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Abstract Let R and S be rings, and let gwg be a semidualizing bimodule. We prove
that there exists a Morita equivalence between the class of co-w-cotorsion-free modules
and a subclass of the class of w-adstatic modules. Also, we establish the relation between
the relative homological dimensions of a module M and the corresponding standard
homological dimensions of Hom(w, M). By investigating the properties of the Bass injec-
tive dimension of modules (resp., complexes), we get some equivalent characterizations
of semitilting modules (resp., Gorenstein Artin algebras). Finally, we obtain a dual ver-
sion of the Auslander—Bridger approximation theorem. As a consequence, we get some
equivalent characterizations of Auslander n-Gorenstein Artin algebras.

1. Introduction

Semidualizing bimodules arise naturally in the investigation of various duality
theories in commutative algebra. The study of such modules was initiated by
Foxby [18] and Golod [20]. Then Holm and White [21] extended this notion to
arbitrary associative rings, while Christensen [11] and Kubik [27] extended it to
semidualizing complexes and quasidualizing modules, respectively. The study of
semidualizing bimodules or complexes was connected to the so-called Auslander
classes and Bass classes defined by Avramov and Foxby [5] and Christensen [11].
Semidualizing bimodules or complexes and the corresponding Auslander/Bass
classes have been studied by many authors (see, e.g., [1], [5], [L1]-[14], [16], [21],
[33]). To dualize the important and useful notions of the Auslander transpose
of modules and n-torsion-free modules, we [33] introduced the notions of the
cotranspose of modules and n-cotorsion-free modules with respect to a semidual-
izing bimodule, and we obtained several dual counterparts of interesting results.
Based on this previous work, we study further homological properties of the
cotranspose of modules, n-cotorsion-free modules, and related modules.
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The article is organized as follows. In Section 2, we give some terminology and
some preliminary results. In particular, we prove that if (R, m, k) is a commutative
Gorenstein complete local ring with dim R > 0 and q is a prime ideal of R with
nonzero height, then the tensor product of the injective envelopes of R/q and k
is equal to zero. This gives a negative answer to an open question of Kubik [27,
Question 3.12] about quasidualizing modules.

Let R and S be rings, and let pwg be a semidualizing bimodule. In Section 3,
we prove that if the projective dimension of rw is finite, then the class of co-w-
cotorsion-free modules is contained in the right orthogonal class of rw; dually, if
the projective dimension of wg is finite, then the above inclusion relation between
these two classes of modules is reverse. Also, we prove that there exists a Morita
equivalence between the class of oco-w-cotorsion-free modules and a subclass of
the class of w-adstatic modules. Finally, we establish the relation between the
relative homological dimensions of a module M and the corresponding standard
homological dimensions of Hom(w, M).

In Section 4, we first give some criteria for computing the Bass injective
dimension of modules in terms of the vanishing of Ext-functors and some spe-
cial approximations of modules. Then, motivated by the philosophy of [26], we
introduce the notion of semitilting bimodules in the general case and prove that
rws is right semitilting if and only if the Bass injective dimension of rR is
finite.

In Section 5, we extend the Bass class and the Bass injective dimension
of modules with respect to w to that of homologically bounded complexes. We
show that a homologically bounded complex has finite Bass injective dimension
if and only if it admits a special quasi-isomorphism in the derived category of
the category of modules. As an application of this result, we get some equivalent
characterizations of Gorenstein—Artin algebras.

In Section 6, we first introduce the notions of the (strong) Ext-cograde and
Tor-cograde of modules with respect to w. Then we obtain a dual version of the
Auslander—Bridger approximation theorem (see [17, Proposition 3.8]) as follows.
For any left R-module M and n > 1, if the Tor-cograde of Exts(w, M) with
respect to w is at least ¢ for any 1 <14 <n, then there exist a left R-module
U and a homomorphism f:U — M of left R-modules satisfying the following
properties: (1) the injective dimension of U relative to the class of w-projective
modules is at most n, and (2) Ext(w, f) is bijective for any 1 <4 <n. As an
application of this result, we prove that, for any n > 1, the strong Ext-cograde of
Tor (w, N) with respect to w is at least i for any left S-module N and 1<i<n
if and only if the strong Tor-cograde of Ext (w, M) with respect to w is at least
i for any left R-module M and 1 <14 <n. Furthermore, we get some equivalent
characterizations of Auslander n-Gorenstein—Artin algebras.

2. Preliminaries

Throughout this article, R and S are fixed associative rings with unity. We use
Mod R (resp., Mod S°P) to denote the class of left R-modules (resp., right S-
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modules). Let M € Mod R. We use pdp M, fdg M, and idg M to denote the
projective, flat, and injective dimensions of M, respectively, and use Addg M
(resp., Prodr M) to denote the subclass of Mod R consisting of all direct sum-
mands of direct sums (resp., direct products) of copies of M. We use

0 fO 1 fl fi—l i fl
(2.1) O-M->I"M)—IT'(M)—-—I'M)—--
to denote a minimal injective resolution of M. For any n > 1, coQ"(M) :=
Im f*~1 is called the nth cosyzygy of M, and in particular, co Q°(M) := M.

DEFINITION 2.1 (SEE [21])
(1) An (R-S)-bimodule rwg is called semidualizing' if the following condi-
tions are satisfied.
(al) rw admits a degreewise finite R-projective resolution.
(a2) wg admits a degreewise finite S-projective resolution.
(b1) The homothety map rRz ™5 Homger (w,w) is an isomorphism.
(b2) The homothety map §Ss 23 Homp(w,w) is an isomorphism.
(c1) ExtZ'(w,w)=0.
(c2) ExtZe,(w,w)=0.
(2) A semidualizing bimodule rwg is called faithful if the following condi-
tions are satisfied.
(f1) If M € Mod R and Homp(w, M) =0, then M =0.
(f2) If N € Mod S°? and Homges (w, N) =0, then N =0.

Typical examples of semidualizing bimodules include the free module of rank
one, dualizing modules over a Cohen—Macaulay local ring, and the ordinary
Matlis dual bimodule 5 D(A)x of AAx over an Artin algebra A. Any semidu-
alizing bimodule over commutative rings is faithful (see [21, Proposition 3.1]).
Semidualizing bimodules occur in the literature with several different names (e.g.,
in the work of [18], [20], [29], [35]).

Let R be a commutative Noetherian local ring with maximal ideal m and
residue field k = R/m. According to [27], an Artinian R-module T'is called quasid-
ualizing if the homothety R — Hompg (T, T) is an isomorphism (where R is the
m-adic completion of R) and Ext’s (T, T) = 0. It was proved in [27, Lemma 3.11]
that if L and T are R-modules with T' quasidualizing such that Homg (T, L) =0,
then L = 0. Motivated by this result and [21, Lemma 3.1], an open question was
posed in [27] as follows.

I [33] and the original version of this article, we use C to denote the given semidualizing
module. The referee suggests the following: “The notation ¢Trc M (see Definition 2.5 below) is
very confusing. I am not sure how the first ‘¢’ is distinguished with the semidualizing module
C, particularly when writing it on the blackboard. It would be better to change the notation
or quit using C for the semidualizing module.” Following this suggestion, we denote the given
semidualizing module by substituting w for C'.
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QUESTION 2.2 ([27, QUESTION 3.12])
Let R be a commutative Noetherian local ring. If L and T are R-modules with
T quasidualizing such that T'®g L =0, then does L =07

The following result shows that the answer to this question is negative in general.

PROPOSITION 2.3

Let R be a commutative Noetherian complete local ring with mazimal ideal m and
residue field k= R/m. If R is Gorenstein (i.e., idr R < c0) with dim R > 0, then
E°(R/q) @ E°(k) =0 for any prime ideal q with ht(q) > 0, where ht(q) is the
height of q.

Proof

By [30, Theorem 4.2], E°(k) is quasidualizing. Since R is Gorenstein, it follows
from [7, Fundamental Theorem] that E*(R) = i (p)—i E(R/p) with p € Spec(R)
(the prime spectrum of R) for any i > 0. In particular, E°(R) = Dre(py—0 E(R/P)
with p € Spec(R). On the other hand, for any p,q € Spec(R) with ht(p) =0 and
ht(q) > 0, we have Homg(E°(R/q), E°(R/p)) = 0. So Homp(E°(R/q), E°(R)) =
0 and Homp(E°(R/q), R) = 0. Thus, we have

Hompg (E°(R/q) ®r E°(k), E°(k))
=~ Hompg (E°(R/q),Homp (E°(k), E°(k)))
(by the adjoint isomorphism theorem)

~ Homp (E°(R/q),R) (by [30, Theorem 4.2])

=0.
Because EY(k) is an injective cogenerator for Mod R, E°(R/q) @z E°(k)=0. O
From now on, gpwsg is a semidualizing bimodule. For convenience, we write (—), =
Homp(w, —) and gw' = {M € Mod R | Ext’s" (w, M) = 0}.

