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Abstract We introduce and study a number of new spaces of ultradifferentiable func-

tions and ultradistributions and we apply our results to the study of the convolution of

ultradistributions. The spaces of convolutors O′∗
C (Rd) for tempered ultradistributions

are analyzed via the duality with respect to the test function spacesO∗
C(Rd) introduced

in this article.We also study ultradistribution spaces associated to translation-invariant

Banach spaces of tempered ultradistributions and use their properties to provide a full

characterization of the general convolution of Roumieu ultradistributions via the space

of integrable ultradistributions. We show that the convolution of two Roumieu ultra-

distributions T,S ∈ D′{Mp}(Rd) exists if and only if (ϕ ∗ Š)T ∈ D′{Mp}
L1 (Rd) for every

ϕ ∈D{Mp}(Rd).

1. Introduction

This article is devoted to the study of various problems concerning convolution

in the setting of ultradistributions. A detailed study of some of these problems

has been lacking in the theory of ultradistributions for more than 30 years. In

addition, we introduce new spaces of ultradifferentiable functions and ultradistri-

butions associated to a class of translation-invariant Banach spaces as an essential

tool in this work.

In the first part of the article we analyze the space of convolutors—called

ultratempered convolutors here—for the space of tempered ultradistributions.

Naturally, such an investigation would be of general interest as being part of the

modern theory of multipliers. In the case of tempered distributions, the space of

convolutors was introduced by Schwartz [27] and its full topological characteri-

zation was given years later in Horváth’s [7] book (see also [18]). The space of

ultratempered convolutors O′∗
C (Rd) was recently studied in [6]. Our first impor-

tant result is the description of O′∗
C (Rd) through duality with respect to the test
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function space O∗
C(R

d) constructed in this article. The treatment of the Roumieu

case is considerably more elaborate than the Beurling one, as it involves the use

of dual Mittag–Leffler lemma arguments for establishing the sought duality.

The second important achievement of the article is related to the existence of

the general convolution of ultradistributions of Roumieu type. After the introduc-

tion of Schwartz’s conditions for the general convolvability of distributions, many

authors gave alternative definitions and established their equivalence. Notably,

Shiraishi [28] found out that the convolution of two distributions S,T ∈ D′(Rd)

exists if and only if (ϕ ∗ Š)T ∈ D′
L1(Rd) for every ϕ ∈ D(Rd). The existence of

the convolution for Beurling ultradistributions can be treated (see [8], [9], [20])

analogously as that for Schwartz distributions. In contrast, corresponding char-

acterizations for the convolution of Roumieu ultradistributions have been a long-

standing open question in the area. It was only recently (see [22]) that progress

in this direction was made through the study of ε tensor products of ˙̃B{Mp} and

locally convex spaces. The following characterization of convolvability was shown

in [22]: the convolution of two ultradistributions T,S ∈D′{Mp}(Rd) exists if and

only if (ϕ ∗ Š)T ∈ D̃′{Mp}
L1 (Rd) for every ϕ ∈ D{Mp}(Rd) and, for every compact

subset K of Rd, (ϕ,χ) �→ 〈(ϕ ∗ Ť )S,χ〉, D{Mp}
K × ˙̃B{Mp} −→ C is a continuous

bilinear mapping. The spaces ˙̃B{Mp} and D̃′{Mp}
L1 (Rd) were introduced in [21].

In this article we shall make a significant improvement to this result, namely,

we shall show the following more transparent version of Shiarishi’s result for

Roumieu ultradistributions: the convolution of T,S ∈ D′{Mp}(Rd) exists if and

only if (ϕ ∗ Š)T ∈D′{Mp}
L1 (Rd) for every ϕ ∈D{Mp}(Rd).

Our proof of the above-mentioned result about the general convolvability of

Roumieu ultradistributions is postponed to the last section of the article and

it is based upon establishing the topological equality D̃′{Mp}
L1 = D′{Mp}

L1 . This

and other topological properties of the spaces of integrable ultradistributions

can be better understood from a rather broader perspective. In this article we

introduce and study new classes of translation-invariant ultradistribution spaces

which are natural generalizations of the weighted D′∗
Lp -spaces (see [1], [3]). In

the distribution setting, the recent work [4] extends that of Schwartz on the

D′
Lp -spaces and that of Ortner and Wagner [17], [30] on their weighted versions;

recent applications of those ideas to the study of boundary values of holomorphic

functions and solutions to the heat equation can be found in [5]. The theory we

present here is a generalization of that given in [4] for distributions. Although

some results are analogous to those for distributions, it should be remarked that

their proofs turn out to be much more complicated since they demand the use

of more sophisticated techniques and new ideas adapted to the ultradistribution

setting—especially in the Roumieu case.

The article is organized into eight sections. In Section 3 we characterize the

spaces of tempered ultradistributions S ′∗(Rd) in terms of growth estimates for

convolution averages of their elements, thus extending an important structural

theorem of Schwartz [27, Theorem VI, p. 239]. Using Komatsu’s [11] approach
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to ultradistribution theory, we define the test function spaces O∗
C(R

d) whose

strong duals are algebraically isomorphic to the ultratempered convolutor spaces

O′∗
C (Rd). We also obtain there structural theorems for O′∗

C (Rd).

Section 4 is dedicated to the analysis of translation-invariant Banach spaces

of tempered ultradistributions. We are interested in the class of Banach spaces of

ultradistributions that satisfy the ensuing three conditions: (I) D∗(Rd) ↪→ E ↪→
D′∗(Rd), (II) E is translation-invariant, and (III) the function ω(h) := ‖T−h‖
has at most ultrapolynomial growth. Such an E becomes a Banach module over

the Beurling algebra L1
ω and has nice approximation properties with respect to

the translation group. In particular, we show that the translation group on E is

a C0-semigroup (i.e., limh→0 ‖Thg − g‖E = 0 for each g ∈ E). Using duality, we

obtain some results concerning E′ which also turns out to be a Banach module

over the Beurling algebra L1
ω̌ , but E

′ may fail to have many of the properties that

E enjoys. That motivates the introduction of a closed subspace E′
∗ of E′ that

satisfies the axioms (II) and (III) and it is characterized as the biggest subspace

of E′ for which limh→0 ‖Thf − f‖E′ = 0 for all its elements.

