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Abstract The relation between the Auslander (resp., Bass) class and the class of mod-

ules with finite Gorenstein projective (resp., injective) dimension is well known when

these mentioned classes are built with a dualizing module over Noetherian n-perfect

rings. Basically, the results are necessary conditions to ensure that both classes coincide.

In this article we try to extend and sometimes improve some of these results by weaken-

ing the condition of being dualizing. Among other results, we prove that a Wakamatsu

tilting module with some extra conditions is precisely a module RC such that the Bass

classBC(R) coincides with the class of modules of finite Gorenstein injective dimension.

1. Introduction

It is a classical result that any module over a Gorenstein ring has finite Goren-

stein injective and projective dimensions (see [4]). However, to study modules

of finite Gorenstein dimension over more general rings, one has to restrict to

some full subcategories. For this purpose, Auslander and Bass classes have been

proved to be suitable full subcategories. Namely, Foxby [8] introduced a duality

between these two full subcategories over a commutative local Cohen–Macaulay

ring admitting a dualizing module. He proved that the finitely generated modules

in the Auslander class are precisely those of finite Gorenstein projective dimen-

sion. Enochs, Jenda, and Xu [6] extended this result to modules which are not

necessarily finitely generated and also proved the dual result. The main result of

that paper is that the two classes involved in Foxby’s duality coincide with the

classes of those modules having finite Gorenstein projective dimension and those

having finite Gorenstein injective dimension.

Enochs, Jenda, and López-Ramos proved in [5] that, over a (not necessarily

commutative) Noetherian n-perfect ring with a dualizing bimodule, the Aus-

lander class (resp., Bass class) coincides with the class of modules with finite
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Gorenstein projective (resp., injective) dimension. Holm and White [11] contin-

ued the study of the noncommutative case considering a semidualizing bimodule.

(Enochs and Yassemi [7] also considered semidualizing ones in the commutative

setting.)

Our goal in this article is twofold. First we aim to generalize the previous

results, and also we aim to study the converse problem. Namely, if C is any left

R-module and S = EndR(C), then one can consider the Auslander AC(S) and

the Bass BC(R) classes associated to C. Thus, our first concern is the following

question: under what conditions on C do these classes coincide with the classes of

modules with finite Gorenstein projective and injective dimensions, respectively?

We will see that C is close to being a semidualizing bimodule (see Theorems 3.4

and 3.7). On the other hand, the C-Gorenstein projective and C-Gorenstein injec-

tive modules, introduced by Geng and Ding [10], are of interest. We will show,

in Theorems 3.4 and 3.7, that the Auslander class (resp., Bass class) coincides

with the class of modules with finite C-Gorenstein injective (resp., projective)

dimension, under some conditions on C (close to the ones of a dualizing bimod-

ule over its endomorphism ring). The second aim of this article is to investigate

when the Auslander and Bass classes are covering and enveloping.

The article is organized as follows. In Section 2 we give some terminology

and some preliminary results. Namely, we recall the concept of a Wakamatsu

tilting module and the definitions of Auslander and Bass classes. We also recall

some results from [1, Section 5] that will be used in the next sections. Of some

importance will be the concepts of Hom-faithful and Hom-cofaithful modules

relative to a class of modules.

In Section 3 we characterize the self-Hom-faithful left R-modules C with right

Noetherian and left n-perfect endomorphism ring S verifying inj.dimR(C)<∞
and inj.dimS(C) <∞ such that the Auslander class AC(S) coincides with the

class of left S-modules with finite Gorenstein projective dimension. These mod-

ules are precisely those RC that are Σ-self-orthogonal and self-small (Theo-

rem 3.4). It turns out that this is equivalent to the condition that the Bass class

BC(R) coincides with the class of modules with a finite left C-GP(R)-resolution,

where C-GP(R) is the class of C-Gorenstein projective modules. (These were

introduced by Geng and Ding [10].) A dual version of that result is Theorem 3.7.

As a corollary of the last theorem, we prove that a Wakamatsu tilting module

with some extra conditions is precisely a left R-module C such that the Bass

class BC(R) coincides with the class of modules of finite Gorenstein injective

dimension (Corollary 3.9). We end Section 3 with the classical Foxby duality

with respect to left R-modules C that are more general than (semi)dualizing

ones (Corollary 3.10).

