April 2020 The étale fundamental groupoid as a 2-terminal costack
Ilia Pirashvili
Kyoto J. Math. 60(1): 379-403 (April 2020). DOI: 10.1215/21562261-2017-0041

Abstract

We previously showed that the fundamental groupoid of a topological space can be defined by the Seifert–van Kampen theorem. This allowed us to give the first axiomatization of the topological fundamental groupoid. We will prove in this paper that the analogue holds for the étale fundamental groupoid of a Noetherian scheme X as well.

Citation

Download Citation

Ilia Pirashvili. "The étale fundamental groupoid as a 2-terminal costack." Kyoto J. Math. 60 (1) 379 - 403, April 2020. https://doi.org/10.1215/21562261-2017-0041

Information

Received: 25 February 2016; Revised: 17 March 2017; Accepted: 11 October 2017; Published: April 2020
First available in Project Euclid: 22 October 2019

zbMATH: 07194836
MathSciNet: MR4065189
Digital Object Identifier: 10.1215/21562261-2017-0041

Subjects:
Primary: 14F35
Secondary: 14F20 , 18F9

Keywords: costack , étale covering , fundamental groupoid , Seifert–van Kampen , stack

Rights: Copyright © 2020 Kyoto University

Vol.60 • No. 1 • April 2020
Back to Top