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Abstract The balanced tensor productM ⊗A N of two modules over an algebra A is

the vector space corepresenting A-balanced bilinear maps out of the product M × N .

The balanced tensor productM�C N of two module categories over a monoidal linear

category C is the linear category corepresenting C-balanced right-exact bilinear functors
out of the product categoryM×N . We show that the balanced tensor product can be

realized as a category of bimodule objects in C, provided the monoidal linear category is

finite and rigid.

1. Introduction

Tensor categories are a higher-dimensional analogue of algebras. Just as modules

and bimodules play a key role in the theory of algebras, the analogous notions

of module categories and bimodule categories play a key role in the study of

tensor categories (as pioneered by Ostrik [24]). One of the key constructions in

the theory of modules and bimodules is the relative tensor product M ⊗A N .

As first recognized by Tambara [25], a similarly important role is played by the

balanced tensor product of module categories over a monoidal category M�C N
(for example, see [23], [12], [19], [16], [17], [6], [14]). For C =Vect, this agrees with

Deligne’s [4] tensor product K�L of finite linear categories. Etingof, Nikshych,

and Ostrik [12] established the existence of a balanced tensor product M �C
N of finite semisimple module categories over a fusion category, and Davydov

and Nikshych [5, Section 2.7] outlined how to generalize this construction to

module categories over a finite tensor category.1 We give a new construction

of the balanced tensor product over a finite tensor category as a category of

bimodule objects.

Recall that the balanced tensor product M⊗AN of modules is, by definition,

the vector space corepresenting A-balanced bilinear functions out of M ×N . In

other words, giving a map M ⊗A N →X is the same as giving a bilinear map

f :M ×N →X with the property that f(ma,n) = f(m,an). If the balanced ten-

sor product exists, it is certainly unique (up to unique isomorphism), but the
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universal property does not guarantee existence. Instead, existence is typically

established by an explicit construction as a quotient of a free abelian group on the

product M ×N . We now describe the balanced tensor product M�C N of mod-

ule categories over a tensor category. Again this should be universal for certain

bilinear functors; however, when passing from algebras to tensor categories, the

analogue of the equality f(ma,n) = f(m,an) is a natural system of isomorphisms

ηm,a,n :F(m⊗ a,n)→F(m,a⊗n) satisfying some natural coherence properties.

A bilinear functor F together with a natural coherent system of isomorphisms

ηm,a,n is called a C-balanced functor. Thus, the balanced tensor product M�CN
is defined to be the linear category corepresenting C-balanced right-exact bilinear

functors out of M×N . In other words, giving a right-exact functor M�CN →X
is the same as giving a right-exact bilinear functor M×N →X together with

isomorphisms ηm,a,n :F(m⊗a,n)→F(m,a⊗n) satisfying a coherence property.

Again if the balanced tensor product exists, it is unique (up to an equivalence

that is unique up to unique natural isomorphism), but existence does not follow

formally.

The only task is to provide an explicit construction of the balanced ten-

sor product that satisfies the corepresentation property. A crucial tool for the

construction is the result, proved by Etingof–Gelaki–Nikshych–Ostrik [9, Corol-

lary 7.10.5], based on earlier work of Etingof–Ostrik [13, Section 3.2] along the

lines pioneered by Ostrik [24, Theorem 1], that any finite left module category

CN over a finite tensor category C is equivalent to the category of right module

objects Mod-B(C) in C, for some algebra object B ∈ C; similarly, any right module

category MC is equivalent to a category of left module objects A-Mod(C).

THEOREM

Let C be a finite, rigid, monoidal linear category, let M be a finite right C-module

category, and let N be a finite left C-module category. Let A and B be algebra

objects in C such that M∼=A-Mod(C) and N ∼=Mod-B(C) as module categories.

The category A-Mod-B(C) of A-B-bimodule objects in C corepresents C-balanced
right-exact bilinear functors out of M×N , and therefore realizes the balanced

tensor product M�C N .

The balanced tensor product will play a key role in our study of the 3-category

of finite tensor categories and the associated local topological field theories in [7].