In Section 5 we define our new test spaces D(Mp)
E and D{Mp}

E of Beurling and

Roumieu type, respectively. In the Roumieu case we also consider another space

D̃{Mp}
E (in connection to it, see [13] for related spaces). We show that the elements

of all these test spaces are in fact ultradifferentiable functions and the continuous

and dense embeddings S∗(Rd) ↪→D∗
E ↪→ E ↪→S ′∗(Rd) hold. We also prove that

the D∗
E ’s are topological modules over the Beurling algebra L1

ω . The spaces D∗
E

are continuously and densely embedded into the spaces O∗
C(R

d) introduced in

Section 3.

In Section 6 we investigate the topological and structural properties of the

strong dual of D∗
E , denoted as D′∗

E′
∗
. A structural theorem for D′∗

E′
∗
is given;

there, we characterize its elements in terms of convolution averages and also via

representations as finite sums of actions of ultradifferential operators on elements

from E′
∗. Our results enable us to embed the spaces D∗

E into the spaces of E′
∗-

valued tempered ultradistributions S ′∗(Rd,E′
∗). We prove that the spaces D{Mp}

E

and D̃{Mp}
E are topologically isomorphic. When E is reflexive, we show that D(Mp)

E

and D′{Mp}
E′ are (FS∗)-spaces, while D{Mp}

E and D′(Mp)
E are (DFS∗)-spaces.

Section 7 is devoted to the weighted spaces D∗
Lp

η
and D′∗

Lp
η
, which we treat

here as examples of the spaces D∗
E and D′∗

E′
∗
. This approach allows us to prove

the topological identification of D∗
Cη

with the spaces Ḃ∗
η and ˙̃B∗

η , which actually

leads to the topological equality D̃′{Mp}
L1 = D′{Mp}

L1 and additional topological

information about D∗
L∞ .

Finally, Section 8 deals with applications to the study of the convolution of

ultradistributions. We provide there the announced improvement to the result

from [22] for the existence of the general convolution of Roumieu ultradistribu-

tions. We also obtain in this section results concerning convolution and multi-

plicative products on the spaces D′∗
E′

∗
, generalizing distribution analogues from [4].
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2. Preliminaries

As usual in this theory, Mp, p ∈N, M0 = 1, denotes a sequence of positive num-

bers for which we assume (see [11]): (M.1)M2
p ≤Mp−1Mp+1, p ∈ Z+; (M.2)Mp ≤

c0H
pmin0≤q≤p{Mp−qMq}, p, q ∈ N, for some c0,H ≥ 1; (M.3)

∑∞
p=q+1Mp−1/

Mp ≤ c0qMq/Mq+1, q ∈ Z+. For a multi-index α ∈N
d, Mα means M|α|. The asso-

ciated function of the sequence Mp is given by the function M(ρ) =

supp∈N ln+
ρp

Mp
, ρ > 0. It is a nonnegative, continuous, monotonically increasing

function, vanishes for sufficiently small ρ > 0, and increases more rapidly than

lnρp as ρ tends to infinity, for any p ∈N (see [11, p. 48]).

Let U ⊆ Rd be an open set, and let K � U be a compact subset. (We will

always use this notation for a compact subset of an open set.) Recall that

E{Mp},h(K) stands for the Banach space (from now on abbreviated as (B)-

space) of all ϕ ∈ C∞(U) which satisfy pK,h(ϕ) = supα∈Nd supx∈K
|Dαϕ(x)|
hαMα

<∞,

and D{Mp}
K,h stands for its subspace consisting of elements supported by K. Then

E(Mp)(U) = lim←−
K�U

lim←−
h→0

E{Mp},h(K), E{Mp}(U) = lim←−
K�U

lim−→
h→∞

E{Mp},h(K),

D(Mp)
K = lim←−

h→0

D{Mp}
K,h , D(Mp)(U) = lim−→

K�U

D(Mp)
K ,

D{Mp}
K = lim−→

h→∞
D{Mp}

K,h , D{Mp}(U) = lim−→
K�U

D{Mp}
K .

The spaces of ultradistributions and compactly supported ultradistributions

of Beurling and Roumieu type are defined as the strong duals of D(Mp)(U) and

E(Mp)(U), and D{Mp}(U) and E{Mp}(U), respectively. We refer to [11], [12], and

[13] for the properties of these spaces. In keeping with Komatsu [11], the common

notation for (Mp) and {Mp} will be ∗. In the definitions and statements where

we consider the (Mp) and {Mp} cases simultaneously, we will always first state

the assertions for the Beurling case followed by the corresponding assertion for

the Roumieu case in parentheses.

We define ultradifferential operators as in [11]. The function P (ξ) =∑
α∈Nd cαξ

α, ξ ∈ R
d, is called an ultrapolynomial of the class (Mp) (of class

{Mp}) if the coefficients cα satisfy the estimate |cα| ≤ CLα/Mα, α ∈ N
d, for

some C,L > 0 (for every L> 0 and a corresponding C =CL > 0). Then P (D) =∑
α cαD

α is an ultradifferential operator of the class ∗ and it acts continuously

on E∗(U) and D∗(U) and the corresponding spaces of ultradistributions E ′∗(U)

and D′∗(U).

We denote as R the set of all positive sequences which monotonically increase

to infinity. For (rj) ∈ R, we write Rk for the product
∏k

j=1 rj and R0 = 1.

For (rp) ∈ R, consider the sequence N0 = 1, Np = MpRp, p ∈ Z+. Its associ-

ated function will be denoted by Nrp(ρ), that is, Nrp(ρ) = supp∈N ln+
ρp

MpRp
,

ρ > 0. As proved in [13, Proposition 3.5], the seminorms ‖ϕ‖K,(rj) =

supα∈Nd supx∈K
|Dαϕ(x)|
RαMα

, when K ranges over compact subsets of U and (rj)

in R, give the topology of E{Mp}(U). Also, for K � R
d, the topology of D{Mp}

K
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is given by the seminorms ‖ · ‖K,(rj), with (rj) ranging over R. From this, it

follows that D{Mp}
K = lim ←−

(rj)∈R
D{Mp}

K,(rj)
, where D{Mp}

K,(rj)
is the (B)-space of all

C∞-functions supported by K for which the norm ‖ · ‖K,(rj) is finite. Further-

more, for U open and r > 0 (for (rj) ∈R), we denote D(Mp)
U,r = lim −→

K�U
D{Mp},r

K

(D{Mp}
U,(rj)

= lim −→
K�U

D{Mp}
K,(rj)

). Both spaces carry natural (LB) topologies (but we

shall not need this fact).