Let M € Mod R and N € Mod S. Then we have the following two canonical
valuation homomorphisms:

Or:w®s My, — M,
defined by 0 (z ® f) = f(x) for any x € w and f € M,, and
LLN:N—)(W(@SN)*,

defined by py(y)(z) =2z ®y for any y € N and = € w. Following [36], we call M
(resp., N) w-static (resp., w-adstatic) if Op (resp., pn) is an isomorphism. We
denote by Stat(w) and Adst(w) the class of all w-static modules and the class of
all w-adstatic modules, respectively.
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DEFINITION 2.4 (SEE [21])
The Bass class B, (R) with respect to w consists of all left R-modules M satis-
fying the following conditions:

(Bl) M e Rw{
(B2) Torgl(mM*) =0, and
(B3) M e Stat(w); that is, 0)s is an isomorphism in Mod R.

The Auslander class A, (S) with respect to w consists of all left S-modules N
satisfying the following conditions:

(A1) TOI‘fZl(OJ, N)=0,
(A2) w®s N € gpwt, and
(A3) N € Adst(w); that is, un is an isomorphism in Mod S.

DEFINITION 2.5 (SEE [33])
Let M € Mod R, and let n > 1.

(1) ¢Tr,, M := Coker f0 is called the cotranspose of M with respect to rws,
where f0 is as in (2.1).

(2) M is called n-w-cotorsion-free if Tory.,., (w,cTr, M) =0; and M is
called co-w-cotorsion-free if it is n-w-cotorsion-free for all n. The class of all
oo-w-cotorsion-free modules is denoted by ¢7 (R). In particular, every module in
Mod R is 0-w-cotorsion-free.

By [33, Proposition 3.2], a module is 2-w-cotorsion-free if and only if it is w-static.

Let W C X be subclasses of Mod R. Recall from [2] that W is called a genera-
tor for X if, for any X € X, there exists an exact sequence 0 = X' - W — X —0
in Mod R with W € W and X' € X'; W is called an Ext-projective generator for X
if W is a generator for X and Extgl(W, X)=0for any X € X and W € W. Also
recall that & is called coresolving if it is closed under extensions and cokernels
of monomorphisms and it contains all injective modules in Mod R.

Let M € Mod R. An exact sequence (of finite or infinite length)

e Xy =2 X1 > Xg—>M—0

in Mod R is called an X -resolution of M if all X;’s are in X’; furthermore, such
an X-resolution is called proper if it remains exact after applying the functor
Hompg(X,—) for any X € X. The X-projective dimension X-pdr M of M is
defined as inf{n | there exists an X-resolution 0 = X,, = --- = X; = Xg = M —
0 of M in Mod R}. Dually, the notions of an X-coresolution, an X -coproper
coresolution, and the X -injective dimension X-idr M of M are defined.

DEFINITION 2.6 ([15])
A module M € ModR is called Gorenstein projective if there exists an exact
sequence of projective modules

P=..-P P —>P° P ..
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in Mod R satisfying the following conditions: (1) it remains exact after applying
the functor Hompg(—, P) for any projective module P in Mod R, and (2) M =
Im(Py — PY). Dually, the notion of Gorenstein injective modules is defined. We
use GP(R) (resp., GZ(R)) to denote the subclass of Mod R consisting of Goren-
stein projective (resp., Gorenstein injective) modules.

FACT 2.7

(1) B,(R) is coresolving and Addgpw is an Ext-projective generator for
B, (R) (see [21, Proposition 5.1(b), Theorem 6.2] and [33, Proposition 3.7]).

(2) When w is a dualizing module over a local Cohen-Macaulay ring R,
B, (R) actually is exactly the class of modules admitting finite Gorenstein injec-
tive dimensions (see [16, Corollary 2.6]). However, the following example illus-
trates that these two classes of modules are different in general.

EXAMPLE 2.8
Let A be the finite-dimensional algebra over a field defined by the following quiver
and relation:

— —

ol 02 =< 03 =— o4 05,

(rad A)? = 0.

Take aw =702@3P315®; and M =3%5.Then by [34, Example 3.1] and [33,
Theorem 3.9], AWEnd(,w) 8 a semidualizing bimodule and M € B,,(A). But an
easy computation shows that the Gorenstein injective dimension of M is infinite.

Let € be a subcategory of an abelian category A. Recall from [15] that a sequence
S:--- =851 >S5 —--

in A is called Hom 4 (&, —)-ezact (resp., Hom 4(—, E)-exact) if Hom 4 (E,S) (resp.,
Homy(S, E)) is exact for any object E in £. An epimorphism (resp., a monomor-
phism) in A is called €-proper (resp., -coproper) if it is Hom 4 (€, —)-exact (resp.,
Hom 4(—, £)-exact).

DEFINITION 2.9 ([24])
Let € and T be subcategories of an abelian category A. Then 7T is called &-
coresolving in A if the following conditions are satisfied.

(1) T admits an £-coproper cogenerator C, that is, C C T, and for any object
T in T, there exists a Hom 4(—, £)-exact exact sequence 0 T — C — T’ — 0 in
A such that C' is an object in C and T” is an object in 7.

(2) T is closed under E-coproper extensions, that is, for any Hom4(—,&)-
exact exact sequence 0 — A; — Ay — A3 — 0in A, if both A; and Ag are objects
in T, then A, is also an object in T .
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(3) T is closed under cokernels of E-coproper monomorphisms, that is, for
any Hom 4(—, )-exact exact sequence 0 — A1 — Ay — A3 — 0 in A, if both A;
and A, are objects in 7, then Aj is also an object in 7T .

Dually, the notions of £-proper generators and &-resolving subcategories are
defined.

3. Relative homological dimensions

Holm and White [21] obtained some equivalent characterizations of B, (R) in
terms of the so-called “w-projective and w-flat modules.” Similar results were
also proved by Enochs and Holm [14]. Recently, we proved in [33, Theorem 3.9]
that B, (R) =cT(R)N gw™. In the beginning of this section, we investigate the
further relations among ¢7 (R), rw™, and B, (R).

PROPOSITION 3.1
(1) If pdyw < 00, then cT(R) C rw.
(2) If pdger w < 00, then gpw' CcT(R).

Proof
(1) Let M € cT(R). Then by [33, Proposition 3.7], there exists an exact sequence

e Wy =Wy = =2 W= M =0

in Mod R with all W; € Addg w. Put M; = Im(W; — W;_1) for any 7 > 1. We may
assume pdpw =n < oo by assumption. Since W; € gw™ by [33, Lemma 2.5(1)],
Ext (w, M) = Ext;""(w,Mn) =0 for any i > 1 and M € rw>.

(2) Let M € gw™, and let pdg., w =n < co. Then we get an exact sequence

0—coQ (M), — I'(M), = coQQ (M), =0

in Mod S for any ¢ > 0. Note that fdger w = pdger w = n because w is finitely
presented as a right S-module. Since Torf>1(w, I.) =0 for any injective left
R-module I by [33, Lemma 2.5(2)], we have Torf(w,coQi(M)*) = Torf+n(w,
co it (M),) =0 for any i >0 and j > 1; in particular, Tor{ (w,coQ?(M),) = 0.
Then we have the following diagram with exact rows:

0 — w®scoQ (M), —= wesI' (M),

\L 9co§zl(M) l 911(M)

0 —— coQ' (M) —— I'(M)

Because 61 (y) is an isomorphism by [33, Lemma 2.5(2)], 6. Q1 (M) is a monomor-
phism. So coQ!(M) is 2-w-cotorsion-free by [33, Lemma 4.1(1)]. On the other
hand, because Torf(w,co QY(M),) = 0 by the above argument, we have the fol-
lowing commutative diagram with exact rows:
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0 — w®s M, — wsI[°(M), — wRscoQ' (M), —= 0

\L Onm \L 070 ar) \L oo 01 (1)

0 M M) —— coQ'(M) —— 0

Because fo(pr) is an isomorphism by [33, Lemma 2.5(2)], applying the snake
lemma we have that 6, is also an isomorphism and that M is 2-w-cotorsion-
free. So by [33, Corollary 3.8], there exists an exact sequence 0 — M; — Wy —
M — 0 in Mod R with Wy € Addrw and Ext};i(w7M1) = 0. Thus, M; € pw*
since M € rw'. Then by an argument similar to that above, we get an exact
sequence 0 — My — W7 — M; — 0 in Mod R with W € Addgrw and Ms € rw™.
Continuing this procedure, we get a proper Addg w-resolution

Wy =Wy == W= M =0

of M in Mod R. Thus, M € ¢T (R) by [33, Proposition 3.7]. O
The following result extends [34, Corollary 2.16].

COROLLARY 3.2
(1) If pdgw < o0, then B,(R)=cT(R).
(2) ]f pdSOp w < 00, then Bw(R) = Rwl.

Proof
It is an immediate consequence of Proposition 3.1 and [33, Theorem 3.9]. O

We write KerExtZ' (—,wt) = {N € Mod S | Ext&” (N,wt) = 0} and H(w) =
Adst(w) NKer Exts! (—,wt), where (—)* = Homg(—,Q/Z) with Z the additive
group of integers and Q the additive group of rational numbers. In the following
result, we provide a viewpoint from Morita equivalence for ¢7 (R).