In Section 4, we apply the results in Sections 2 and 3 to the problem of the

existence of (pre)covers and (pre)envelopes relative to the class of modules with

finite Gorenstein projective and injective dimensions (Theorems 4.5 and 4.6).
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2. Preliminaries

Throughout this article, R will be an associative (not necessarily commutative)

ring with identity, and all modules will be, unless otherwise specified, unital left

R-modules. When right R-modules need to be used, they will be denoted by MR,

while left R-modules will be denoted by RM . Under this terminology, RMS will

mean that M is an (R,S)-bimodule. We use Proj(R) (resp., Inj(R) and Flat(R))

to denote the class of all projective (resp., injective and flat) R-modules. The

category of all left (resp., right if needed) R-modules will be denoted by R-

Mod (resp., Mod-R). For an R-module C we use AddR(C) (resp., addR(C)) to

denote the class of all R-modules which are isomorphic to direct summands of

direct sums (resp., finite direct sums) of copies of C, and ProdR(C) will denote

the class of all R-modules which are isomorphic to direct summands of direct

products of copies of C. By σR[C] we mean the full subcategory of R-Mod of

modules subgenerated by C, that is, isomorphic to submodules of quotients of

direct sums of arbitrary copies of C. Dually, let πR[C] be the class of left R-

modules which are quotients of submodules of direct products of copies of C (see

[15]).

Given a class of modules F (which will always be considered closed under

isomorphisms), an F -precover of M ∈R-Mod is a morphism ϕ : F →M (F ∈ F)

such that HomR(F
′, ϕ) is surjective for every F ′ ∈ F . If, in addition, any solu-

tion of the equation HomR(F,ϕ)(g) = ϕ is an automorphism of F , then ϕ is

said to be an F -cover. The F -precover ϕ is said to be special if it is surjective

and Ext1(F,kerϕ) = 0 for every F ∈ F . We can define F -(special pre)envelopes

dually. The class F is said to be (pre)covering (resp., (pre)enveloping) if every

module has an F -(pre)cover (resp., F -(pre)envelope).

Given the class F , the class of all modules N such that Ext≥1
R (F,N) = 0

for every F ∈ F will be denoted by F⊥. (Similarly, ⊥F = {N | Ext≥1
R (N,F ) = 0

∀F ∈ F}.)
A left F -resolution of an R-module M is a complex (so not necessarily exact)

of R-modules in F ,

X= · · · →X1 →X0 →M → 0,

such that HomR(F,X) is an exact complex for every F ∈ F . Thus, we see that

M having a left F -resolution is equivalent to M having an F -precover whose

kernel has an F -precover and so on. Right F -resolutions may be defined dually.

Recall (see [14]) that RC is Wakamatsu tilting if the following hold.

1. There is an exact sequence

· · · → P 1 → P 0 →C → 0

with all the P i’s finitely generated projective left R-modules (i.e., RC has a

degreewise finite projective resolution).

2. Ext≥1
R (C,C) = 0.
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3. There exists an exact sequence of R-modules

X : 0−→R
f0−→C0

f1−→C1
f2−→C2

f3−→ · · · ,

where, for every i ∈N, Ci ∈ add(C), such that HomR(−,C) leaves the sequence

X exact.

In this article C will always be a left R-module with endomorphism ring

S = EndR(C). Throughout this section we will present some results that will

be needed in the subsequent sections. They have been already proved in [1,

Section 5], nevertheless, so we include them here (without proof) for the reader’s

convenience.

Associated to the bimodule RCS we have the Auslander and Bass classes

(also called Foxby classes by other authors), AC(S) and BC(R), respectively,

defined as follows (see, e.g., [11]).

The Auslander class AC(S) consists of all left S-modules M satisfying:

(A1) TorS≥1(C,M) = 0,

(A2) Ext≥1
R (C,C ⊗S M) = 0,

(A3) the canonical map μM :M →HomR(C,C ⊗S M) is an isomorphism of

S-modules.

The Bass class BC(R) consists of all left R-modules N satisfying:

(B1) Ext≥1
R (C,N) = 0,

(B2) TorS≥1(C,HomR(C,N)) = 0,

(B3) the canonical map νN : C ⊗S HomR(C,N)→N is an isomorphism of

R-modules.

DEFINITION 2.1

A left R-module M is said to be Hom-faithful relative to a class of left R-modules

C if HomR(M,N) = 0, N ∈ C ⇒N = 0. We will say simply thatM is Hom-faithful

if M is Hom-faithful relative to R-Mod.

A left R-module M is said to be self-Hom-faithful if M is Hom-faithful

relative to σ[M ].

A left R-module M is said to be Hom-cofaithful relative to a class of left

R-modules C if HomR(N,M) = 0, N ∈ C ⇒N = 0. We will say simply that M is

Hom-cofaithful if M is Hom-cofaithful relative to R-Mod.