We will often make use of the following lemma by Komatsu (see [14, p. 195]).

In the future we refer to it as the parametrix of Komatsu.

LEMMA 2.1 (SEE [14])

Let K be a compact neighborhood of 0, let r > 0, and let (rp) ∈R.

(i) There are u ∈ D{Mp}
K,r and ψ ∈ D(Mp)

K such that P (D)u = δ + ψ where

P (D) is an ultradifferential operator of class (Mp).

(ii) There are u ∈D{Mp}
K,(rj)

and ψ ∈D{Mp}
K such that

‖Dαu‖L∞(K)

Mα

∏|α|
j=1 rj

→ 0 as |α| →∞ and P (D)u= δ+ ψ,

where P (D) is an ultradifferential operator of class {Mp}.

We denote as S{Mp},m
∞ (Rd), m> 0, the (B)-space of all ϕ ∈C∞(Rd) which satisfy

σm(ϕ) := sup
α∈Nd

m|α|‖eM(m|·|)Dαϕ‖L∞

Mα
<∞,(2.1)

supplied with the norm σm. The spaces S ′(Mp)(Rd) and S ′{Mp}(Rd) of tempered

ultradistributions of Beurling and Roumieu type are defined as the strong duals

of S(Mp)(Rd) = lim ←−
m→∞ S{Mp},m

∞ (Rd) and S{Mp}(Rd) = lim −→
m→0

S{Mp},m
∞ (Rd),

respectively. For the properties of these spaces, we refer to [3], [19], and [21].

It is proved in [3, p. 34] and [21, Lemma 4] that S{Mp}(Rd) =

lim ←−
(ri),(sj)∈R

SMp

(rp),(sq)
(Rd), where SMp

(rp),(sq)
(Rd) = {ϕ ∈ C∞(Rd) | ‖ϕ‖(rp),(sq) <

∞} and ‖ϕ‖(rp),(sq) = supα∈Nd
‖eNsp (|·|)

Dαϕ‖L∞

Mα
∏|α|

p=1 rp
.

We denote as O′∗
C (Rd) the space of convolutors of S∗(Rd), that is, the sub-

space of all f ∈ S ′∗(Rd) such that f ∗ ϕ ∈ S∗(Rd) for all ϕ ∈ S∗(Rd) and the

mapping ϕ �→ f ∗ϕ, S∗(Rd)→S∗(Rd) is continuous. We refer to [6] for its prop-

erties.

Finally, we need the following technical result (see [23, Lemma 2.4]). See [11,

p. 53] for the definition of subordinate function.

LEMMA 2.2 (SEE [23])

Let g : [0,∞)→ [0,∞) be an increasing function that satisfies the following esti-

mate: for every L > 0 there exists C > 0 such that g(ρ)≤M(Lρ) + lnC. Then,



406 Dimovski, Pilipović, Prangoski, and Vindas

there exists subordinate function ε(ρ) such that g(ρ)≤M(ε(ρ)) + lnC ′, for some

constant C ′ > 1.

3. On the space of ultratempered convolutors

Our goal in this section is to construct a test function space whose dual is alge-

braically isomorphic toO′∗
C (Rd). (We refer to [6] for properties of the latter space.)

We start with an important characterization of tempered ultradistributions in

terms of growth properties of convolution averages; an analogue to this result for

S ′(Rd) was obtained long ago by Schwartz (see [27, Theorem VI, p. 239]).

PROPOSITION 3.1

Let f ∈ D′∗(Rd). Then, f belongs to S ′∗(Rd) if and only if there exists λ > 0

(there exists (lp) ∈R) such that for every ϕ ∈D∗(Rd)

(3.1) sup
x∈Rd

e−M(λ|x|)∣∣(f ∗ϕ)(x)
∣∣<∞

(
sup
x∈Rd

e−Nlp (|x|)
∣∣(f ∗ϕ)(x)

∣∣<∞
)
.

Proof

Observe that if f ∈ S ′∗(Rd), then (3.1) obviously holds. (One just needs to apply

the representation theorem for the elements of S ′∗(Rd) (see [3, Theorem 2.6.1, p.

38]).) We prove the converse part only in the {Mp} case; the (Mp) case is similar.

Let Ω be an open bounded subset of Rd which contains 0 and is symmetric (i.e.,

−Ω=Ω), and denote Ω =K. Let B1 be the unit ball in the weighted (B)-space

L1
exp(Nlp (|·|))

. Fix ϕ ∈ D{Mp}
K . For every φ ∈ B1 ∩ D{Mp}(Rd), (3.1) implies |〈f ∗

φ,ϕ〉| = |〈f ∗ ϕ̌, φ̌〉| ≤ ‖e−Nlp (|·|)(f ∗ ϕ̌)‖L∞‖φ‖L1
exp(Nlp

(|·|))
≤ Cϕ. We obtain that

{f ∗ φ | φ ∈ B1 ∩ D{Mp}(Rd)} is weakly bounded and, hence, equicontinuous in

D′{Mp}
K (D{Mp}

K is barreled). Hence, there exist (kp) ∈R and ε > 0 such that |〈f ∗
ψ, φ̌〉| ≤ 1 for all ψ ∈ Vkp(ε) = {η ∈D{Mp}

K | ‖η‖K,kp ≤ ε} and φ ∈B1∩D{Mp}(Rd).

Let rp = kp−1/H , for p ∈ N, p ≥ 2, and set r1 = min{1, r2}. Then (rp) ∈
R. Let ψ ∈ D{Mp}

Ω,(rp)
, and choose Cψ such that ‖ψ/Cψ‖K,(rp) ≤ ε/2. Let δ1 ∈

D{Mp}(Rd) such that δ1 ≥ 0, supp δ1 ⊆ {x ∈ R
d | |x| ≤ 1}, and

∫
Rd δ1(x)dx = 1.