THEOREM 3.3
There exists an equivalence of categories

Proof

According to [36, Section 2.4], the functors (—). and w®g — induce an equivalence
between the category of all 2-w-cotorsion-free modules and Adst(w). So it suffices
to show that (—). (resp., w®g —) maps ¢T (R) (resp., H(w)) to H(w) (resp.,
cT(R)).
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Let M € cT(R). Then by [36, 2.4], we have M, € Adst(w). By [33, Proposi-
tion 3.7] there exists a proper Addg w-resolution

(3.1) Wy =Wy =Wy M =0
of M in Mod R. Thus, we get an exact sequence
s Whe =W, = =2 Wo,, =+ M, =0

in Mod S. Applying w ®g — to this exact sequence gives back the sequence (3.1).
Then we easily obtain that Torfs,(w, M,) = 0 because Toris,(w,W;,) =0 for
any j >0 by [33, Lemma 2.5(2)]. It follows from the mixed isomorphism theorem
that Exti' (M,,wt) 2 [Tori, (w, M,)]* = 0. So M, € KerExtZ'(—,wt) and
M, € H(w).

Conversely, let N € H(w). Then (w®g N), = N. It follows from the mixed iso-
morphism theorem that [Torss | (w, (w ®g N), )] = [Torl>1(w Nt = ExtiZ (N,
wt) =0 and Torl,(w, (w ®g N),) = 0. In addition, w ®g N is 2-w-cotorsion-
free by [36, 2.4]. Thus, we conclude that w ®g N is oo-w-cotorsion-free by [33,
Corollary 3.4]. O

Following [21], set

Fuo(R)={w®s F| F is flat in Mod S},
Pu(R) ={w®g P | P is projective in Mod S},
Z,(S) = {HomR | I is injective in Mod R}

The modules in F,(R), P,(R), and Z,(S) are called w-flat, w-projective, and w-
injective, respectively. For a module M € Mod R, we use lim;(R) to denote the
subcategory of Mod R consisting of all modules isomorphic to direct summands
of a direct limit of a family of modules in which each is a finite direct sum of
copies of M.

PROPOSITION 3.4
(1) Fu(R)=Ilim,(R).
(2) Pu(R)=Addrw.
(3) Z,(S) =Prodg E, with rE an injective cogenerator for Mod R.

Proof
(1) It is well known that a module in Mod S is flat if and only if it is in
limg(S). Because the functor w ®¢ — commutes with direct limits, we easily
obtain F, (R) C lim, (R). Now let M € lim,, (R). Then M € B, (R) by [21, Propo-
sition 4.2(a)]. Because rw admits a degreewise finite R-projective resolution,
Homp(w, —) commutes with direct limits. So Hompg(w, M) is in limg(S), that
is, Hompg(w, M) is a flat left S-module. Then by [21, Lemma 5.1(a)], we have
M € F,(R), and thus, lim, (R) C F,(R).

For (2) and (3), see [28, Proposition 2.4]. O



26 Xi Tang and Zhaoyong Huang

The following result establishes the relation between the relative homological
dimensions of a module M and the corresponding standard homological dimen-
sions of M,. It extends [31, Theorem 2.11].

THEOREM 3.5

(1) fdg M, < F,(R)-pdr M for any M € Mod R; the equality holds if M €
cT(R).

(2) pdg M. <P,(R)-pdr M for any M € Mod R; the equality holds if M €
cT(R).

(3) idrpw®gs N <Z,(S)-idg N for any N € Mod S; the equality holds if N €
A, (S).

Proof
(1) Let M € Mod R with F,(R)-pdr M =n < co. Then there exists an exact
sequence

(3.2) 0O—L,——L1—Lo—M-—=0

in Mod R with all L;’s in lim,,(R) by Proposition 3.4(1). Because rw admits a
degreewise finite R-projective resolution, EXt%(w, —) commutes with direct limits
for any i > 0. Also note that (rw). =S and w € gw™, so we have that L;, is in
limg(S) (i.e., L;, is left S-flat) and L; € pw® for any 0 <i <n. Applying the
functor Hompg(w, —) to the exact sequence (3.2), we obtain the exact sequence

0—=Lp,—-—Li,— Lo, —M,—0

in Mod S, and so fdg M, <n.
(2) Let M € Mod R with P, (R)-pdr M =n < co. Then there exists an exact
sequence

(3.3) 02w, — —w —wy—M—=0

in Mod R with all w; € Addgw by Proposition 3.4(2). Because all the w;,’s are
projective left S-modules and Addpw C gw™ by [33, Lemma 2.5(1)], applying
the functor (—). to the exact sequence (3.3), we get the exact sequence

0= wpy = =2 w1y 2w = M, —0

in Mod S, and so pdg M, <n.
Now suppose M € ¢T(R). Then w ®s M, = M. By [33, Corollary 3.4(3)], we
have Tori. | (w, M,) = 0. We will prove that the equalities in (1) and (2) hold.
(1) Assume fdg M, =n < co. Then there exists an exact sequence

0O—-F,— - > Fi—>Fp—>M,—0

in Mod S with all F;’s flat. Applying the functor w ®g — to it, we get an exact
sequence

0owsF,— - —2ws F1 2w®s Fy > w®s M (2 M)—0
in Mod R with all w®g F;’s in F,,(R), so we have F,,(R)-pdp M <n.
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(2) Assume pdg M, =n < co. Then there exists an exact sequence
0O—-P,— =P —-F—M.,—0

in Mod S with all P;’s projective. Applying the functor w ® s — to it, we get an
exact sequence

0—-wsP, = —2ws P >w®s Ph>w®s M (2M)—0

in Mod R with all w®g P;’s in P,,(R), and so P, (R)-pdp M < n.
(3) Let N € Mod S with Z,(S5)-ids N =n < oo, and let gFE be an injective
cogenerator for Mod R. Then there exists an exact sequence

(3.4) 0>N—=I"=T'—... 51" =0

in Mod S with all I*’s in Prodg E, by Proposition 3.4(3). Because wg admits a

degreewise finite S-projective resolution, Tor]S (w,—) commutes with direct prod-

ucts for any j > 0. Then by [33, Lemma 2.5(2)], w ®g I'(€ Prodg E) is injective
in Mod R and ToerZl(w, I) =0 for any 0 <i <n. Applying the functor w ®g —
to the exact sequence (3.4), we obtain the exact sequence

05wsN—->ws[PswRgI' >  5wRg " =0

in Mod R, and so idrw ®g N < n.
Now suppose N € A,(S). Then N = (w ®gs N), and w ®s N € gw*. If
idrw ®g N =n < oo, then there exists an exact sequence

0—sw®sN—E'5E'—... 5 E" >0

in Mod R with all E%’s injective. Applying the functor Homp(w, —) to it, we get
an exact sequence

0= (w®sN)u(ZN)—-E’ - E', —-.. = E", =0
in Mod S with all E%, € Z,,(S), and so Z,,(5)-ids N < n. O

For a subclass X of Mod R, we write idg X :=sup{idg X | X € X}. As an appli-
cation of Theorem 3.5, we get the following result.

PROPOSITION 3.6
(1) sup{F,(R)-pdg M | M € cT(R) with F,(R)-pdp M < o0} <idg F,(R).
(2) sup{P,(R)-pdg M | M € cT(R) with P,(R)-pdp M < o0} <idr P, (R).

Proof
(1) Let idg Fuo(R) =n < 00, and let M € ¢T(R) with F,(R)-pdp M =m < cc.
By Theorem 3.5(1), fdg M, =m and there exists an exact sequence

(3.5) 0—=F,—=Qmn-1——Q1—Qo—M,—0

in Mod S with F,, flat and all Q;’s projective. Because w ®g M, = M and
ToerZl(w,M*) =0 by [33, Corollary 3.4(3)], applying the functor w ®g — to the
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exact sequence (3.5), we get the exact sequence
02wRsFp 2 wRsQm-1— 2wQ®s Q1 2 w®s Qo > w®s M (ZXM)—0
(3.6)

in Mod R with w ®g F, in F,,(R) (which equals lim,, (R) by Proposition 3.4(1))
and all w®g Q;’s in P, (R) (which equals Addrw by Proposition 3.4(2)). Notice
that rw admits a degreewise finite R-projective resolution and w € pw™, so
Ext%zl(w ®s Qi,w®gs F,) =0 for any 0<i<m—1.

Suppose m > n. Because idgr w ®g F,, < n, it follows from the exact sequence
(3.6) that Exth(K,w ®g Fp) = Exth(M,w ®g F,,) =0, where K = Coker(w ®g
Frp — w®g Qm—1). Thus, the exact sequence 0 = w ®g F, = w ®g Qm—1 —
K — 0 splits and K € P, (R) (C F,(R)). It induces that F,(R)-pdg M <m —1,
which is a contradiction. Thus, we conclude that m <n.