Indeed, we use at some crucial steps not only that the balanced tensor product

exists, but that it can be explicitly realized as A-Mod-B(C). Our realization

also shows that the balanced tensor product of finite linear (abelian) module

categories (the “Deligne” tensor, cf. [4]) is equivalent to the balanced tensor

product of finitely cocomplete k-additive module categories (the “Kelly” tensor,

cf. [20], [21]). This equivalence will allow us, in [7], to work with abelian categories

while relying on results from a merely additive context, particularly the Johnson-

Freyd–Scheimbauer [18] construction of a 3-category of (finitely cocomplete k-

additive) tensor categories.
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2. Background

We will assume some familiarity with the theory of tensor categories and module

categories as in the work of Etingof, Gelaki, Nikshych, and Ostrik (EGNO) [8],

[13], [11], [10], [12]. For a reader desiring more background we recommend the

recent book [9] or the more condensed earlier notes [8]. We will begin by recalling

some key definitions and results from EGNO.

Let k be a fixed ground field, let Vectk be the category of (possibly infinite-

dimensional) k-vector spaces, and let Vectk be the category of finite-dimensional

k-vector spaces. A linear category is an abelian category with a compatible enrich-

ment over Vectk. A linear functor is an additive functor, that is, also a functor

of Vectk-enriched categories.

WARNING 2.1

In [7] we will use the phrase “linear functor” to mean what we call “right exact

linear functor” in this article. In the 3-category of finite tensor categories the

2-morphisms are assumed to be right exact, because the balanced tensor product

of linear categories is only functorial with respect to right exact functors. Since

this article concerns the definition of the balanced tensor product itself, we will

not use the abbreviated convention here.

DEFINITION 2.2

A linear category C is finite if

1. C has finite-dimensional spaces of morphisms;

2. every object of C has finite length;

3. C has enough projectives; and

4. there are finitely many isomorphism classes of simple objects.

DEFINITION 2.3

A linear monoidal category is a monoidal category C such that C is a linear

category and the functor ⊗ is bilinear. A tensor category is a rigid linear monoidal

category. A finite tensor category is a finite rigid linear monoidal category.

Here by bilinear, or more generally multilinear, we mean the following: If {Mα}
denotes a collection of linear categories, then a multilinear functor from {Mα}
into a linear category N is a functor F :

∏
Mα →N such that F is linear in each

variable separately.

LEMMA 2.4 ([1, Proposition 2.1.8], [9, Proposition 4.2.1])

Let (C,⊗) be a finite tensor category. The bilinear functor ⊗ : C ×C → C is exact

in both variables.
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A module category is a linear category with an action by a linear monoidal cat-

egory, and a bimodule category is a linear category with two commuting actions

by linear monoidal categories.

DEFINITION 2.5

Let C and D be linear monoidal categories. A left C-module category is a linear

category M together with a bilinear functor ⊗M : C × M → M and natural

isomorphisms

α :⊗M ◦(⊗C × idM)∼=⊗M ◦ (idC ×⊗M),

λ :⊗M (1C ×−)∼= idM,

satisfying the evident pentagon identity and triangle identities. We will use the

notation c ⊗m := ⊗M(c ×m). A right D-module category is defined similarly.

A C-D-bimodule category is a linear category M with the structure of a left C-
module category and the structure of a right D-module category, together with a

natural associator isomorphism (c⊗m)⊗d∼= c⊗(m⊗d) satisfying two additional

pentagon axioms and two additional triangle axioms.

By a finite module or bimodule category we will mean simply a module or bimod-

ule category whose underlying linear category is finite.

DEFINITION 2.6

A linear functor F :M→N from the C-module category M to the C-module

category N is a strong left C-module functor if it is equipped with a natural

isomorphism

fc,m :F(c⊗m)→ c⊗F(m)

satisfying the evident pentagon relation and triangle relation. A strong right mod-

ule functor and a strong bimodule functor are defined similarly. By convention,

all module functors will be assumed to be strong unless stated otherwise.

LEMMA 2.7 ([13, Section 3.3])

Let C and D be tensor categories. Let M and N be C-D-bimodule categories, and

let F :M→N be a C-D-bimodule functor. If the underlying functor of F has

a right (resp., left) adjoint as a functor, then F has a right (resp., left) adjoint

C-D-bimodule functor such that the unit and counit maps are bimodule natural

transformations.

