as follows ; namely

[ k (4 )  — k (4B)r + ( i — B) 2B )
G (0 =

0 (0 <  B ) .

Then G ( )  is continuous for 7; >. 0 and for 0 B we have G ( )
= 0 and for 72> B it is positive increasing and it has the continuous
derivative which is positive for 7,->B  and vanishes for 0.<72,<B.
And G(7)) tends to infinity as 7,,---“)0.

Now we put

(7) (t, x) =1:G (Ix (r ; x, t) I) dz..

This 50 (t, x) exists indeed, since by the uniform ultimate boundedness
of x for the bound B, there is T  depending only on a  such as if
t>  t0 + T, then lx(t ; x0, to) I <B holds, where lx0 1 .. a ,  and hence we
have
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x )=f
t + T

G (IX (r: ;X ,01 )C 17 ,

Thus so (t, x) is continuous and clearly it is positive when 1x1> B.
Since F(t, x ) is assumed to have continuous partial derivatives

of the first order with respect to 1,
aix(t ; xo, to)I

a n d
a l x ( t  ; x., to)I 

atoa x o
exist and are continuous and hence so (t, x) has continuous partial
derivatives of the first order.

Since there exists p independent of t„ such that if lx0 1. CE, .then
lx(t ; x0, t0)1.<,3 by the uniform boundedness of the solutions, we have

so (t, x) + 7 . G (P)d7=T. G (P) .

Therefore 50(4 x) has the property A.
If the point (t, x) moves along a fixed solution, say the solution

through (t„ x0), we have

(t, x(t)) =f:G(Ix(r ; x0, 4)1) dr

so that
d (t, x(t)) —  G(Ix(t ; x„ = — G (Ix1)dt

clçoand hence has the property B , provided we consider 90(t, x)
dt

in 1.x1>_R0 (>B ).
Finally, we will see that so (t, —.co uniformly as lx1—>co.

Clearly

(t, x) = ((x (t 7 ; x , t)l)dr.

As we may assume that ,(1x1) is positive, for p such as

"V1x1 r, - 2 g (Ix )  n
we have

so(t, x) > To G(1x(t-1-7 ; x, t) 1)dr.

On the other hand, we have
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lxi(t+z- ; x, t. —x„I tt(lx1)7

and hence for O 7

; x, t) {g (lXI)} 2 =  
IX1

From this we have

Therefore

v(t, 1x41d r 41 1x1 
2 Y (IXD n 4

As we may assume that 1x1 is sufficiently great, we have

ço (t, x) i[k(lx1) —k(4B)7+( ixi  —B)2},
2k ('Vlxilx) I'Vn- -4

since g(x1) ( I x ' ) .  T h e  right-hand side o f this inequality tends
to infinity as 1x1--> co and hence 9(4 x) tends to infinity uniformly
as 1x1-+0o.

Remark. Of course, the assumptions in this theorem may be
those in Theorem 10.

When the system (1) is linear, as we have stated before, if
the solutions are ultimately bounded, they are equiasymptotically
stable, while the necessary condition for it has been discussed by
Massera (Theorem 9 in [3]).

When in Theorem 11, F(t, x ) is periodic of t, then Theorem
12 becomes its converse. Moreover observing the construction of
ço (t, x) in Theorem 12, clearly we know that there exists a similar
function 9) (t, X), i f  F(t, x) is bounded for 1x1 bounded and moreover
if the solutions are uniformly bounded and are uniformly ultimately
bounded. Conversely if there exists such a function yo (t, x), the so-
lutions are uniformly bounded and are uniformly ultimately bounded.

In case of F(t, x ) not differentiable with respect to x , if we
assume only the continuity of F(t, x) and the uniqueness of solutions
for Cauchy-problem, the statement that io (t, x) is differentiable is
not necessary in Theorem 12, while 2° is replaced by

d (t, x (t)) (K ) < 0 , provided I? o_< (t) K.
dt

4
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This is the same expression as those in [8 ] and [9]. Of course,
its converse is true.
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