(2) Tt is similar to the proof of (1), so we omit it. O

Note that g Rg is a semidualizing bimodule. Let R be a left Noetherian ring, and
let rws = rRR. Then we have the following facts:

(1) Fu(R) and P, (R) are the subclasses of Mod R consisting of flat modules
and projective modules, respectively, and F,(R)-pdy M = fdg M and P, (R)-
pdr M =pdp M for any M € Mod R;

(2) idg Fu(R)=1idg R and idg P, (R) =idg R by [6, Theorem 1.1];

(3) ¢T(R) =ModR by [33, Proposition 3.7].

So by Proposition 3.6, we immediately have the following result.

COROLLARY 3.7

For a left Noetherian ring R, we have

(1) sup{fdg M | M € Mod R with fdg M < 00} <idr R, and
(2) sup{pdr M | M € Mod R with pdg M < oo} <idr R (see [0, Proposi-
tion 4.3]).

In the rest of this section, for a module M € Mod R, in the case in which P, (R)-
pdr M < oo, we establish the relation between P, (R)-pdp M and some standard
homological dimensions of related modules.

LEMMA 3.8
If M € cT(R) and N € gw™, then for any i >0, we have an isomorphism of
abelian groups

Extho (M, N) = Ext (M., N,).

Proof
We proceed by induction on 4. Let i =0. Since M € ¢T(R), w ®s M, =M. It
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follows from the adjoint isomorphism theorem that Hompg(M, N) = Homp(w ®g
M,,N) = Homg(M,,N,). Indeed, the isomorphism is natural in M and N.
Now suppose ¢ > 1. The induction hypothesis implies that there exists a
natural isomorphism
Ext (L, H) = Ext} (L., H.)
for any L € cT(R), H € rw',and 0 < j <i—1. Because N € rw' by assumption,
coQY(N) € gwt and we have an exact sequence

0— N, —I°(N), = coQ'(N), —0.

Applying the functor Homg(M,,—) to it yields a commutative diagram with
exact rows:

Extly ' (M, I°(N)) — Extly ' (M,co Q' (N)) — Extz(M,N) ———0

l | |

Extly ' (M., I°(N),) = Exty ' (M., coQ'(N),) = Exts (M., N.) > Exts (M., I°(N),)

By the induction hypothesis, the first two columns in the above diagram are natu-
ral isomorphisms. Since M € ¢T(R) by assumption, we have Ext’ (M., I°(N),) =
Hom g (Tory (w, M,),I°(N)) = 0 by the mixed isomorphism theorem and [33,
Corollary 3.4(3)]. Tt follows that Ext’ (M, N) = Ext%(M,, N,) naturally. O

We also need the following criterion.

LEMMA 3.9
Let M € Mod R admit a degreewise finite R-projective resolution. If P,(R)-
pdp M < oo, then Py(R)-pdr M =sup{i > 0| Exty(M,w) #0}.

Proof
Let P, (R)-pdr M =n < 0o, and let

O—=w,—= 2w —2wg—M—=0

be an exact sequence in Mod R with all w;’s in P, (R) (which equals Addgrw). It
is easy to see that Extlé(M,w) =0 fori>n+1. Put M,,_; = Coker(w, = wp_1).

If Ext’y (M, w) = 0, then by [19, Lemma 3.1.6], we have that Exts(M,w;) =0
and Ext%l(wj,wi) =0 for any 0 <1i,5 <n. So Extk(M,_1,wy) = Exth(M,w,) =
0 and the exact sequence

0= w, >wp1—>M,_1—0
splits. Tt implies that M, _; € P,(R) and P,(R)-pdg M <n — 1, which is a
contradiction. So we conclude that Ext’y(M,w) # 0. O

Now we are in a position to give the following result.
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PROPOSITION 3.10
Let M € Mod R admit a degreewise finite R-projective resolution. If P,(R)-
pdp M < o0, then Py(R)-pdp M <min{idgw,ids S,pdgp M,pdg M. }.

Proof

Let M € Mod R with P, (R)-pdg M < co. Then M € ¢T(R) by [33, Proposi-
tion 3.7]. So Ext% (M, w) = Extk (M,,w,) = Ext%(M,, S) for any i > 0 by Lemma
3.8, and hence, sup{i > 0 | Ext% (M,w) # 0} < min{idg w,idg S, pdz M, pdg M.,}.
Now the assertion follows from Lemma 3.9. O

The following example shows that the finiteness of P, (R)-pdy M is necessary
for the conclusion of Proposition 3.10.

EXAMPLE 3.11

Let G be a finite group, and let k be a field such that the characteristic of k divides
|G|. Take R =S =w = kG. By [4, Theorem 3.3 and Proposition 3.10], the group
algebra kG is a nonsemisimple symmetric Artin algebra. Then idgw = 0 and
there exists a kG-module M with P, (R)-pdp M infinite.

4. The Bass injective dimension of modules

For a module M in Mod R, we study in this section the properties of the Bass
injective dimension B, (R)-idg M of M. We begin with the following easy obser-
vation.

LEMMA 4.1
For any M € Mod R, if B,,(R)-idg M < o0 and M € rwt, then M € B, (R).

Proof
It is easy to get the assertion by using induction on B, (R)-idg M. O

Now we give some criteria for computing B, (R)-idg M in terms of the vanishing
of Ext-functors and some special approximations of M.

THEOREM 4.2
Let M € Mod R with B,,(R)-idr M < 0o, and let n > 0. Then the following state-
ments are equivalent.

(1) B

(2) OQm( ) € B,(R) for m>n.
(3) Extz" ™ (w, M) =0.
(4)

4) There exists an exact sequence

0—-M—->XM WM 50

in Mod R such that X™ € B,,(R) and P,(R)-idg WM <n —1.
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(5) There exists an exact sequence
0O—-Xy—>Wy—>M-—=0
in Mod R such that X € B,(R) and P, (R)-idg Wi <n.

Proof

We have that (1) = (2) follows from [21, Theorem 6.2] and [24, Theorem 4.8],
(2) = (3) follows from the dimension shifting, and (4) = (1) follows from the fact
that P, (R) C B, (R).

(3) = (1) Let M € ModR with B,(R)-idgM < oco. Then B, (R)-
idrcoQ™(M) < oo by [21, Theorem 6.2] and [24, Theorem 4.8]. If E:><t§n+1 w,
M) =0, then coQ"(M) € rw, and so coQ"(M) € B,(R) by Lemma 4.1. It
follows that B, (R)-idr M <n.

(1) = (4) By [21, Theorem 6.2], B, (R) is closed under extensions. By [33,
Proposition 3.7], it is easy to see that P, (R) (which equals Addrw) is a P, (R)-
proper generator for B,,(R). Then the assertion follows from [24, Theorem 3.7].

(4) = (5) Assume that there exists an exact sequence

0—-M—-XMswM_0

in Mod R such that X™ € B,,(R) and P, (R)-idg WM <n — 1. By [33, Proposi-
tion 3.7], there exists an exact sequence

05X W= XM 0

in Mod R with Wy € P, (R) and X’ € B,,(R). Now consider the following pullback
diagram:

0 0
X — X'
0 —= Wy Wo wM 0
0 M xM wM 0
0 0

Then the leftmost column in the above diagram is the desired sequence.
(5) = (4) Assume that there exists an exact sequence

0>Xy—>Wy—>M—0
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in Mod R such that Xs € B, (R) and P, (R)-idg Wi <n. Then there exists an

exact sequence
0—=Wy—->Wl=W' -0

in Mod R with W° € P,,(R) and P, (R)-idg W' <n — 1. Consider the following
pushout diagram:

0 0
0 Xu W M 0
0 X WO X 0
W —— W
0 0

It follows from [21, Theorem 6.2] and the exactness of the middle row in the
above diagram that X € B, (R). So the rightmost column in the above diagram
is the desired sequence. O

REMARK 4.3
The only place where the assumption that B, (R)-idg M < oo in Theorem 4.2 is
used is in showing (3) = (1).

If the given semidualizing module rwg is faithful, then a module in Mod R with
finite Bass injective dimension is in B, (R) by [21, Theorem 6.3]. However, this
property does not hold true in general.

EXAMPLE 4.4
Let A be a finite-dimensional algebra over an algebraically closed field given by
the quiver:

lo —— 02.

Put w=1(1) @ I(2). Then pwy is a semidualizing bimodule, but is nonfaithful
since Homp (w, S(2)) = 0. We have an exact sequence 0 — S(2) — I(2) = I(1) =0
in Mod A. Both I(1) and I(2) are obviously in B, (A). But S(2) is not in B, (A)
because S(2) is not 2-w-cotorsion-free.

Motivated by [26, Definition 2.4 and Lemma 2.5], we introduce the following.
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DEFINITION 4.5
A semidualizing bimodule pwyg is called left (resp., right) semitilting if pd p w < 0o
(resp., pdger w < 00).

In the following, we will give an equivalent characterization of right semitilting
bimodules in terms of the finiteness of the Bass injective dimension of g R. We
need the following two lemmas.

LEMMA 4.6
Let M € Mod R with P, (R)-idp M <n(< c0). If K € Mod R is isomorphic to a
direct summand of M, then P, (R)-idg K <n.