Just as any finite linear category is a category of modules over an algebra, any

finite module category over a finite tensor category is a category of module objects

over an algebra object. This result is one of the main theorems of [9] and is

essential to the structure theory of finite tensor categories. The key construction

underlying the proof is Ostrik’s notion of the enriched hom for module categories

(see [24]).
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THEOREM 2.8 ([9, Corollary 7.10.5], [24, Theorem 1])

Let M be a left module category over a finite tensor category C, and assume

the action is right exact in C. If M is finite as a linear category, then there

exists an algebra object A ∈ C together with an equivalence M � Mod-A(C) as

left C-module categories.

We will also use the following two lemmas, the first of which is standard and

whose proof we omit.

LEMMA 2.9

Let F : C � D : U be an adjunction between abelian categories. Then the right

adjoint U is faithful if and only if the counit FU(X) → X is a surjection for

every object X ∈D. If in addition U is exact, then U reflects isomorphisms.

LEMMA 2.10

Let F : C �D : U be an adjunction between linear categories in which U and F

are linear functors, and where U is exact and faithful. Suppose that C is finite.

Then D is also finite.

Proof

Since U is faithful, the morphism spaces in D are subspaces of the morphism

spaces of C, and hence are finite-dimensional. Since U is a right adjoint, it pre-

serves subobjects. Thus U sends a decreasing chain of subobjects to a decreasing

chain of subobjects. Since U is exact and faithful, it reflects isomorphisms, and

hence U also preserves strictly decreasing chains of subobjects. Since every such

chain in C has finite length, the same is true in D. Let X ∈D be an object, and

let P � U(X) be a surjection in C from a projective object. Since F is a left

adjoint, it preserves surjections, and since U is faithful (and by Lemma 2.9), the

composite

F (P )→ FU(X)→X

is surjective. Moreover D(F (P ),−) ∼= C(P,U(−)) is exact, and hence F (P ) is

projective. Thus D also has enough projectives.

Now suppose that X ∈D is a nonzero object. Since U reflects isomorphisms,

U(X) is also nonzero, and hence there exists a nonzero morphism f : S → U(X),

where S is some simple object of C. The adjoint of this map is the unique map

f : F (S)→X such that f factors as S → UF (S)→ U(X), where the second map

is U(f). Hence, since f is nonzero, f must also be nonzero. Now let W =
⊕

Si

be the direct sum of representatives from each of the finitely many isomorphism

classes of simple objects of C. We have shown that, for every object X ∈D, there

exists a nonzero morphism F (W )→X . If X is simple, then a nonzero morphism

is necessarily a surjection. In particular, it follows that every simple object of D
occurs as a simple factor in some composition series for F (W ). Since F (W ) is

finite length and, by the Jordan–Hölder theorem, any two composition series have



172 Douglas, Schommer-Pries, and Snyder

the same simple factors up to permutation and isomorphism, there are finitely

many isomorphism classes of simple objects in D. �

3. Construction of the balanced tensor product

In this section we establish the existence of the balanced tensor product of finite

module categories over a finite tensor category. We begin by recalling the defini-

tion of the balanced tensor product from [12].

DEFINITION 3.1

Let C be a linear monoidal category. Let M be a right C-module category and

N a left C-module category. A bilinear functor F :M×N →L is called right

exact if it is right exact in each variable. A C-balanced functor into a linear

category L is a right exact bilinear functor F :M×N →L together with a nat-

ural isomorphism F (⊗M× idN )∼= F (idM×⊗N ) satisfying the evident pentagon

and triangle identities. A C-balanced transformation is a natural transformation

η : F →G of C-balanced functors such that the following diagram commutes for

all m ∈M, c ∈ C, and n ∈N :

DEFINITION 3.2

Let M be a right C-module category and let N be a left C-module category.

The balanced tensor product is a linear category M �C N together with a C-
balanced right exact bilinear functor �C :M×N →M�C N , such that for all

linear categories D, the functor �C induces an equivalence between the category

of C-balanced right exact bilinear functors M×N →D and the category of right

exact linear functors M�C N →D.