Set δj(x) = jdδ1(jx), for j ∈ N, j ≥ 2. Observe that for j large enough ψ ∗ δj ∈
D{Mp}

K . Also

∣∣∂α
(
(ψ ∗ δj)(x)−ψ(x)

)∣∣≤ ∫
Rd

∣∣∂α
(
ψ(x− t)−ψ(x)

)∣∣δj(t)dt.
Using the Taylor expansion of the function ∂αψ at the point x− t, we obtain

∣∣∂α
(
ψ(x)− ψ(x− t)

)∣∣ ≤ ∑
|β|=1

|tβ |
∫ 1

0

∣∣∂α+βψ
(
sx+ (1− s)(x− t)

)∣∣ds

≤ C|t|M|α|+1

|α|+1∏
i=1

ri.
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So, for j large enough, keeping in mind the definition of (rp) and by using (M.2)

for Mp, we have

∣∣∂α
(
(ψ ∗ δj)(x)−ψ(x)

)∣∣ ≤ C ′
1

j
Mα+1

|α|+1∏
i=2

ri

∫
supp δj

δj(t)dt

≤ C ′′
1

j
H |α|+1Mα

|α|∏
i=1

(ki/H)≤ C1

j
Mα

|α|∏
i=1

ki.

Hence, C−1
ψ ψ ∗ δj ∈ V(kp)(ε) for all large enough j. We obtain |〈f ∗ (ψ ∗ δj), φ〉| ≤

Cψ and after passing to the limit |〈f ∗ ψ,φ〉| ≤ Cψ . From the arbitrariness of ψ

we have that for every ψ ∈ D{Mp}
Ω,(rp)

there exists Cψ > 0 such that |〈f ∗ ψ,φ〉| ≤
Cψ‖φ‖L1

exp(Nlp
(|x|))

, for all φ ∈ D{Mp}(Rd). The density of D{Mp}(Rd) in

L1
exp(Nlp (|·|))

implies that, for every fixed ψ ∈ D{Mp}
Ω,(rp)

, f ∗ ψ is a continuous

functional on L1
exp(Nlp (|·|))

; hence, ‖ exp(−Nlp(| · |))(f ∗ ψ)‖L∞ ≤C2,ψ . From the

parametrix of Komatsu, for the sequence (rp) there are u ∈ D{Mp}
Ω,(rp)

, χ ∈ D{Mp}(Ω),

and an ultradifferential operator of {Mp} type such that f = P (D)(u∗f)+χ∗f .
Thus f ∈ S ′∗(Rd). �

Our next concern is to define the test function spaces O∗
C(R

d) corresponding to

the spaces O′∗
C (Rd). We first define for every m,h > 0 the (B)-spaces

OMp

C,m,h(R
d)

=
{
ϕ ∈C∞(Rd)

∣∣∣ ‖ϕ‖m,h =
( ∑
α∈Nd

m2|α|

M2
α

‖Dαϕe−M(h|·|)‖2L2

)1/2

<∞
}
.

Observe that for m1 ≤ m2 we have the continuous inclusion OMp

C,m2,h
(Rd) →

OMp

C,m1,h
(Rd), and for h1 ≤ h2 the inclusion OMp

C,m,h1
(Rd)→OMp

C,m,h2
(Rd) is also

continuous. As locally convex spaces (LCSs) we define

O(Mp)
C,h (Rd) = lim←−

m→∞
OMp

C,m,h(R
d), O(Mp)

C (Rd) = lim−→
h→∞

O(Mp)
C,h (Rd);

O{Mp}
C,h (Rd) = lim−→

m→0

OMp

C,m,h(R
d), O{Mp}

C (Rd) = lim←−
h→0

O{Mp}
C,h (Rd).

Note that O(Mp)
C,h (Rd) is an (F )-space, and since all inclusions O(Mp)

C,h (Rd) →
E(Mp)(Rd) are continuous (by the Sobolev imbedding theorem), O(Mp)

C (Rd) is

indeed a (Hausdorff) LCS. Moreover, as an inductive limit of barreled and

bornological spaces, O(Mp)
C (Rd) is barreled and bornological as well. Also

O{Mp}
C,h (Rd) is a (Hausdorff) LCS, since all inclusions OMp

C,m,h(R
d)→ E{Mp}(Rd)

are continuous (again by the Sobolev embedding theorem). Hence, O{Mp}
C (Rd)

is indeed a (Hausdorff) LCS. Moreover, O{Mp}
C,h (Rd) is a barreled and bornolog-

ical (DF )-space, as the inductive limit of (B)-spaces. By these considerations
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it also follows that O∗
C(R

d) is continuously injected into E(Rd). One easily ver-

ifies that, for each h > 0, S(Mp)(Rd) is continuously injected into O(Mp)
C,h (Rd)

(S{Mp}(Rd) is continuously injected into O{Mp}
C,h (Rd)). Moreover, one can also

prove (by using cutoff functions) that, for each h > 0, D(Mp)(Rd) is sequentially

dense in O(Mp)
C,h (Rd) (D{Mp}(Rd) is sequentially dense in O{Mp}

C,h (Rd)). Hence,

S∗(Rd) is continuously and densely injected into O∗
C(R

d). Consequently, the dual

(O∗
C(R

d))′ can be regarded as a vector subspace of S ′∗(Rd).

We will prove that the dual of O∗
C(R

d) is equal, as a set, to O′∗
C (Rd). (The

general idea is similar to the one used by Komatsu [11, p. 79].) To do this, we

need several additional spaces.

For m,h > 0 define

Ym,h =
{
(ψα)α∈Nd

∣∣∣ e−M(h|·|)ψα ∈ L2(Rd),

∥∥(ψα)α
∥∥
Ym,h

=
( ∑
α∈Nd

m2|α|‖e−M(h|·|)ψα‖2L2

M2
α

)1/2

<∞
}
.

One easily verifies that Ym,h is a (B)-space, with the norm ‖ · ‖Ym,h
.

Let Ũ be the disjoint union of a countable number of copies of Rd, one for

each α ∈ N
d, that is, Ũ =

⊔
α∈Nd R

d
α. Equip Ũ with the disjoint union topology.

Then Ũ is a Hausdorff locally compact space. Moreover, every open set in Ũ is

σ-compact. On each R
d
α we define the Radon measure να by dνα = e−2M(h|x|) dx.

One can define a Borel measure μm on Ũ by μm(E) =
∑

α
m2|α|

M2
α
να(E ∩Rd

α), for

E a Borel subset of Ũ . It is obviously locally finite, σ-finite, and μm(K̃) <∞
for every compact subset K̃ of Ũ . By the properties of Ũ described above, μm is

regular (both inner and outer regular). We obtain that μm is a Radon measure.