Proof

Note that P, (R) = Addrw by Proposition 3.4(2). It is clear that P,(R) C
L+P,(R). In addition, it is not difficult to verify that P, (R) is P, (R)-coresolving
in Mod R with P, (R) a P, (R)-coproper cogenerator in the sense of [24]. Now
the assertion follows from [24, Corollary 4.9]. O

We use addr w to denote the subclass of Mod R consisting of direct summands
of finite direct sums of copies of w.

LEMMA 4.7
Let M € Mod R be finitely generated, and let n > 0. If P,(R)-idg M <n, then
there exists an exact sequence

0-M—-w—w = =5w"—0

in Mod R with all w*’s in addp w.

Proof
Let P, (R)-idg M < n, and let

0 1 2 n
(4.1) 0-M>ZD" Dt 2 ... 25 D" 50

be an exact sequence in Mod R with all D"’s in Addgw (which equals P, (R)).
Put K* =Ima’ for any 0 <i <n. There exists a module G° € Addg w such that
DY@ GY is a direct sum of copies of w, so we get a Homp(—, P, (R))-exact exact
sequence

0 1 2 3 n
0M2 D' aa® 2 plagt 25 p2 o 2 pr Ly,

where 8% = ((BO), Bt = (% 120 ), and 32 = (a?,0). Then ImB! = K' ® G° and
Im 32 = K?. Because M is finitely generated by assumption, there exist w® €
addrw and H° € Addrw such that D°® G° =w® @ H° and Ima® C wP. So we
get an exact sequence
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(4.2) 0—+M—w - L0

in Mod R with L° @ H° =Im .
Consider the following pushout diagram with the middle row Hompg(—,
P, (R))-exact exact and the leftmost column splitting:

0 0
! ’
HO — HO

i |

0 —> ImB' —= D'@G® —= K2 —~ 0

| ’

H
0 Lo X! K? 0

i |

Then the middle column in the above diagram is Hompg(—, P, (R))-exact exact.
From the proof of Lemma 4.6, we know that Addg w (which is equal to P, (R)) is
P.,(R)-coresolving in Mod R. So X! € Addgw. Combining the exact sequences
(4.1) and (4.2) with the bottom row in the above diagram, we get an exact
sequence

0o M—ow®— X' D2 . 2 pn g

in Mod R with w® € addgpw and X' € Addgw. Repeating the above argument
with Im(w® — X1) replacing M, we get an exact sequence

4 n
0-M—-uw —sw —-X25D* % ... 25 D" >0
in Mod R with w®, w! € addgrw and X? € Addgw. Continuing this procedure, we
finally get an exact sequence

0-M—-w—w = =5w"—0

in Mod R with all w¥’s in addp w. O
We are now in a position to prove the following result.

THEOREM 4.8

(1) If pws is right semitilting, then By (R) = pw™.

(2) If S is a left coherent ring, then rwsg is right semitilting with pdgep w < n
if and only if B,(R)-iddgr R <n.

Proof
(1) It follows from Corollary 3.2 and [33, Theorem 3.9].
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(2) It is easy to see that B, (R)-idgr R < P,(R)-idg R = pdgep, w. Now the
necessity is clear. Conversely, if B, (R)-idg R = n < oo, then by Theorem 4.2,
there exists a split exact sequence

0-X—->W-—->R—0

in Mod R such that X € B,,(R) and P, (R)-idg W <n.So W = X & R and P, (R)-
idgr R <n by Lemma 4.6. It follows from Lemma 4.7 that there exists an exact
sequence

0-R—-w—w = 5w =0

in Mod R with all w’’s in addg w. Applying the functor Hompg(—,w) to it, we get
the exact sequence

0 — Hompg(w™,w) — --- — Homp(w',w) = Homp(w®,w) = w —0

in Mod S°P with all Hompg(w?,w)’s projective. So pws is right semitilting with
pPdgor w <. O

Compare the following result with Lemma 3.9.

COROLLARY 4.9
If rwg s left and right semitilting, then for every M € Mod R, B,,(R)-idr M =
sup{i > 0 | Exty (w, M) # 0} < c0.

Proof

Let rws be left and right semitilting. Then pdpw < 0o and pdge., w < co. Put
sup{i > 0| Ext’(w, M) # 0} = n. Then n < co. It is easy to see that gw-idg M >
n. So B, (R)-idg M > n by Theorem 4.8(1).

We will use induction on n to prove B, (R)-idg M <n. If n=0, then M €
rw™. It follows from Theorem 4.8(1) that M € B, (R). Now suppose n > 1. Then
sup{i > 0| Ext’(w,coQ (M) #0} =n — 1. So B,(R)-idgcoQ'(M)=mn —1 by
the induction hypothesis, and hence, B, (R)-idgp M < n. O

5. The Bass injective dimension of complexes

In this section, we extend the Bass injective dimension of modules to that of
complexes in derived categories. A cochain complex M® is a sequence of modules
and morphisms in Mod R of the form

_ dnfl dm
ces MM M S ML

such that d"d"~1 =0 for any n € Z, and the shifted complex M®*[m] is the com-
plex with M®[m]® = M™" and dyfepm = (=1)™dy, 1, Any M € Mod R can be
considered as a complex having M in its Oth spot and 0 in its other spots. We use
C(R) and D’(R) to denote the category of cochain complexes and the derived
category of complexes with bounded finite homologies of Mod R, respectively.

According to [10, Appendix], the supremum, the infimum, and the amplitude of
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a complex M*® are defined as follows:
sup M*® =sup{n €Z | H™(M*®)#0},
inf M* =inf{n € Z| H"(M*) #0},
ampM® =sup M*® —inf M°.

The Auslander category with respect to a dualizing complex was defined in
[12]. Dually we define the Bass class of complexes with respect to w as follows.

DEFINITION 5.1
A full subcategory B2 (R) of D?(R) consisting of complexes M* is called the Bass
class with respect to w if the following conditions are satisfied:

(1) RHomg(w, M*) € D*(R);
(2) w®%RHompg(w, M*) — M* is an isomorphism in D*(R).

Let M* € C(R) and n € Z. The hard left-truncation T™ M*® of M*® at n is given
by

d‘n, dn+1
C"M® = —50—=0—>M" 5 Mg M2 .0

Let M*® € D°(R) with H(M®) # 0, and let inf M*® =i. Taking an injective res-
olution I* of M*®, we define the injective compler vI® = (C**t! I*)[1], which
is unique up to an injective summand in degree ¢. In general, we have that
HY(vI®) = H'(I*[1]) if t >4+ 1. In particular, when M® is a module M, vI® is
isomorphic to coQ! (M) in D*(R).

REMARK 5.2
(1) Let M* € D(R). We see from the definition of vI® that there exists a dis-
tinguished triangle in D°(R) of the form

vl®[—1] = M® — I'[—i] — vI®.
(2) It is routine to check that BS(R) forms a triangulated subcategory of
D®(R). Thus, for an injective complex I*, I* € B®(R) if and only if vI® € B%(R).

LEMMA 5.3
Let M € Mod R. Then the following statements are equivalent:

(1) Bu(R)-idg M < oo;
(2) MeB%(R).

Proof
(1) = (2) Let B, (R)-idg M < oo, and let
0-M-=Y 'Yl .. Y50

be an exact sequence in Mod R with all Y*’s in B,,(R). Then by Remark 5.2(2)
and [22, p. 41, Corollary 7.22], we have M € B?,(R).
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(2) = (1) Let M € B2(R), and let I*® be an injective resolution of M. Then
I* € B2 (R) and RHompg(w, M) € D*(R). Put s = sup RHompg(w, M). Because
Hi{(RHompg(w,v®I*)) = H"*(RHompg(w,I*)) =0 for any i > 1, it implies that
coQ¥(M) € rwt. By Remark 5.2(2) we have that v*I® = coQ*(M) and v*I® €
B(R), so coQ*(M) € BS(R), and hence, w ®% RHompg(w,coQ*(M)) —
co2*(M) is an isomorphism in D?(R). Equivalently, we have w ®g coQ%(M), =
coQ*(M) and Tori , (w,coQ*(M),) =0. It follows that coQ*(M) € B,(R) an
Bu(R)-idg M <s. 0

We define the Bass injective dimension of complexes in D(R) as follows.

DEFINITION 5.4
Let M* be a complex in D?(R). We define the Bass injective dimension of M*®

as
RH M*®) if M* :
B:) (R)'ld M. = Sup OmR((JJ’ ) 1 € BUJ(R)’
+00 if M* ¢ B%(R).

In the following result, we give an equivalent characterization when the Bass
injective dimension of complexes is finite.

THEOREM 5.5
Let M*® be a complex in D°(R). Then the following statements are equivalent.

(1) B(R)-id M* < c0.
(2) There exists an isomorphism M® — Y* in D°(R) with Y* a bounded
complex consisting of modules in B, (R).

Proof
(2) = (1) The assertion follows from the fact that a complex Y* of finite length
consisting of modules in B, (R) is in B (R).