More succinctly, we might say that the balanced tensor product M �C N co-

represents C-balanced right exact bilinear functors out of M×N . The balanced

tensor product is also known as the relative “Deligne tensor product”, because

the (unbalanced) tensor product M�N of linear categories is often called the

“Deligne tensor product”.

If it exists, the balanced tensor product is unique up to equivalence, and this

equivalence is in turn unique up to unique natural isomorphism. Said another

way, the 2-category of linear categories representing the balanced tensor product

is either contractible or empty.

Etignof–Nikshych–Ostrik [12] established the existence of the balanced tensor

product of semisimple module categories over semisimple tensor categories over

a field of characteristic 0. A construction of the balanced tensor product for finite

tensor categories satisfying the additional assumption that M�N is exact as

a C-bimodule category can be extracted from [15, Theorem 3.1]. Note that the
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proof of the existence of the balanced tensor product outlined in [5] uses the

rigidity and finiteness assumptions in essential ways, but (despite [5, Note 2.7])

does not use exactness.

We give an alternative construction of the balanced tensor product for finite

tensor categories.

THEOREM 3.3

Let C be a finite tensor category, and let MC and CN be finite right and left

C-module categories, respectively. Assume that the action of C on M and the

action of C on N are right exact in the C-variable.

(1) The balanced tensor product M�CN exists and is a finite linear category.

(2) If M = A-Mod(C) and N =Mod-B(C), then M�C N � A-Mod-B(C),
the category of A-B-bimodule objects in C.

(3) The functor �C :M×N →M�C N is exact in each variable and satis-

fies

HomM�CN (x�C y,x′ �C y′)∼=HomC
(
1,HomM(x,x′)⊗HomN (y, y′)

)
.

(4) Given exact C-module functors F0 : M → M ′ and F1 : N → N ′, the C-
balanced functor F : M ×N → M ′ ×N ′ → M ′ �C N ′ induces an exact functor

F :M �C N →M ′ �C N ′.

Proof

By Theorem 2.8, there exist algebra objects A,B ∈ C and equivalences M �
A-Mod(C) and N � Mod-B(C). The linear category A-Mod-B(C) is finite by

Lemma 2.10 (using the free-forgetful adjunction to C). Thus (2) implies (1).

By Lemma 2.4, the tensor product functor

M×N �A-Mod(C)×Mod-B(C)→A-Mod-B(C)

is exact in each variable separately. This bilinear functor is also C-balanced by

the associator of C. Moreover we have

HomC
(
1,HomM(x,x′)⊗HomN (y, y′)

)

=HomC
(
1,HomA-Mod(x,x

′)⊗HomN (y, y′)
)

∼=HomC
(
1,HomA-Mod

(
x,x′ ⊗HomN (y, y′)

))

∼=HomA-Mod

(
x,x′ ⊗HomN (y, y′)

)

=HomA-Mod

(
x,x′ ⊗HomMod-B(y, y

′)
)

∼=HomA-Mod

(
x,HomMod-B(y,x

′ ⊗ y′)
)

∼=HomA-Mod-B(x⊗ y,x′ ⊗ y′),

where the second and fifth isomorphisms use the fact that the enriched hom is

a C-module functor (see Lemma 2.7). This establishes the formula in (3), and so

(2) implies (3).
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We now prove (2), and then later establish (4). We wish to show that for

any linear category D the category of right exact functors

F :A-Mod-B(C)→D

is naturally equivalent to the category of C-balanced functors F :M×N →D
that are right exact in each variable separately. Every functor of the former type

certainly restricts to one of the latter type; we must show that a functor of the

latter type extends uniquely (up to canonical isomorphism) to one of the former

type.

The key observation is that every object of A-Mod-B(C) may be functorially

written as a coequalizer of objects in the image of M×N . Specifically, for any

X ∈A-Mod-B(C), we have the coequalizer

AX ⊗B ⊗BB ⇒ AX ⊗BB → AXB.

Let δ : AX ⊗ B ⊗ BB → AX ⊗ BB be the difference of the two maps in the

coequalizer. For any right exact functor F :A-Mod-B(C)→D, the value F (AXB)

is canonically determined as a cokernel

F (AXB) = coker
(
F (δ) : F (AX ⊗B ⊗BB)→ F (AX ⊗BB)

)
.