A left R-module M is said to be self-Hom-cofaithful if M is Hom-faithful

relative to π[M ].

A right S-module N is said to be ⊗S -faithful relative to a class D of left

S-modules if N ⊗S M = 0, M ∈ D ⇒M = 0. We will say simply that N is ⊗S-

faithful if N is ⊗S -faithful relative to S-Mod.

A left R-module M is self-small if HomR(M,M (I)) ∼= HomR(M,M)(I) for

every set I .
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We use the term faithful to describe these kinds of modules since, over a commu-

tative ring R, a finitely presented R-module C with AnnR(C) = 0 (i.e., a faithful

module in the terminology of commutative algebra) is Hom-faithful in our sense

(see [11, Proposition 3.6]).

Let E be an injective cogenerator in R-Mod, and let C∨ =HomR(C,E).

LEMMA 2.2

The following statements hold.

(a) If CS is Hom-faithful relative to D+ =HomZ(X,Q/Z) :X ∈ D}, then it

is ⊗S-faithful relative to D.

(b) If CS is finitely presented and ⊗S-faithful relative to D, then CS is Hom-

faithful relative to D+.

(c) C is ⊗S-faithful relative to πS [C
∨] if and only if C∨ is self-Hom-

cofaithful in S-Mod.

Proof

For (a) and (b) see [1, Lemma 5.2]. It is easy to show (c). �

In what follows we will often need the module C to meet some conditions relative

to the cancellation of the Ext functor. Namely, we will need Ext≥1
R (C,C(I)) = 0

for every index set I (i.e., C(I) ∈AddR(C)⊥ for every index set I). This type of

module has already been used by several authors, and they exist in the literature

as Σ-self-orthogonal modules.

PROPOSITION 2.3

The following statements hold.

1. Every projective left S-module lies in AC(S) if and only if C is a Σ-self-

orthogonal and self-small left R-module.

2. If RC is self-Hom-faithful, then AC(S) is closed under cokernels of mono-

morphisms.

3. If RC is a self-Hom-faithful, Σ-self-orthogonal, and self-small left R-

module, then for every left S-module M we have: proj.dimS(M) < ∞ ⇒ M ∈
AC(S).

4. AC(S) is closed under kernels of epimorphisms and under extensions.

Proof

See [1, Proposition 5.4]. �

We will denote by AddR(C) the class of left R-modules with a finite exact right

AddR(C)-resolution.

Dually we have the following.
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PROPOSITION 2.4

The following statements hold.

1. If RC is Σ-self-orthogonal and self-small, then AddR(C)⊆BC(R). If, in

addition, C∨ is self-Hom-cofaithful, then the converse holds too.

2. If C∨ is self-Hom-cofaithful, then BC(R) is closed under kernels of epi-

morphisms.

3. If C∨ is a self-Hom-cofaithful, Σ-self-orthogonal, and self-small left R-

module, then for every left R-module M we have M ∈AddR(C)⇒M ∈ BC(R).

4. BC(R) is closed under cokernels of monomorphisms and under extensions.

Proof

See [1, Proposition 5.6]. �

THEOREM 2.5

If CS has a degreewise finite projective resolution, then the following assertions

are equivalent:

(i) Inj(R)⊆BC(R);

(ii) (a) RC is balanced, that is, the canonical map R→ EndS(C) is an

isomorphism, and

(b) CS is self-orthogonal, that is, Ext≥1
S (C,C) = 0.

If, in addition, RC is Hom-faithful relative to σ[C]∪{E/K :K ≤E}, (i) and
(ii) are equivalent to

(iii) Prod(C∨)⊆AC(S).

Proof

See [1, Theorem 5.9]. �

3. Foxby classes and Gorenstein dimensions

Throughout this section we will use the symbols GI(R) (resp., GP(R)) to denote

the class of all Gorenstein injective (resp., projective) R-modules. The Gorenstein

injective (resp., projective) dimension of a module M will be denoted as Gid(M)

(resp., Gpd(M)).

From now on we fix an injective cogenerator E in R-Mod and consider the

left S-module C∨ =HomR(C,E).

DEFINITION 3.1

The class of all syzygies of exact complexes of left R-modules in AddR(C) which,

in addition, are HomR(AddR(C),−)-exact and HomR(−,AddR(C))-exact, will

be denoted as C-GP(R).
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Dually, C-GI (R) will be the class of all syzygies of exact, HomR(ProdR(C
∨),

−)-exact, and HomR(−,ProdR(C
∨))-exact complexes of left R-modules with

components in ProdR(C
∨).