(1) = (2) Let B2 (R)-idM*® < co. Then M*® € B2 (R). We will proceed by
induction on amp M*®. If amp M*® = 0, then there exists T' € Mod R such that
M*® = T[—s], where s =sup M*. Since B, (R)-idg T < oo by Lemma 5.3, we have
a quasi-isomorphism 7' — Y® with

Y= 5 0=Y 2y 5. YT 50—

a bounded complex and all Y?’s in B, (R). Then the complex Y*[—s| is the
desired complex.

Now suppose amp M*® > 1. By Remark 5.2(1), there exists a distinguished
triangle

vl®[—1] = M® — I'[—i] 25 vl®

in D®(R). Since ampvI® < amp M*®, by the induction hypothesis, there exists an
isomorphism 3:vI® — Y;* in D’(R) with Y;* a bounded complex consisting of
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modules in B, (R). Thus, we get another triangle

oI [—1] = M® — I'[-i] 2% vy

in D®(R). Furthermore, we have a triangle
I[=i) 58 Y2 — M*[1] = I'[—i + 1]
in DY(R). Let Y5 be the mapping cone of Sa. Then there exists an isomorphism

M*[1] - Yy in D’(R). Put Y* = Y*[—1]. Then Y'* has finite length and all spots
in Y* are in B, (R), and so Y'* is the desired complex. O

Let A be an Artin R-algebra over a commutative Artin ring R. We denote by D
the ordinary Matlis duality, that is, D(—) := Homg(—, E°(R/J(R))), where J(R)
is the Jacobson radical of R and E°(R/J(R)) is the injective envelope of R/J(R).
It is easy to verify that (A, A)-bimodule D(A) is semidualizing. Recall that A is
called Gorenstein if idy A =idper A < 00. As an application of Theorem 5.5, we
get the following result.

COROLLARY 5.6

Let A be an Artin algebra. Then the following statements are equivalent for any
n > 0.

(1) A is Gorenstein with ida A =idper A <n.
(2) For any simple module T' € Mod A, B}, ) (A)-ida T <n.

(3) For any simple module T € Mod A, there exists a quasi-isomorphism T —
Y*® with Y* a bounded complex of length at most n+ 1 consisting of modules in
Bpay(A)-

(4) For any simple module T € Mod A, there exists an exact sequence
0=T—=XT=w? -0

in Mod A such that X7 € Bppy(A) and idy W7 <n—1.
(5) For any simple module T € Mod A, there exists an exact sequence

0=>Xr—>Wr—>T—0

in Mod A such that XT € Bpay(A) and idy Wr < n.

Proof
By Theorem 4.2, we have (2) < (4) < (5). By Theorem 5.5, we have (2) < (3).
(1) = (2) Let T € ModA be simple. Since A is Gorenstein with idy A =
idper A < n, it follows from [15, Theorem 12.3.1] that coQ™(T) is Gorenstein
injective. Then coQ™(T') € Bp(ay(A) by [33, Corollary 5.2 and Theorem 3.9].
Now the assertion follows from Lemma 5.3.
(4) = (1) Let T € ModA be simple. Then by (4) and [33, Theorem 3.9
and Corollary 4.2], GZ(A)-idaT < n. So sup{GP(A)-pdy M | M € ModA} =
sup{GZ(A)-ida M | M € Mod A} <n by [8, Theorem 1.1] and [32, Theorem 2.1].
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It follows from [25, Theorem 1.4] that A is Gorenstein with idy A =idpor A < n.
a

6. A dual of the Auslander-Bridger approximation theorem

In this section, we first obtain a dual version of the Auslander—Bridger approx-
imation theorem and then give several applications. We begin with the follow-
ing.

LEMMA 6.1 ([36, PROPOSITION 2.2])
(1) For any X € Mod R, we have (0x). - pux, =1x,.
(2) For any Y € Mod S, we have 8,5.y - (1w @ py) = lugsy -

For any n > 0, recall from [3] that the grade of a finitely generated R-module
M is defined as graden M := inf{i > 0 | Ext’ (M, R) # 0}; the strong grade of M,
denoted by s.gradep M, is said to be at least n if gradep X > n for any submodule
X of M. We introduce two dual versions of these notions as follows.

DEFINITION 6.2
Let M € Mod R and N € Mod S, and let n > 0.

(1) The Ext-cograde of M with respect to w is defined as E-cograde, M :=
inf{i > 0 | Ext%(w, M) # 0}; the strong Ext-cograde of M with respect to w,
denoted by s.E-cograde,, M, is said to be at least n if E-cograde, X >n for any
quotient module X of M.

(2) The Tor-cograde of N with respect to w is defined as T-cograde , N :=
inf{i > 0 | Tor{ (w, N) # 0}; the strong Tor-cograde of N with respect to w,
denoted by s.T-cograde, IV, is said to be at least n if T-cograde,Y > n for
any submodule Y of N.

We remark that the Tor-cograde of N with respect to w is called the cograde of
N with respect to w in [33].

The following result can be regarded as a dual version of the Auslander—
Bridger approximation theorem (see [17, Proposition 3.8]).

THEOREM 6.3

Let M € Mod R, and let n > 1. If T-cograde,, Ext’ (w, M) > for any 1<i<mn,
then there exist a module U € Mod R and a homomorphism f:U — M in Mod R
satisfying the following properties:

(1) Pu(R)-idrU <n, and
(2) Exti(w,f) is bijective for any 1 <i<mn.

Proof
We proceed by induction on n. Let n =1, and let
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Ql L)QO —>Ext}2(w7M) —0

be a projective presentation of Ext}%(w,M) in ModS. Then we get the exact
sequence

wos Q2 w5 Qo - w ®s Exth(w, M) = 0
in Mod R with both w ®s @1 and w ®g Qg in P,(R) (which equals Addgrw).
Put U = Ker(1, ® f1). Because w ®g Exth(w, M) =0 by assumption, P, (R)-
idpU < 1.

Next we show that there exists a homomorphism f:U — M in Mod R such
that Exth(w, f) is bijective. Since Q; and Qg are projective, there exist two
homomorphisms gy and g; such that we have the following commutative diagram
with exact rows:

f1 &
o} Qo Exty(w, M) — 0

g1 go
\ N

§
I°(M), ——= coQ'(M), —— Bxth(w, M) —= 0

Then there exists a homomorphism f such that we have the following commuta-
tive diagram with exact rows:

1,®f1
0 — U — w®sQ1 — w®sQy — 0

(6.2) ) .
v ! \L " l "
0 M I°(M) —— coQ}(M) ——= 0

where hy = 0o(ap) - (1, ® g1) and ho = Oco 01 (ar) - (1w ® go). Applying the functor
(=)« to diagram (6.2), we obtain the following commutative diagram with exact
rows:

(1o®f1) = 5" 1
(WRsQ1)s — (WRgQo)x — Extp(w,U) —— 0

(6.3) l hi. l ho. l Exth (w,f)

I°(M), —— coQ*(M), — Exth(w,M) —= 0

Because the diagram

g0

coQH (M),

\L HQo l HeooQl (M),

(1w®90)*
(w®s Qo) — (w®gcoQ(M),)

*
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is commutative, fico01(ar). - 90 = (1w @ go)« - 1@, - Then we have
how - pQ,
= (Bco0r(ar) - (1o ® 90)), * 1o
= (Oconr(ar))+ - (1 @ g0)« - Qo
= (ecoﬂl(M))* “HeoQl (M), 90
=leonr (), " 90 (by Lemma 6.1(1))
= go-

On the other hand, from diagrams (6.1) and (6.3), we get that 8’ =6 - go and
Ext(w, f) - 8" =68 hg.. So we have

EXt}%(w7 f) ’ 6” "HQo
=0 ho, HQo
=090
=

and we get the following commutative diagram with exact rows:

(1w®f1)* 5” 1
(W®sQ1)s — (W®s Qo) — Extp(w,U) —— 0
= J/ (hoy) ™" = J/ (nQo) ™" l Extl (w,f)
f1 &’ 1
@1 Qo Exth(w, M) —= 0

Thus, Extg(w, f) is bijective.