To every (ψα)α ∈ Ym,h there corresponds an element χ ∈ L2(Ũ , μm) defined by

χ|Rd
α
= ψα. One easily verifies that the mapping (ψα)α �→ χ, Ym,h → L2(Ũ , μm)

is an isometry, that is, Ym,h can be identified with L2(Ũ , μm). Also, observe that

OMp

C,m,h(R
d) can be identified with a closed subspace of Ym,h via the mapping ϕ �→

((−D)αϕ)α; hence, it is a reflexive space as a closed subspace of a reflexive (B)-

space. We obtain that the linking mappings in O(Mp)
C,h (Rd) = lim ←−

m→∞OMp

C,m,h(R
d)

and O{Mp}
C,h (Rd) = lim −→

m→0
OMp

C,m,h(R
d) are weakly compact, whence O(Mp)

C,h (Rd) is

an (FS∗)-space and O{Mp}
C,h (Rd) is a (DFS∗)-space. In particular, they are both

reflexive and the inductive limit O{Mp}
C,h (Rd) = lim −→

m→0
OMp

C,m,h(R
d) is regular.

THEOREM 3.2

We have that T ∈D′∗(Rd) belongs to (O∗
C(R

d))′ if and only if

(i) in the (Mp) case, for every h > 0 there exist Fα,h, α ∈ Nd, with

Fα,he
M(h|·|) ∈ L2(Rd), and m> 0 such that

∑
α

M2
α‖Fα,he

M(h|·|)‖2L2

m2|α| <∞(3.2)
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and the restriction of T to O(Mp)
C,h (Rd) is equal to

∑
αD

αFα,h, where the series

is absolutely convergent in the strong dual of O(Mp)
C,h (Rd);

(ii) in the {Mp} case, there exist h > 0 and Fα,h, α ∈Nd, with Fα,he
M(h|·|) ∈

L2(Rd), such that for every m > 0 (3.2) holds and T is equal to
∑

αD
αFα,h,

where the series is absolutely convergent in the strong dual of O{Mp}
C (Rd).

Proof

We will consider first the Beurling case. Let T ∈ (O(Mp)
C (Rd))′, and let h > 0

be arbitrary but fixed. Denote by Th the restriction of T on O(Mp)
C,h (Rd). By

the definition of the projective limit topology, it follows that there exists m> 0

such that Th can be extended to a continuous linear functional on OMp

C,m,h(R
d).

Denote this extension by Th,1. Extend Th,1, by the Hahn–Banach theorem, to a

continuous linear functional Th,2 on Ym,h. Since Ym,h is isometric to L2(Ũ , μm),

there exists g ∈ L2(Ũ , μm) such that T2,h((ψα)α) =
∫
Ũ
(ψα)αg dμm. Let Fα,h =

m2|α|

M2
α
g|Rd

α
e−2M(h|·|), α ∈ N

d. Then, obviously eM(h|·|)Fα,h ∈ L2(Rd) and∑
α

M2
α‖Fα,he

M(h|·|)‖2
L2

m2|α| = ‖g‖2
L2(Ũ,μm)

<∞. For ϕ ∈O(Mp)
C,h (Rd),

〈T,ϕ〉 = Th,2

((
(−D)αϕ

)
α

)
=

∑
α

∫
Rd

Fα,h(x)(−D)αϕ(x)dx

=
∑
α

〈DαFα,h, ϕ〉.

Moreover, one easily verifies that the series
∑

αD
αFα,h is absolutely convergent

in the strong dual of O(Mp)
C,h (Rd).

Conversely, let T ∈D′(Mp)(Rd) be as in (i). Let h > 0 be arbitrary but fixed.

One easily verifies that T is a continuous functional on D(Mp)(Rd) supplied with

the topology induced by O(Mp)
C,h (Rd). Since D(Mp)(Rd) is dense in O(Mp)

C,h (Rd) we

obtain the conclusion in (i).

Next, we consider the Roumieu case. Let T ∈ (O{Mp}
C (Rd))′. By the definition

of the projective limit topology it follows that there exists h > 0 such that T can

be extended to a continuous linear functional T1 on O{Mp}
C,h (Rd). For brevity in

notation, set Xm,h =OMp

C,m,h(R
d), and set Zm,h = Ym,h/Xm,h. Since the Ym,h’s

are reflexive, so are the Xm,h’s and Zm,h’s as closed subspaces and quotient

spaces of reflexive (B)-spaces, respectively. Moreover, observe that for m1 <m2

we have Xm1,h ∩Ym2,h =Xm2,h. Hence, we have the following injective inductive

sequence of short topologically exact sequences of (B)-spaces:
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0 X1,h Y1,h Z1,h 0

0 X1/2,h Y1/2,h Z1/2,h 0

0 X1/3,h Y1/3,h Z1/3,h 0

...
...

...

ι1,1/2

ι1/2,1/3

ι1/3,1/4

where every vertical line is a weakly compact injective inductive sequence of (B)-

spaces (since Xm,h, Ym,h, Zm,h are reflexive (B)-spaces). The dual Mittag–Leffler

lemma (see [11, Lemma 1.4]) yields the short topologically exact sequence

0←−
(
lim−→
m→0

Xm,h

)′ ←−
(
lim−→
m→0

Ym,h

)′ ←−
(
lim−→
m→0

Zm,h

)′ ←− 0.

Since (Xm,h)m, (Ym,h)m, and (Zm,h)m are weakly compact injective inductive

sequences and hence regular, we have the following isomorphisms of LCSs

(lim −→
m→0

Xm,h)
′ = lim ←−

m→0
X ′

m,h, (lim −→
m→0

Ym,h)
′ = lim ←−

m→0
Y ′
m,h, and (lim −→

m→0
Zm,h)

′ = lim ←−
m→0

Z ′
m,h, from which we obtain the short topologically exact

sequence

0←− lim←−
m→0

X ′
m,h ←− lim←−

m→0

Y ′
m,h ←− lim←−

m→0

Z ′
m,h ←− 0.