PROPOSITION 3.2

Let C be a left R-module.

(a) If Inj(R)⊆BC(R) and inj.dimR(C)<∞, then GI(R)⊆BC(R).

(b) If Proj(S) ⊆ AC(S) and there is an injective cogenerator E in R-Mod

such that proj.dimS(HomR(C,E))<∞, then GP(S)⊆AC(S).

Proof

(a) Let M ∈ GI(R). Then M = ker(I0 → I1) where

· · · → I1 → I0 → I0 → I1 → · · ·

is a complete injective resolution. Since inj.dimR(C)<∞, the sequence above is

HomR(C,−)-exact, and hence, Exti≥1
R (C,M) = 0 and we get (B1).

From the above we have an exact left AddR(C)-resolution

· · · → I1 → I0 →M → 0

from which we get a commutative diagram

C ⊗S HomR(C, I
1) C ⊗S HomR(C, I

0) C ⊗S HomR(C,M) 0

I1 I0 M 0

where the first two vertical arrows are isomorphisms since Inj(R)⊆BC(R). Thus,

the third vertical arrow is an isomorphism too and we have (B3). Finally, (B2)

is also obtained from the diagram since

TorSi≥1

(
C,HomR(C, I

j)
)
= 0, j ≥ 1,

by the condition Inj(R)⊆BC(R). Therefore, M ∈ BC(R).

(b) Let N ∈ GP(S). Then N = ker(P0 → P1), where

· · · → P 1 → P 0 → P0 → P1 → · · ·

is a complete projective resolution.

By the hypothesis, the sequence is HomS(−,HomR(C,E))-exact, that is,

HomR(C ⊗S −,E)-exact, that is, (C ⊗S −)-exact. This means that TorSi≥1(C,

N) = 0 and so we get (A1).
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Finally, from the exact sequence 0→N → P 0 → P 1 we have the commutative

diagram

0 N P0 P1

0 HomR(C,C ⊗S N) HomR(C,C ⊗S P0) HomR(C,C ⊗S P1)

where the last two vertical arrows are isomorphisms since Proj(S) ⊆ AC(S).

Thus, the first vertical arrow is an isomorphism too and we have (A3).

Again, (A2) is obtained from the diagram since Exti≥1
R (C,C⊗SPi) = 0, i≥ 0,

because Proj(S)⊆AC(S). Therefore, N ∈AC(S). �

Recall from [5] that a ring R is said to be left n-perfect if every flat left R-module

has projective dimension at most n.

LEMMA 3.3

Let S be a right coherent and left n-perfect ring. Then the class L(S) of left

S-modules of finite projective dimension is preenveloping.

Proof

By the hypothesis, L(S) is closed under products. The result now follows by

standard arguments of preenvelopes (see [13]). �

The next result generalizes [6, Theorem 2.1], [6, Proposition 1.3], and [5, Corol-

lary 3.19].

THEOREM 3.4

Let RC be a left R-module, and let S =EndR(C). Suppose that

(a.1) inj.dimR(C) = d <∞.

(a.2) inj.dimS(C)<∞.

(b) RC is self-Hom-faithful.

(c) S is right Noetherian and left n-perfect.

Then, the following conditions are equivalent.

(i) RC is Σ-self-orthogonal and self-small.

(ii) AC(S) = {M ∈ S-Mod |Gpd(M)<∞}.
(iii) BC(R) coincides with the class of modules with a finite left C-GP(R)-

resolution.

Proof

(ii) ⇒ (i) This follows by Proposition 2.3(1).

(i) ⇒ (ii) By Proposition 2.3(1) we have Proj(S) ⊆ AC(S). By Proposi-

tion 3.2(b), GP(S)⊆AC(S). (Note that, by (a.2) and (c), HomR(C, I) has finite
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projective dimension as a left S-module for all I ∈ Inj(R) by [12, Theorem 1.5].)

Therefore, by Proposition 2.3(2), {M ∈ S-Mod |Gpd(M)<∞}⊆AC(S).

Now let N ∈AC(S), and let

· · · → P 1 → P 0 →N → 0

be a projective resolution. We will see that Kd−1 = ker(P d−1 → P d−2) is Goren-

stein projective and so Gpd(N)<∞.