Suppose we are given a C-balanced functor F : M×N → D that is right

exact in each variable separately. It is tempting to try to define the extension

F :A-Mod-B(C)→D via a formula of the type

“F (AXB) := coker
(
F (δ) : F (AX,B ⊗BB)→ F (AX,BB)

)
.”

The difficulty is that while the relevant objects are in the image of M×N , the

map δ is not. Yet for each X ∈ A-Mod-B(C) we may define a map δX as the

difference between the composite of the balancing isomorphism and the action

of B on X ,

F (AX,B ⊗BB)∼= F (AX ⊗B,BB)→ F (AX,BB),

and the action of B on itself,

F (AX,B ⊗BB)→ F (AX,BB).

The desired extension can then be defined as F (AXB) := coker(δX). We leave it

to the reader to verify that this extension gives a well-defined right exact functor

F :A-Mod-B(C)→D

and implements the desired equivalence between such right exact functors and C-
balanced exact-in-each-variable functors. Verifying that this construction is well

defined makes use of the pentagon identity satisfied by C-balanced functors. This

establishes (1), (2), and (3).

We now prove the final property (4). By Theorem 2.8, there exist alge-

bra objects A,B,A′,B′ ∈ C and equivalences M � A-Mod(C), N �Mod-B(C),
M′ � A′-Mod(C), and N � Mod-B′(C). Since F0 and F1 are right exact, they



Balanced tensor product of module categories 175

are equivalent to tensoring with bimodules:

F0(−)∼= A′x⊗A (−);

F1(−)∼= (−)⊗B yB′ .

Since F0 and F1 are exact, we may call these modules flat over A or B, respec-

tively. We wish to show that the induced functor

F (−) = A′x⊗A (−)⊗B yB′ :A-Mod-B(C)→A′-Mod-B′(C)

is exact. Since the forgetful functor U : A′-Mod-B′(C)→ C is exact and reflects

short exact sequences, it is enough to show that

x⊗A (−)⊗B y :A-Mod-B(C)→C

is exact. Let 0→m→m′ →m′′ → 0 be a short exact sequence of A-B-bimodules.

After tensoring with x on the left we obtain a sequence of right B-modules

0→ x⊗A m→ x⊗A m′ → x⊗A m′′ → 0.

Since x is flat, this sequence is exact after forgetting the B-module structure.

Hence, it is also an exact sequence of B-modules. Thus, since y is flat, we obtain

an exact sequence

0→ x⊗A m⊗B y→ x⊗A m′ ⊗B y→ x⊗A m′′ ⊗B y→ 0

as desired. �

REMARK 3.4

The balanced (Deligne) tensor product, constructed above for finite module cat-

egories over a finite tensor category, may fail to exist without the finiteness

assumptions (see López Franco [22] for a counterexample, even in the unbalanced

case). A balanced tensor product does exist a bit more generally, though. Recall

that a finitely cocomplete k-additive category is a category that is Vectk-enriched

and that admits all finite colimits. Right exact functors between such categories

are, by definition, those that preserve finite colimits. The balanced “Kelly” tensor

product of finitely cocomplete k-additive module categories (over a rigid finitely

cocomplete k-additive tensor category) corepresents balanced right exact bilinear

functors into finitely cocomplete k-additive categories. Unlike the Deligne tensor

product, the Kelly tensor product always exists (see [20], [21] for the unbalanced

case and [3, Remark 3.21] for the balanced case). López Franco [22] shows that

when the unbalanced Deligne tensor product exists, it is equivalent to the Kelly

tensor product.

The proof of the preceding theorem shows that, when C is a finite tensor

category and MC and CN are finite right and left C-module categories, respec-

tively, the balanced Deligne tensor product is equivalent to the balanced Kelly

tensor product. This equivalence follows because the proof that A-Mod-B(C)
corepresents C-balanced functors into linear categories just as well shows that

A-Mod-B(C) corepresents C-balanced functors into finitely cocomplete k-additive

categories. (In the displayed commutative diagram, when the target category D
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is not abelian but merely additive, the rows are “exact” in the sense that they

are cokernel sequences.)