Hence, there exists T2 ∈ lim ←−
m→0

Y ′
m,h whose restriction to O{Mp}

C,h = lim −→
m→0

Xm,h

is T1. Now observe the projective sequence

Y ′
1,h

tι1,1/2←−−−− Y ′
1/2,h

tι1/2,1/3←−−−−− Y ′
1/3,h

tι1/3,1/4←−−−−− · · · ,

where tι1/n,1/(n+1) is the transposed mapping of the inclusion ι1/n,1/(n+1). One

easily verifies that tι1/n,1/(n+1) : Y ′
1/(n+1),h → Y ′

1/n,h is given by (ψα)α �→
( n2|α|

(n+1)2|α|ψα)α. By definition, the projective limit lim ←−
m→0

Y ′
m,h is the subspace

of
∏

n Y
′
1/n,h consisting of all elements ((ψ

(k)
α )α)k ∈

∏
n Y

′
1/n,h such that, for all

t, j ∈ Z+, t < j, tι1/t,1/j((ψ
(j)
α )α) = (ψ

(t)
α )α (where tι1/t,1/j =

tι1/t,1/(t+1) ◦ · · · ◦
tι1/(j−1),1/j). Hence, if we set (ψα)α = (ψ

(1)
α )α, then L2(Ũ , μ1/k) � (ψ

(k)
α )α =

(k2|α|ψα)α for all k ∈ Z+. In other words, we can identify lim ←−
m→0

Y ′
m,h with the

space of all (ψα)α such that, for every s > 0, (
∑

α
s2|α|

M2
α
‖ψαe

−M(h|·|)‖2L2(Rd))
1/2 <

∞. Since T2 ∈ lim ←−
m→∞ Y ′

1/m,h, there exists such (ψα)α such that, for m ∈ Z+

and (χα)α ∈ Y1/m,h, we have T2((χα)α) =
∑

α

∫
Rd

α
m2|α|ψαχα dμ1/m. Set Fα,h =

ψαe−2M(h|·|)

M2
α

. Hence, for every s > 0, (
∑

α s
2|α|M2

α‖Fα,he
M(h|·|)‖2L2(Rd))

1/2 < ∞.

Moreover, for ϕ ∈ O{Mp}
C (Rd), there exists m ∈ Z+ such that ϕ ∈OMp

C,1/m,h(R
d).
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We have

〈T,ϕ〉 =
∑
α

∫
Rd

Fα,h(x)(−D)αϕ(x)dx

=
∑
α

〈DαFα,h, ϕ〉.

Since O{Mp}
C,h (Rd) is a (DFS∗)-space its strong dual (O{Mp}

C,h (Rd))′b is complete. If

B is a bounded subset ofO{Mp}
C,h (Rd), then it must belong to someOMp

C,m,h(R
d) and

be bounded there. (The inductive limit O{Mp}
C,h (Rd) = lim −→

m→0
OMp

C,m,h(R
d) is reg-

ular.) One easily verifies that
∑

α supϕ∈B |〈DαFα,h, ϕ〉|<∞; hence,
∑

αD
αFα,h

converges absolutely in (O{Mp}
C,h (Rd))′b. Since O{Mp}

C (Rd) is continuously and

densely injected into O{Mp}
C,h (Rd) (D{Mp}(Rd) is dense in these spaces), it follows

that the series
∑

αD
αFα,h converges absolutely in the strong dual of O{Mp}

C (Rd).

Conversely, let T ∈ D′{Mp}(Rd) be as in (ii). Then it is easy to verify that

T is a continuous functional on D{Mp}(Rd) when we regard it as subspace of

O{Mp}
C,h (Rd), where h is the one from the condition in (ii). Since D{Mp}(Rd) is

dense in O{Mp}
C,h (Rd), T is a continuous functional on O{Mp}

C,h (Rd) and hence on

O{Mp}
C (Rd). �

The next theorem realizes our first goal in the article: we may identify O′∗
C (Rd)

with the topological dual of O∗
C(R

d). We make use below of the following ele-

mentary inequality:

eM(ρ+λ) ≤ 2eM(2ρ)eM(2λ), ρ, λ > 0,(3.3)

which is a consequence of the observation that

(λ+ ρ)p

Mp
≤ 2pρp

Mp
+

2pλp

Mp
≤ eM(2ρ) + eM(2λ) ≤ 2eM(2ρ)eM(2λ),

where the last inequality holds because the associated function is nonnegative.

THEOREM 3.3

The dual of O∗
C(R

d) is algebraically isomorphic to O′∗
C (Rd).

Proof

Let T ∈ (O∗
C(R

d))′ ⊆ S ′∗(Rd). To prove that T ∈O′∗
C (Rd), by [6, Proposition 2],

it is enough to prove that T ∗ϕ ∈ S∗(Rd) for each ϕ ∈D∗(Rd). We consider first

the (Mp) case. Let ϕ ∈ D(Mp)(Rd), and let m > 0 be arbitrary but fixed. By

Theorem 3.2, for h≥ 2m, there exist m1 > 0 and Fα,h, α ∈ N
d, such that (3.2)

holds. Take m2 > 0 such that m2 ≥Hm and H/m2 ≤ 1/(2m1). For this m2 there

exists C ′ > 0 such that |Dβϕ(x)| ≤ C ′Mβ/m
|β|
2 . Using the inequality (3.3), for



412 Dimovski, Pilipović, Prangoski, and Vindas

x, t ∈Rd one obtains eM(m|x|) ≤ 2eM(h|x−t|)eM(h|t|). Then, we have

m|β||Dβ(T ∗ϕ)(x)|eM(m|x|)

Mβ

≤ m|β|eM(m|x|)

Mβ

∑
α

‖Fα,he
M(h|·|)‖L2

(∫
Rd

∣∣Dα+βϕ(x− t)
∣∣2e−2M(h|t|) dt

)1/2

=
m|β|

Mβ

∑
α

‖Fα,he
M(h|·|)‖L2

(∫
Rd

∣∣Dα+βϕ(x− t)
∣∣2e2M(m|x|)e−2M(h|t|) dt

)1/2

≤ 2
m|β|

Mβ

∑
α

‖Fα,he
M(h|·|)‖L2

(∫
Rd

∣∣Dα+βϕ(x− t)
∣∣2e2M(h|x−t|) dt

)1/2

≤C1

∑
α

m|β|Mα+β

Mβm
|α|+|β|
2

‖Fα,he
M(h|·|)‖L2 ≤C2

(Hm

m2

)|β|∑
α

1

2|α|
≤C.

Since m> 0 is arbitrary, T ∗ϕ ∈ S(Mp)(Rd) and we obtain T ∈O′(Mp)
C (Rd). In the

{Mp} case, there exist m2,C
′ > 0 such that |Dβϕ(x)| ≤C ′Mβ/m

|β|
2 . Also, for T

there exist h > 0 and Fα,h, α ∈Nd, such that (3.2) holds for every m1 > 0. Take

m> 0 such that m≤ h/2 and m≤m2/H , and take m1 > 0 such that 1/(2m1)≥
H/m2. Then the same calculations as above give m|β||Dβ(T∗ϕ)(x)|eM(m|x|)

Mβ
≤ C,

that is, T ∗ϕ ∈ S{Mp}(Rd). We obtain T ∈O′{Mp}
C (Rd).