The sequence

· · · →C ⊗S P 0 →C ⊗S N → 0

is exact by (A1). Also we see by the hypothesis that Exti≥1
R (C⊗S P,C⊗S Q) = 0

for all P,Q ∈ Proj(S). Now, by (a.1), inj.dimR(C⊗SP )≤ d, ∀P ∈ Proj(S). Hence,

the last sequence is HomR(−,C⊗S Proj(S))-exact from the term C⊗S P d to the

left. But

HomR(C ⊗S P i,C ⊗S P )∼=HomS

(
P i,HomR(C,C ⊗S P )

)∼=HomS(P
i, P ),

and so the sequence

HomS(P
d, P )→HomS(P

d+1, P )→ · · ·

is exact. Therefore, Exti≥d+1
S (N,P ) = 0, and hence, Exti≥1

S (Kd−1, P ) = 0, so

Exti≥1
S (Kd−1,L) = 0

if proj.dimS(L)<∞.

By (c) we see that the conditions of Lemma 3.3 are satisfied so all left S-

modules have a L(S)-preenvelope. Then let Kd−1 → L be an L(S)-preenvelope
(which is a monomorphism since Kd−1 ⊆ P d−1), and consider a sequence

0→ T →Q0 → L→ 0

with Q0 projective and T ∈ L(S). Thus, Kd−1 → L factors through a morphism

Kd−1 →Q0 which is still an L(S)-preenvelope, so we have an exact sequence

0→Kd−1 →Q0 →B0 → 0

with Exti≥1
S (B0, P ) = 0 for all P ∈ Proj(S). By Proposition 2.3(4), Kd−1 ∈

AC(S) and then, by Proposition 2.3(2) (using hypothesis (b)), B0 ∈AC(S).

Let C ⊗S B0 → I be an injective envelope in R-Mod. Then B0 ∼=HomR(C,

C ⊗S B0)⊆HomR(C, I), which lies in L(S) by (a.2) and (c) (applying [12, The-

orem 1.5]). We can continue in the same manner with B0 and get Q1, and so on.

So we have an exact sequence

0→Kd−1 →Q0 →Q1 → · · ·

with Qi ∈ Proj(S), which is HomS(−,Proj(S))-exact. Then, since

Exti≥1
S (Kd−1, P ) = 0, ∀P ∈ Proj(S),

we conclude that Kd−1 ∈ GP(S).

(ii) ⇒ (iii) By the equivalence of categories C ⊗S − : AC(S) → BC(R) we

have BC(R) = {C ⊗S M | Gpd(M) < ∞}. It can be seen that C ⊗S M with
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Gpd(M)<∞ has a finite left C-GP(R)-resolution by simply showing that C⊗S

G is in C-GP(R) for any Gorenstein projective left S-module G and that C⊗S −
makes exact any Gorenstein projective left resolution of a module (necessarily) in

AC(S). We see the first one. Let P • be a complete projective resolution of G; then

C⊗SP
• is again an exact complex since GP(S)⊆AC(S). The components of this

complex are in Add(C). Now HomR(C,C⊗S P •)∼= P • since RC is self-small and

HomR(C,C) = S. Hence, C⊗S P • is HomR(Add(C),−)-exact. Also HomR(C⊗S

P •,C(X)) ∼= HomS(P
•,HomR(C,C

(X))) ∼= HomS(P
•, S(X)), where the last iso-

morphism is given since RC is self-small. The last complex is exact due to P •

being a complete projective resolution; therefore, C⊗S P • is HomR(−,Add(C))-

exact. Finally, let

0→Gn →Gn−1 → · · · →G0 →M → 0

be a Gorenstein projective left resolution of SM . The sequence

0→C ⊗S Gn →C ⊗S Gn−1 → · · · →C ⊗S G0 →C ⊗S M → 0

is exact since TorSi (C,K) = 0 for any syzygy K in the first sequence. (Note that

any such syzygy is in AC(S).) Therefore, C ⊗S M has a finite left C-GP(R)-

resolution.

On the other hand, since C-GP(R) ⊆ BC(R) and BC(R) is closed under

cokernels of monomorphisms, we get that the class of modules with a finite left

C-GP(R)-resolution is contained in BC(R).

(iii) ⇒ (ii) This is the reverse argument of the above. �

EXAMPLE 3.5

It is easy to find an example of a nondualizing module that verifies the conditions

of Theorem 3.4. Let R be the 2× 2 upper-triangular matrix ring over a field K.

Let C be the simple left R-module which is obtained by making the quotient

of the second column by the Jacobson radical. Then RC is injective, and since

EndR(C)∼=K, we have trivially that CS is injective and that S is left Noetherian

and right n-perfect. Note that C is self-Hom-faithful since σR[C] is the class of

modules with socle given by direct sums of copies of C. Also note that EndS(C)∼=
K, which is not isomorphic to R.