Now suppose n > 2. By the induction hypothesis, there exists a homomor-
phism f’: U’ — M in Mod R such that P,,(R)-idg U’ <n — 1 and Ext’(w, f') is
bijective for any 1 <¢ <mn — 1. Then there exists a Homg(—, P, (R))-exact exact
sequence

05U 5 W =X 0

in Mod R with W in P, (R), and we get the following commutative diagram with
exact columns and rows:
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0 0
N
M M
("81)
() v

0 —U — MW ——= L ——= 0

(071W)
g Y
0 U’ w X 0
\
0 0

where L = Coker (f /). It is easy to see that the exact sequence

gl
f/
O%U’(Q—zM@W%L%O
is Homp(—,P,(R))-exact. Because P,(R)-idrU’ <n — 1 and Exth(w,f') is
bijective for any 1 <i<n — 1, we have that the sequence

f/
O—>U;(g—*)>(M69W)*—>L*—>O

is exact, Exty =""!(w, L) = 0, and Ext’s(w, M) 2 Ext’(w, L). Take a projective
resolution

(6.4) Qu 1% L2 Q1 5 Qo — Exty(w, M) = 0
of Ext’s(w, M) in Mod S. By assumption, T-cograde,, Ext’s(w, M) > n, so we get
the exact sequence

1o®fn 1o® 1,®
(6.5) 0+ N—-w®sQn Bl —]>02w®sQ1 —{lw®sQo—>0

in Mod R with all w®g Q;’s in P,(R) and N = Ker(1l, ® f). Then P, (R)-
idg N < n. Applying the functor (—). to the exact sequence (6.5), we get the
sequence

1o ®fr )« 1o®f2)« 1u®f1)«
0—>N*—>(w®sQn)*( Sl (aBlp) (w®SQ1)*( 2 (Ww®sQo)x =0
(6.6)

Comparing the sequences (6.4) with (6.6) we get that Extp='"="""(w, N) =0 and

Exty(w, N) =2 Ext's(w, M).
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Because Extlé(w,L) =0 for any 1 <i<n—1, we get an exact sequence
), - 1%(L), = —I""YL), = K. — Ext}(w,L) =0

in Mod S, where K = Coker(I"~2(L) — I"~'(L)). Since all Q;’s are projective,
there exist homomorphisms gg, g1, .., g, such that we have the following com-
mutative diagram with exact rows:

fn f2 fo n
Qn Q1 Qo Extp(w, L) — 0

(6.7)

Then there exists a homomorphism h such that we have the following commuta-
tive diagram with exact rows:

1o®fn 1,®f1 1,® fo

OHNHS_W(X)SQHH...Hw@SQlH—W@SQOH‘O
h lhn lhl lho
\
0 — L ——= (L) —— -+ —= I""Y(L) K 0

(6.8)

where h; = 0pn—i(py - (1, ® g;) for any 1 <i <n and ho =0k - (1, @ go). Notice
that the functor (—). takes diagram (6.8) back to diagram (6.7), so Exty(w,h)
is bijective.

Put W' =w ®g Q,. Then we get an exact sequence

h
0—>NQ>LEBW’—>N’—>O

and a Homp(—, P, (R))-exact exact sequence

00U -SMoWoeW -LaoW =0

’

in Mod R, where u = (5' ) Consider the following pullback diagram:
0
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0 — U — = MoWoW —s LoW' ——= 0

0 0

It is easy to see that the first row in the above diagram is Hompg(—, P, (R))-exact
exact. Because P, (R)-idg U’ <n—1 and P,(R)-idg N <n, P,(R)-idrU <n by
the dual version of [15, Lemma 8.2.1].

Put p= (10£,0,0): M & W @& W' — M and f =p-\. Then Exth(w, f) =
Ext (w,p) - Extiy(w,\) for any i > 0. Because W @ W’ € P, (R), Ext’(w,p) is
bijective for any i > 1. Note that Ext (w, f) is bijective for any 1 <i <n—1 and
Extgign_l(w, N)=0= Extgign_l(w, L). We have the following commutative

diagram with exact rows:
Exth (w,a)

Ext’s (w, U)

) Ext% (w,u) )
0 — Exth(w,U') — Exthw,Me&WaeW') — 0

Exti(w,U) —— 0

l Exth (w,\)

So Ext(w, \) and Ext%(w, f) are bijective for 1 <i <n — 1. On the other hand,
because Ext’h(w,h) is bijective and Ext}it! (w,U’) =0 = Ext}y ! (w, L), we have
the following commutative diagram with exact rows:

Exth(w,a) Ext’ (w,B)
Exth (. U') Bxth (. U) o By, N) —— 0

l Bt ) l -
Extp (w,u)

0 — Exth(w,U) —= Exth(w,M ®W & W') — Ext(w, L & W)

So Ext’s(w,A) and Exty(w, f) are bijective. The proof is finished. a

Dual to Theorem 6.3, we have the following result.
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THEOREM 6.4

Let N € Mod S, and let n > 1. If E-cograde,, Torf(mN) >1 for any 1 <i<n,
then there exist a module V € Mod S and a homomorphism g: N —V in Mod S
satisfying the following properties:

(1) Z,(S)-pdg V <n, and
(2) Tor?(w,g) is bijective for any 1 <i <n.

In the rest of this section, we give several applications of Theorems 6.3 and 6.4.

Let A be an Artin R-algebra over a commutative Artin ring R, and let
mod A be the class of finitely generated left A-modules. It is well known that
the ordinary Matlis duality functor D(—) induces a duality between mod A and
mod A°P. Recall from [23] that A is called right quasi-Auslander n-Gorenstein
provided that fdper I*(Apy) <i+ 1 for any 0 <i <n — 1. As an application of
Theorem 6.3, we get the following result.

COROLLARY 6.5

Let A be a right quasi-Auslander n-Gorenstein—Artin algebra, and let M € mod A.
Then there exist a module U € mod A and a homomorphism f:U — M in mod A
satisfying the following properties:

(1) idaU <n, and
(2) Exty (D(A), f) is bijective for any 1 <i<mn.
Proof
Let M € mod A, and let i,7 > 0. Then we have
Ext) (D(A), M)
=~ Ext) (D(A), D(D(M)))
= D(Torﬁ\ (D(M),D(A)))  (by [9, Chapter VI, Proposition 5.1])
~ D(D(Extho, (D(M),A))) (by [9, Chapter VI, Proposition 5.3])
= Extlyop (D(M), A).
So for any ¢ > 1 and j > 0, we have
Tor’ (D(A), Ext) (D(A), M))
= Tor’ (D(A), Ext}yo, (D(M),A))
= D(Extf\ (Extfwj (D(M),A),A)) (by [9, Chapter VI, Proposition 5.3]).

Since A is right quasi-Auslander n-Gorenstein, grade, Ext.,(D(M),A) > i for
any 1 <4 <n by [3, Theorem 4.7]. It follows from the above argument that
T-cogradep ) Exty (D(A), M) > for any 1 <4 < n. In addition, note that D(A)
is an injective cogenerator for Mod A, so Pp(ay(A)-idy X =idy X for any X €
mod A. Now the assertion follows from Theorem 6.3. O
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We give the second application of Theorems 6.3 and 6.4 as follows.

COROLLARY 6.6
Let M € Mod R and N € Mod S. Then for any n >0, we have the following.

(1) If T-cograde, Ext’s(w, M) >i+1 for any 0 <i <n, then E-cograde,, M >
n+1.

(2) If E-cograde, Tor? (w, N) >i+1 for any 0 <i <n, then T-cogradec N >
n+1.

Proof
(1) We proceed by induction on n. Let n =0 and w ®s M, = 0. Since (Oar)+ -
s, = 1as, by Lemma 6.1(1), pas, is a split monomorphism and M, = 0.

Now suppose n > 1. By the induction hypothesis, we have that
E-cograde,, M >n and Ext0="=""!(w, M) = 0. Tt is left to show Ext’(w, M) =0.
By Theorem 6.3, there exist a module U € Mod R and a homomorphism f :
U — M in Mod R such that P (R)-idg U < n and Ext%(w, f) is bijective for any

1<i<n. It follows that Extgignfl(w, U)=0. Let

0-U LWy =Wy — - =W, =0

be an exact sequence in Mod R with all W;’s in P, (R). Applying the functor
(=)« to it, we get an exact sequence

0=>U, > Wy, =W, — - = W,, = Exth(w,U)—0

in Mod S. Since Exth(w, M) = Ext(w,U), we have T-cograde, Ext’y(w,U) >
n+ 1 by assumption. Then we get the following commutative diagram with exact

rows:
wRrU, —w®s Wy —>w@s Wiy —> - —>w®g Wy, —0

l v l Ow, l Ow, l Ow,,
0 U Wo Wy W, 0

Because all 0yy,’s are bijective, 0 is epic. Note that we have the following com-
mutative diagram:

1o®f«
ws Uy, — w®g M,

\L 0u l O
f

U M

Because w ®¢ M, =0 by assumption, f -0y =0. But 0y is epic, so f=0. It
follows that the bijection Ext;(w, f) is zero and Ext(w, M) =0.
(2) The proof is dual to that of (1), so we omit it. O

Before giving the third application of Theorem 6.3, we need the following result.
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PROPOSITION 6.7
Let

(6.9) Vi-LVo—=N-=0
be an exact sequence in Mod S satisfying the following conditions.

(1) Both py, and uy, are isomorphisms.
(2) Extp(w,w®s V) =0 and Exth(w,w ®g V1) =0=Exth(w,w®s V7).

Then there exists an exact sequence
0 — Exth(w,L) = N X% (w®g N), — Ext%(w, L) — 0,

where L =Ker(1,, ® g).

Proof
By applying the functor w ®g — to (6.9), we get an exact sequence

1,®
0—-L—->w®sV; ng®5V0%w®sN%0

in Mod R. Let g= a7 (where7:V; »Imgand a:Img— Vp) and 1, @9 =o' -7’
(where 7’ 1w ®g V4 — Im(1, ® g) and o' : Im(1, ® g) — w g V) be the natural
epic-monic decompositions of g and 1, ® g, respectively. Since Ext};g(w wes V) =
0, we have the following commutative diagram with exact rows:

«

0 Img Vo N 0

I
I h \L Ky L UN
v /

0— (Im(l, ®9)), = (w®s Vo)s — (wRgs N), — Ext}%(w,Im(lw ®g)) —0

where h is an induced homomorphism. Then o/, - h = py, - a. In addition, since
v, is an isomorphism by assumption, by the snake lemma we have Coker pin =
Exth(w,Im(1, ® g)) and Ker uy 2 Coker h.