Conversely, let T ∈ O′∗
C (Rd). In the (Mp) case, by [6, Proposition 2], for

every r > 0 there exist an ultradifferential operator P (D) of class (Mp) and

F1, F2 ∈ L∞(Rd) such that T = P (D)F1+F2 and ‖eM(r|·|)(F1+F2)‖L∞(Rd) ≤C.

Let h > 0 be arbitrary but fixed. Choose such a representation of T for r ≥
H2h. For simplicity, we assume that F2 = 0 and set F = F1. The general case is

proved analogously. Let P (D) =
∑

α cαD
α. Then, there exist c,L≥ 1 such that

|cα| ≤ cL|α|/Mα. Let Fα = cαF . By [11, Proposition 3.6] we have e4M(h|x|) ≤
C1e

M(H2h|x|) ≤C1e
M(r|x|). We obtain∑

α

M2
α

(2L)2|α|
‖eM(h|·|)Fα‖2L2

≤C1

∑
α

M2
α

(2L)2|α|
|cα|2‖eM(r|·|)F‖2L∞‖e−M(h|·|)‖2L2 <∞.

So, for the chosen h > 0, (3.2) holds with m = 2L. Since T =
∑

αD
αFα, by

Theorem 3.2 we have T ∈ (O(Mp)
C (Rd))′. In the {Mp} case there exist r > 0,

an ultradifferential operator P (D) of class {Mp}, and L∞-functions F1 and F2

such that T = P (D)F1 + F2 and ‖eM(r|·|)(F1 + F2)‖L∞(Rd) ≤ C. For simplicity,

we assume that F2 = 0 and set F = F1. The general case is proved analogously.

Since P (D) =
∑

α cαD
α is of class {Mp} for every L> 0 there exists c > 0 such

that |cα| ≤ cL|α|/Mα. Set Fα = cαF . Take h ≤ r/H2. Let m > 0 be arbitrary

but fixed. Then there exists c > 0 such that |cα| ≤ cm|α|/(2|α|Mα). Similarly as
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above
∑

αM
2
αm

−2|α|‖eM(h|·|)Fα‖2L2 <∞. Since T =
∑

αD
αFα, by Theorem 3.2,

we have T ∈ (O{Mp}
C (Rd))′. �

It would also be interesting to study the relation between the strong dual topology

on O′∗
C (Rd) provided by the duality 〈O∗

C(R
d),O′∗

C (Rd)〉 and the induced one on

O′∗
C (Rd) as a (closed) subspace of Lb(S∗(Rd),S∗(Rd)). (The latter topology was

considered in [6].)

4. Translation-invariant Banach spaces of tempered ultradistributions

We employ the notation Th for the translation operator Thg = g(·+ h), h ∈ R
d.

The symbol “↪→” stands for a continuous and dense inclusion. In the rest of the

article we are interested in translation-invariant (B)-spaces of ultradistributions

satisfying the properties from the following definition.

DEFINITION 4.1

A (B)-space E is said to be a translation-invariant (B)-space of tempered ultra-

distributions of class ∗ if it satisfies the following three axioms.

(I) D∗(Rd) ↪→E ↪→D′∗(Rd).

(II) Th :E →E for every h ∈R
d (i.e., E is translation-invariant).

(III) For any g ∈ E there exist C = Cg > 0 and τ = τg > 0 (for every τ > 0

there exists C =Cg,τ > 0) such that ‖Thg‖E ≤CeM(τ |h|), ∀h ∈R
d.

The weight function of E is the function ω : Rd → (0,∞) given by† ω(h) :=

‖T−h‖L(E).

Throughout the rest of the article we assume that E is a translation-invariant

(B)-space of tempered ultradistributions. It is clear that ω(0) = 1 and that lnω is

a subadditive function. We will prove that ω is measurable and locally bounded;

this allows us to associate to E the Beurling algebra L1
ω (see [2]), that is, the

Banach algebra of measurable functions u such that ‖u‖1,ω :=
∫
Rd |u(x)|ω(x)dx <

∞. The next theorem collects a number of important properties of E.

THEOREM 4.2

The following properties hold for E and ω.

(a) S∗(Rd) ↪→E ↪→S ′∗(Rd).

(b) For each g ∈ E, limh→0 ‖Thg − g‖E = 0. (Hence, the mapping h �→ Thg

is continuous.)

(c) There are τ,C > 0 (for every τ > 0 there is C =Cτ > 0) such that

ω(h)≤CeM(τ |h|), ∀h ∈R
d.

†By applying the closed graph theorem, the axioms (I) and (II) yield Th ∈ L(E) for every

h ∈ Rd.
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(d) E is separable and ω is measurable.

(e) The convolution mapping ∗ : S∗(Rd) × S∗(Rd)→ S∗(Rd) extends to ∗ :
L1
ω ×E →E and E becomes a Banach module over the Beurling algebra L1

ω, that

is,

(4.1) ‖u ∗ g‖E ≤ ‖u‖1,ω‖g‖E .

Furthermore, the bilinear mapping ∗ : S∗(Rd)×E →E is continuous.

(f) Let g ∈ E, and let ϕ ∈ S∗(Rd). Set ϕε(x) = ε−dϕ(x/ε), and set c =∫
Rd ϕ(x)dx. Then, limε→0+ ‖cg− ϕε ∗ g‖E = 0.

Alternatively, in the {Mp} case, the property (c) is equivalent to

(c̃) there exist (lp) ∈R and C > 0 such that ω(h)≤CeNlp (|h|), ∀h ∈R
d.

Proof

The property (b) follows directly from the axioms (I)–(III). For (d), notice that

(I) yields at once the separability of E. On the other hand, if D is a countable

and dense subset of the unit ball of E, then we have ω(h) = supg∈D ‖T−hg‖E ,
and so (b) yields the measurability of ω.