REMARK 3.5

The construction of the balanced tensor product outlined in [5] expresses the

tensor M�C N as a category of right exact C-module functors. The expression

[5, Eq. 13] for this functor category is cited from [12], and in both places is

appropriate for the balanced tensor of module categories but is not quite cor-

rect for the balanced tensor of bimodule categories (being off by a twist by a

double dual functor). The functor category that is a balanced tensor product

for bimodule categories is Funr.e.C-mod(M∗,N ), where the C-D-bimodule category

M∗ has underlying linear category Mop, with the left action by an object c ∈ C
given by acting on the right by the left dual object ∗c ∈ C and with the right

action by an object d ∈ D given by acting on the left by the left dual object
∗d ∈ D. This functor-category description of the balanced tensor is related to

our bimodule description as follows: when M=A-Mod(C) and N =Mod-B(C),
there is a functor equivalence A-Mod-B(C)→ Funr.e.C-mod(M∗,N ) taking a bimod-

ule object AXB to the functor that takes the object m ∈M=A-Mod(C) viewed
as an object of M∗ to the object m∗ ⊗A X ∈Mod-B(C) =N , where m∗ is the

right dual of m viewed as an object of C.

EXAMPLE 3.6

Let Vect[K] denote the category of K-graded vector spaces for a finite group K.

The balanced product Vect �Vect[K] Vect is the category of k[K]-bimodules in

Vect[K]. The category of k[K]-modules in Vect[K] is equivalent to Vect, so the

k[K]-bimodules in Vect[K] can be identified with mod-(k[K])∼=Rep(K).

REMARK 3.7

If DMC and CNE are bimodule categories, then the actions of D and E induce a

D-E-bimodule category structure on M�C N . This bimodule category satisfies

the analogous universal property for C-balanced bilinear bimodule functors.

REMARK 3.8

The above theorem assumes that C is a finite tensor category, that is, a finite

rigid linear monoidal category. The nonbalanced tensor product can be defined

substantially more generally (see [22]), and we hope that the balanced tensor

product can also be defined more generally.

Theorem 3.3(2) expresses the balanced tensor product of two module categories

M = A-Mod(C) and N = Mod-B(C) as a category of bimodules M �C N �
A-Mod-B(C). When the tensor category C is merely Vect, this expresses the

ordinary tensor product Mod-A(Vect)�Mod-B(Vect) of two categories of mod-

ules again as a category of modules, Mod-(A⊗B)(Vect). More generally, the
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ordinary tensor product of two categories of modules in any tensor categories is

again a category of modules, as follows.

PROPOSITION 3.9

If N =Mod-B(C) and P =Mod-C(D) for algebra objects B ∈ C and C ∈D, then

N �P �Mod-(B �C)(C �D)

as a left C �D-module category.

Proof

The forgetful functors from N to C and P to D are part of monadic adjunctions

(−)⊗BB : C �N =Mod-B(C) : U,

(−)⊗CC : D�P =Mod-C(D) : U.

Since both functors in the adjunction are right exact (the forgetful functor is

exact, not just left exact), these adjunctions descend to an adjunction between

the tensor products:

(−)⊗ (B �C)B�C : C �D�N �P : U.

Any C�D-module functor from C�D to itself is given by tensoring by an object

in C�D; hence any monad on C�D that is compatible with the module actions

comes from an algebra in C �D. Hence we need only show that this adjunction

is monadic.

By the the crude monadicity theorem from [2, Section 3.5] we only need

to show that U reflects isomorphisms and U preserves coequalizers of reflexive

pairs. Observe that the individual functors (both called U ) have these properties.

Moreover, everything inN is a coequalizer of objects in the image of C, everything
in P is a coequalizer of objects in the image of D, and everything in N �P is a

coequalizer of objects in the image of N ×P . Thus, it follows that every object

in N �P is a coequalizer of objects in the image of C ×D. For such objects, U

reflects isomorphisms, since the original U do so. Hence, by the five lemma, it

follows that U reflects isomorphisms.

For the latter property we will in fact show that U preserves all coequalizers.

Since our categories are additive, the coequalizer of f and g is the cokernel of

(f − g). Thus, it is sufficient to show that U is exact and hence that U preserves

cokernels. The exactness of U follows from Theorem 3.3(4) and the exactness of

the original forgetful functors U . �
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