On the other hand, since Exth(w,w ®g Vi) =0 = Exth(w,w ®g V1) by
assumption, by applying the functor (—). to the exact sequence

0= Lo wes Vi S Im(l, ®g)— 0,
we get the exact sequence
0— L. = (w®s V1) — (Im(L, ® g)), = Exth(w, L) =0
and the isomorphism
Exth (w,Im(1, ® g)) = Ext%(w, L).

Because
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Wi

l Hvy \L A%
(1w ®9)

(W®sV1)s — (w®s Vo)«

is a commutative diagram, (1, ® ¢)« - gy, = py, - ¢g. Because 1, ® g =o' - 7/,
(1o ®9g)x = - m,. Thus, we have o, -h-m=py, - a-m=py, 9= 1o ®@g)« - vy =
o -7 - py, . Because o, is monic, h-m = 7, - iy, . Note that 7 is epic and that py,
is an isomorphism, so Ker uuy 2 Coker h 2 Coker 7, 22 Ext k(w, L). Consequently,
we obtain the desired exact sequence. O

As a consequence of Proposition 6.7, we have the following result.

COROLLARY 6.8
Let M € Mod R. Then there exists an exact sequence

HeTry, M (

0 — Extp(w, M) — cTr, M w®g cTry, M), — Exth(w, M) — 0.

Proof
Let M € Mod R. Then from the exact sequence (2.1), we get the exact sequence

0
0 M, = I°(M), 5 1'(M), = cTry, M0

in Mod S. Consider the following commutative diagram with exact rows:

L,®f7
0—Ker(ly, ® f) —w®s I°(M), —~w®s ['(M), —w®g cTr, M —0

| h l 910(1\/1) l 010 ()
\ 0

0 M I9(M) d (M)

Because I°(M),I' (M) € B, (R) by [21, Theorem 6.2], both 0.5y and 71 (ap)
are isomorphisms. So the induced homomorphism & is also an isomorphism and
M = Ker(1, ® f2). Note that I°(M),, I' (M), € A,(S) by [21, Proposition 4.1].
So both proasy, and pri(a), are isomorphisms, and then the assertion follows
from Proposition 6.7. O

We are now in a position to prove the following result.

THEOREM 6.9

For any n > 1, the following statements are equivalent:

(1) s.E-cograde, Tor? (w,N) > for any N € Mod S and 1 <i<n,
(2) s.T-cograde, Exty(w, M) >1i for any M € Mod R and 1 <i<n.
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Proof
(1) = (2) We proceed by induction on n. Let n = 1. Given a module M in Mod R,
by Corollary 6.8 we have an exact sequence

HcTry, M
—

0 — Exth(w, M) — cTr, M (w®g cTry, M), — Ext(w, M) — 0.

Let N =1Im ey, pmr, and let pery, pr = - 8 (where 8: cTr, M — N and a: N —
(w®g cTr, M),) be the natural epic-monic decomposition of pery, . Applying
the functor w ®s — to the exact sequence

(6.10) 0— Exth(w, M) = ¢Tr, M 25 N — 0,
we get an exact sequence
1.®
Tor? (w, N) = w ®g Ext}(w, M) = w ®g cTr, M =8 s N =0,

Since (1, ®a) (1, ®B) = 1y @ tetr, M and 1, @ piety,, M 1S & split monomorphism
by Lemma 6.1(2), 1,, ® § is an isomorphism. It follows that w ®g Ext}{(w, M) is
isomorphic to a quotient module of Tor‘l9 (w,N) in Mod R. Then by assumption
E-cograde,,(w ®s Extk(w, M)) > 1. Using Corollary 6.6(2), we have that w ®g
Exth(w, M) =0.

Let X be a submodule of Ext}z(w,M ) in Mod S. Then the exact sequence
(6.10) induces the exact sequences

0 — Exth(w, M)/X — (cTr, M)/ X - N =0,
(6.11)
0— X —cTr, M = (cTr, M)/ X =0

such that f=+~-7. Then 1, ® 8= (1, ®7) - (1, ® 7). On the other hand, since
w®gExth(w, M) =0, w®s (Extg(w, M)/X)=0and 1, ®7 is bijective. So 1, @7
is also bijective. Hence, from the exact sequence

Tor? (w, (¢Try, M)/ X) 2 w®s X = w®gcTry M 2 weg (cTr, M)/X =0

induced by (6.11), we get that w ®¢ X is isomorphic to a quotient module of
Tor? (w, (¢Tr, M)/X). Then by assumption E-cograde,,(w ®g X) > 1. It follows
from Corollary 6.6(2) that T-cograde,, X > 1.

Now suppose n > 2. By the induction hypothesis, it suffices to prove that
s.T-cograde,, Ext’y(w, M) > n. Because Ext}h(w,M) = Ext}y '(w,coQ(M)),
s.T-cograde,, Ext’s(w, M) > n — 1 by the induction hypothesis.

We suppose that X is a submodule of Exty(w,M) in ModS. Because
s.T-cograde,, Ext}z(w,M) > for any 1 <i<n—1, by Theorem 6.3 there exist a
module U € Mod R and a homomorphism f: U — M in Mod R such that P, (R)-
idr U <n —1 and such that Ext%(w,f) is bijective for any 1 <i<mn — 1. Let

05U -LWy—-W,—--- =W,y —0

be an exact sequence in Mod R with all W;’s in P, (R) and L = Coker (J; ). Then it
is not difficult to verify that Ext};ig"_l (w,L) =0 and Exty(w, M) = Extg(w, L).
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So we have an exact sequence
0= L,—I1°L), =TI (L), == 1"(L), =Y =0

such that Ext(w, L) CY. Applying the functor w®g — to it, we get the following
commutative diagram:

wRs L)y —=w®s I'(L)y —= —>w®s ["(L)y —>w®g Y —=0

= l QIO(L) o~ \L all(L) = \L Om(L)

1°(L) 1'(L) . (L)

Because the bottom row in this diagram is exact, so is the upper row. It implies
that Tor{.;., ;(w,Y)=0. Since X is isomorphic to a submodule of Ext’(w, L)
(= Ext%(w, M)) in Mod S and s.T-cograde,, ExtR(w, L) =s.T-cograde , Ext (w,
M) >n —1, T-cogradec X >n — 1. Since Tor> ;(w,Y) =0, we have an exact
sequence

Tor? (w,Y/X) — TorS _,(w, X) — 0.

By assumption s.E-cograde,, Tor® (w,Y/X) > n, so E-cograde,, Tor_,(w, X) > n.
Thus, we have E-cograde,, Torf (w, X) >i+1 for any 0 <i <n—1.Tt follows from
Corollary 6.6(2) that T-cogrades X > n.

Dually, we get (2) = (1). O

For any n > 1, recall that an Artin algebra A is called Auslander n-Gorenstein
provided that fdy I*(yA) <i for any 0 <i <n — 1. The following result extends
[17, Theorem 3.7].

COROLLARY 6.10

Let A be an Artin algebra. Then the following statements are equivalent for any
n>1:

(1) A is Auslander n-Gorenstein.

(1)°P A°P is Auslander n-Gorenstein.

(2)  s.grade, Ext) (M,A) > for any M € mod A and 1 <i<n.

(2)°7 s.grade, Ext’ o, (N, A) >4 for any N € mod AP and 1 <i<n.

(3)  s.E-cogradep, )Tor (D(A), M) >4 for any M € mod A and 1 <i<n.
(4)

4)  s.T-cogradep, A)ExtA( (A),M) >4 for any M € mod A and 1 <i<n.

Proof
(1) & (1)°? < (2) & (2)° follow from [17, Theorem 3.7]. Since the proof of The-
orem 6.9 is also valid while modules are restricted to finitely generated modules
over Artin algebras, (3) < (4) holds true.

(3) = (2) Let M € mod A, and let 1 <i <n.IfY is a submodule of Ext’y (M,
A) in mod A%, then D(Y) is isomorphic to a quotient module of D(Ext’ (M,A))
in mod A. Thus, we have D(Ext’ (M,A)) 2 Tor(D(A), M) by [9, Chapter VI,
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Proposition 5.3]. So Ext)., (Y, A) 22 Ext} (D(A), D(Y)) =0 for any 0 < j <i—1
by (3).

(2) = (3) Let M € modA, and let 1 <i<n.If X is a quotient module of
Tor (D(A ), M) in mod A, then we have that D(X) is isomorphic to a submodule
of D(Tor (D(A), M)) in mod A°?. By [9, Chapter VI, Proposition 5.1], we have

D(Tor(D(A), M)) = Ext’y (M, A). So Ext) (D(A), X) = Ext?., (D(X),A) =0 for
any 0<j<i—1by (2). a
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