EXAMPLE 3.6

We can get a family of examples of non-(semi)dualizing modules verifying the

conditions of Theorem 3.4 by considering the triangular matrix ring

R=

(
Z[G] Q[G]

0 Q[G]

)
,

where G is a finite group, and the idempotent

e=

(
1 0

0 0

)
.
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Let

C =Re=

(
Z[G] 0

0 0

)
.

The endomorphism ring is

S = eRe∼= Z[G].

Then the ring R is Gorenstein (see [2, Theorem 3.1]), and hence, the projective

module RC has finite injective dimension. Also, it is clear that CS has finite

injective dimension since S = Z[G] is 1-Gorenstein. Since EndS(C)�R, C is not

dualizing. However, RC is self-small (it is countable) and Σ-self-orthogonal, and

S =EndR(C) is (left and right) Noetherian and 1-perfect.

In addition, RC is self-Hom-faithful since HomR(R(1− e),Re)∼= (1− e)Re=

0 and R(1 − e) is projective and finitely generated, so if HomR(C,X) = 0 for

some X ∈ σ[C], then HomR(C ⊕R(1− e),X) = 0; hence X ∼= HomR(R,X) = 0

(HomR(R(1− e),X) = 0 for all X ∈ σ[C] since otherwise we would get a nonzero

map R(1 − e) → C(I)/L and, by the projectivity of R(1 − e), a nonzero map

R(1− e)→C(I), and so a nonzero map R(1− e)→C, which is impossible).

In this case AC(S) = Z[G]-Mod and BC(R) = σ[C].

A strong injective cogenerator of R-Mod is an injective left R-module E such

that any other injective R-module can be embedded into a direct sum of copies

of E.

Now, we extend [5, Lemma 3.15]. It is, in some sense, a dual version of the

last result.

THEOREM 3.7

Let RC be a left R-module and S =EndR(C). Suppose the following.

(a) inj.dimR(C) =m<∞.

(b) C∨ is self-Hom-cofaithful.

(c) R is left Noetherian.

(d) CS has a degreewise finite projective resolution.

(e) proj.dimS(HomR(C,E)) = d <∞ for some strong injective cogenerator

RE.

Then, the following conditions are equivalent.

(i) Inj(R)⊆BC(R).

(ii) BC(R) = {N ∈R-Mod |Gid(N)<∞}.
(iii) (1) RC is balanced, that is, the canonical map R→ EndS(C) is an

isomorphism.

(2) CS is self-orthogonal, that is, Ext≥1
S (C,C) = 0.

(iv) AC(S) consists of the modules with a finite right C-GI (S) resolution.
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Proof

The proof of (ii) ⇒ (i) is clear and (i) ⇔ (iii) follows by Theorem 2.5.

(i) ⇒ (ii) We have that {M ∈ R-Mod | Gid(M) < ∞} ⊆ BC(R) is a direct

consequence of the hypothesis and Proposition 2.4(2).

For the converse let N ∈ BC(R), and let

0→N → I0 → I1 → · · · → Id−1 → Id → · · ·

be an injective resolution of RN . We will see that Kd−1 = coker(Id−2 → Id−1) ∈
GI(R).

The sequence

0→HomR(C,N)→HomR(C, I0)→ · · ·

is exact by (B1). Let I ∈ Inj(R). Then the sequence

0→ HomS

(
HomR(C, I),HomR(C,N)

)
→HomS

(
HomR(C, I),HomR(C, I0)

)
→ · · ·

is exact from the term HomS(HomR(C, I),HomR(C, Id)) by (e). Also the sequence

is isomorphic to

0→HomR

(
C ⊗S HomR(C, I),N

)
→HomR

(
C ⊗S HomR(C, I), I0

)
→ · · · .

But since I ∈ BC(R) it follows that I ∼= C ⊗S HomR(C, I), so the last sequence

is isomorphic to

0→HomR(I,N)→HomR(I, I0)→ · · · ,

which is exact from the term HomR(I, Id) by the above. Therefore, Exti≥d+1
R (I,

N) = 0 and so Exti≥1
R (I,Kd−1) = 0. We arrive at Exti≥1

R (V,Kd−1) = 0 for all V

with inj.dimR(V )<∞.

Let 0→W →E →Kd−1 → 0 be exact with ψ :E →Kd−1 an injective cover

(which is epic by the epic map Id−1 →Kd−1). Then, by the above, Ext1R(V,W ) =

0 for all V with inj.dimR(V )<∞. We consider P →HomR(C,W )→ 0 with P ∈
Proj(S). Then C ⊗S P →C ⊗S HomR(C,W )∼=W → 0 (since Kd−1,E ∈ BC(R),

we have that W ∈ BC(R)) and inj.dimR(C ⊗S P ) <∞ since inj.dimR(C) <∞.

If E′ →W is an injective cover, then the map C ⊗S P →W factorizes through

E′ →W and then it is an epimorphism. Then we can continue in the same manner

with ker(E′ →W ) and so on. Therefore, Kd−1 has an exact left Inj(R)-resolution

and

Exti≥1
R (I,Kd−1) = 0, ∀I ∈ Inj(R),

so Kd−1 ∈ GI(R).

(ii) ⇔ (iv) This follows by the same ideas of the above statements. �

EXAMPLE 3.8

We consider now an example of a module verifying the hypotheses of Theorem 3.7.
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Let R be the triangular matrix ring

R=

(
Q[G] Q[G]

0 Z[G]

)
,

where G is a finite group, and let e be the idempotent

e=

(
1 0

0 0

)
.

Let

C =Re=

(
Q[G] 0

0 0

)
.

The endomorphism ring is

S = eRe∼=Q[G].

Then the ring R is again left Noetherian Gorenstein (see [2, Theorem 3.1]), and

hence, the projective module RC has finite injective dimension. We see that CS

is easily ⊗S -faithful and verifies the other conditions of Theorem 3.7. However, C

is not balanced; hence, BC(R) �= {N ∈R-Mod |Gid(N)<∞}. In fact, R-Mod =

{N ∈R-Mod |Gid(N)<∞}.

COROLLARY 3.9

In the conditions of Theorem 3.7, if RC is finitely generated and self-orthogonal

(i.e., Exti≥1
R (C,C) = 0), then the following conditions are equivalent.

(i) BC(R) = {N ∈R-Mod |Gid(N)<∞}.
(ii) RC is Wakamatsu tilting.

Proof

(i) ⇒ (ii) We only have to prove the existence of an exact HomR(−,C)-exact

sequence

0→R→C0 →C1 → · · ·

with Ci ∈ addR(C), ∀i≥ 0. By the hypotheses, there is an exact sequence

· · · →Q1 →Q0 →C → 0

in Mod-S with Qi ∈ Proj(S) and finitely generated ∀i≥ 0. We will check that

0→HomS(C,C)∼=R→HomS(Q
0,C)→HomS(Q

1,C)→ · · ·

is our desired sequence. It is easy to see that the sequence is exact by the condition

Exti≥1
S (C,C) = 0 (see Theorem 3.7). Now, from the commutative diagram

· · · Q1 Q0 C 0

· · · B1 B0 HomR

(
HomS(C,C),C

)
0
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where Bi = HomR(HomS(Q
i,C),C), we deduce that the sequence is HomR(−,

C)-exact since the vertical maps are isomorphisms.

(ii) ⇒ (i) By [14, Corollary 3.2] CS is Wakamatsu tilting with R∼=EndS(C).

Then by (iii)⇒(ii) in Theorem 3.7 we get the result. �

Also, we can extend [10, Remark 3.13] to our generality without too much effort.

We leave the proof to the reader.

COROLLARY 3.10 (FOXBY EQUIVALENCES)

In the conditions of Theorems 3.4 and 3.7, we have the following equivalences of

categories:

P (S)

C⊗S−

Add(C)

HomR(C,−)

GP(S)∩AC(S)

C⊗S−

C −GP(R)

HomR(C,−)

GP(S)≤n ∩AC(S)

C⊗S−

C −GP(R)≤n

HomR(C,−)

AC(S)

C⊗S−

BC(R)

HomR(C,−)

C −GI (S)≤n

C⊗S−

GI (R)≤n ∩BC(R)

HomR(C,−)

C −GI (S)

C⊗S−

GI (R)∩BC(R)

HomR(C,−)

Prod(C∨)

C⊗S−

Inj(R)

HomR(C,−)

where GP(S)≤n denotes the class of modules with GP(S)-dimension less than

or equal to n and the other classes are given analogously.

4. When is AC(S) (BC(R)) covering (enveloping)?

The following results follow easily from [9, Theorems 2.6 and 2.9]. Let

InjC(S) =
{
HomR(C,E) |E ∈ Inj(R)

}
⊆ S-Mod,

ProjC(R) =
{
C ⊗S P | P ∈ Proj(S)

}
⊆R-Mod,
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FlatC(R) =
{
C ⊗S F | F ∈ Flat(S)

}
⊆R-Mod.

Note that AddR(C) = ProjC(R).

THEOREM 4.1

Let C be a left R-module, and let S =EndR(C). Suppose Inj(R)⊆BC(R).

The following assertions are equivalent for M ∈ S-Mod.

(i) M ∈AC(S).

(ii) There is an exact sequence

· · ·F 1 → F 0 → U0 → U1 → · · ·

in S-Mod, where every Fi is flat and every Ui ∈ InjC(S), such that M = ker(U0 →
U1) and which remains exact when C ⊗S − is applied.

(iii) There is an exact sequence

0→M → U0 → U1 → · · ·

in S-Mod, where every Ui ∈ InjC(S), such that it remains exact when

HomS(−,U) is applied for every U ∈ InjC(S) and C ⊗S − leaves exact every

flat resolution of M .

THEOREM 4.2

Let C be a left R-module, and let S =EndR(C). Suppose Proj(S)⊆AC(S).

The following assertions are equivalent for N ∈R-Mod.

(i) N ∈ BC(R).

(ii) There is an exact sequence

→ · · ·W 1 →W 0 →E0 →E1 → · · ·

in R-Mod, where every Ei is injective and W i ∈ FlatC(R), such that HomR(C,−)

leaves it exact and N = ker(E0 →E1).

(iii) There is an exact FlatC(R)-resolution

· · · →W 1 →W 0 →N → 0

such that it remains exact when HomR(W,−) is applied for every W ∈ FlatC(R)

and HomR(C,−) leaves exact every injective resolution of N .

PROPOSITION 4.3

(a) Suppose C∨ is self-Hom-cofaithful and Inj(R) ⊆ BC(R). Then we have

the following.

(i) InjC(R) is closed under pure submodules and pure quotients.

(ii) BC(R) is a Kaplansky class.

(b) Suppose RC is self-Hom-faithful and finitely presented and Flat(S) ⊆
AC(S). Then we have the following.

(iii) FlatC(R) is closed under pure submodules and pure quotients.

(iv) AC(S) is a Kaplansky class.
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Proof

Parts (i) and (iii) follow by the arguments in the proof of [3, Proposition 3.9].

Parts (ii) and (iv) can be proved using the same proof as that of [3, Proposi-

tion 3.10]. �

As a direct consequence of the above, we can show the existence of precovers and

preenvelopes of the Auslander and Bass classes in this general setting.

THEOREM 4.4

(a) Suppose RC has a degreewise projective resolution, it is self-Hom-faithful,

and Flat(S) ⊆ AC(S). Then, (AC(S),AC(S)
⊥) is a perfect cotorsion pair; in

particular, AC(S) is covering. If, in addition, CS has a degreewise projective

resolution, then AC(S) is preenveloping.

(b) Suppose C∨ is self-Hom-cofaithful, Inj(R)⊆BC(R), RC has a degreewise

projective resolution, and CS has a degreewise projective resolution. Then BC(R)

is preenveloping.

Proof

See [3, Theorems 3.11 and 3.12]. �

We end this article by answering the question of when the classes of modules

with finite Gorenstein projective dimension (resp., Gorenstein injective dimen-

sion) are precovering (resp., preenveloping). We extend [3, Corollary 3.13] to the

noncommutative setting.

THEOREM 4.5

Let R be a ring such that there is a left R-module RC with S =EndR(C) verify-

ing:

(a) inj.dimR(C)<∞ and inj.dimS(C)<∞,

(b) RC is self-Hom-faithful,

(c) S is right Noetherian and left n-perfect,

(d) RC is self-orthogonal,

(e) RC has a degreewise projective resolution.

Then {M ∈ S-Mod | Gpd(M) < ∞} is covering. If, in addition, CS is finitely

generated, then {M ∈ S-Mod |Gpd(M)<∞} is preenveloping.

Proof

It is a direct consequence of Theorems 3.4 and 4.4. �

THEOREM 4.6

Let R be a left Noetherian ring such that there is a finitely generated left R-module

RC with S =EndR(C) and EndS(C)∼=R verifying:
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(a) inj.dimR(C) =m<∞,

(b) C∨ is self-Hom-cofaithful,

(c) CS has a degreewise finite projective resolution,

(d) proj.dimS(HomR(C,E))<∞ for some strong injective cogenerator RE,

(e) CS is self-orthogonal, that is, Ext≥1
S (C,C) = 0.

Then {M ∈R-Mod |Gid(M)<∞} is preenveloping.

Proof

This follows from Theorems 3.7 and 4.4. �
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