We now show (c). In the (Mp) case, consider the sets Ej,ν = {g ∈E | ‖Thg‖E ≤
jeM(ν|h|),∀h ∈ R

d}, j, ν ∈ Z+. Because of (III), E =
⋃

j,ν∈Z+
Ej,ν . Since Ej,ν =⋂

h∈Rd Ej,ν,h, where Ej,ν,h = {g ∈ E | ‖Thg‖E ≤ jeM(ν|h|)}, each of these sets is

closed in E by the continuity of Th, and so are the Ej,ν ’s. Now, a classical

category argument gives the claim. In the {Mp} case, for fixed τ > 0, we consider

the sets Ej = {g ∈E | ‖Thg‖E ≤ jeM(τ |h|) for all h ∈Rd}, j ∈ Z+. Obviously E =⋃
j∈Z+

Ej . Again the Baire category theorem yields the claim.

Let us prove that (c) is equivalent to (c̃). Obviously (c̃)⇒ (c). Conversely,

define F : [0,∞)→ [0,∞) as

F (ρ) = sup
|h|≤ρ

sup
‖g‖E≤1

ln+ ‖Thg‖E .

One easily verifies thatF (ρ) is increasing and satisfies the conditions of Lemma 2.2.

Hence, there exist a subordinate function ε(ρ) and C ′ > 1 such that F (ρ) ≤
M(ε(ρ)) + lnC ′. Hence, we obtain sup‖g‖E≤1 ‖Thg‖E ≤ C ′eM(ε(|h|)). Now, [11,

Lemma 3.12] implies that there exists a sequence Ñp which satisfies (M.1) such

that M(ε(ρ))≤ Ñ(ρ) as
ÑpMp−1

Ñp−1Mp
→∞ as p→∞. Set l′p =

ÑpMp−1

Ñp−1Mp
. Take (lp) ∈R

such that lp ≤ l′p, for all p ∈ Z+. Then

sup
‖g‖E≤1

‖Thg‖E ≤C ′eÑ(|h|) = C ′ sup
p∈N

|h|p
Mp

∏p
j=1 l

′
j

≤ C ′ sup
p∈N

|h|p
Mp

∏p
j=1 lj

=C ′eNlp (|h|),

whence (c̃) follows.

We now address the property (a). We first prove the embedding S∗(Rd) ↪→
E. Since D∗(Rd) ↪→ S∗(Rd), it is enough to prove that S∗(Rd) is continuously
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injected into E. Let ϕ ∈ S∗(Rd). We use a special partition of unity

1 =
∑
m∈Zd

ψ(x−m), ψ ∈D∗
[−1,1]d ,

and we get the representation ϕ(x) =
∑

m∈Zd ψ(x−m)ϕ(x). We estimate each

term in this sum. Because of (c), there exist constants C > 0 and τ > 0 (for every

τ > 0 there exists C > 0) such that

(4.2) ‖ϕT−mψ‖E ≤ C

eM(τ |m|) ‖e
2M(τ |m|)ψTmϕ‖E .

We need to prove that the multisequence of operators {ρm,τ}m∈Zd : S∗(Rd) →
D∗

[−1,1]d , defined as

(4.3) ρm,τ (ϕ) := e2M(τ |m|)ψTmϕ,

is uniformly bounded on a fixed bounded subset of S∗(Rd), where τ > 0 in the

{Mp} case will be chosen later. Let B be a bounded set in S∗(Rd). Then for each

h > 0 (for some h > 0)

sup
ϕ∈B

sup
α∈Nd

h|α|‖eM(h|·|)Dαϕ‖L∞(Rd)

Mα
<∞.(4.4)

By [11, Lemma 3.6] we have e2M(τ |m|) ≤ c0e
M(Hτ |m|) and hence

e2M(τ |m|) ≤ 2c0e
M(2Hτ |m+x|)eM(2Hτ |x|) ≤C1e

M(2Hτ |m+x|),(4.5)

∀x ∈ [−1,1]d,∀m ∈ Z
d. In the (Mp) case let h1 > 0 be arbitrary but fixed. Choose

h > 0 such that h≥ 2h1 and h≥ 2Hτ . For this h, (4.4) holds, and by (4.5) and

the fact that ψ ∈D(Mp)

[−1,1]d
, one readily verifies that

h
|α|
1 |Dα(ψ(x)Tmϕ(x))|

Mα
≤ C ′

e2M(τ |m|) , for all ϕ ∈B,m ∈ Z
d.(4.6)

Hence, {ρm,τ |m ∈ Z
d} is uniformly bounded on B. In the {Mp} case, there exist

h̃, C̃ > 0 such that |Dαψ(x)| ≤ C̃Mα/h̃
|α|. For the h for which (4.4) holds, choose

h1 > 0 such that h1 ≤ min{h/2, h̃/2}, and choose τ ≤ h/(2H). Then, by using

(4.5), similarly as in the (Mp) case, we obtain (4.6), namely, {ρm,τ |m ∈ Z
d} is

uniformly bounded on B. By (I), the mapping D∗
[−1,1]d →E is continuous; hence,

‖ρm(ϕ)‖E ≤C2, for all ϕ ∈B, m ∈ Z
d.

In view of (4.2) and the later fact, we have that {
∑

|m|≤N ϕT−mψ}∞N=0 is a

Cauchy sequence in E whose limit is ϕ ∈ E; one also obtains ‖ϕ‖E ≤ C for all

ϕ ∈B. We have just proved that the inclusion S∗(Rd)→ E maps bounded sets

into bounded sets, and since S∗(Rd) is bornological, it is continuous.

We now address E ⊆ S ′∗(Rd) and the continuity of the inclusion mapping.

Let g ∈E. We employ Proposition 3.1. Let B be a bounded set in D∗(Rd). The

inclusion E ↪→D′∗(Rd) yields the existence of a constant D =D(B) such that

|〈g, φ̌〉| ≤D‖g‖E for all g ∈ E and φ ∈B. Therefore, by (c), there exist τ,C > 0

(for every τ > 0 there exists C > 0) such that∣∣(g ∗ φ)(h)∣∣≤D‖Thg‖E ≤CD‖g‖EeM(τ |h|),
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for all g ∈E, φ ∈B, h ∈R
d. In the (Mp) case, Proposition 3.1 implies that E ⊆

S ′(Mp)(Rd). In the {Mp} case, the property (c̃), together with Proposition 3.1,

implies that E ⊆ S ′{Mp}(Rd). Since E →D′∗(Rd) is continuous it has a closed

graph; hence, so does the inclusion E →S ′∗(Rd) (S ′∗(Rd) is continuously injected

into D′∗(Rd)). Since S ′(Mp)(Rd) is a (DFS)-space (S ′{Mp}(Rd) is an (FS)-space),

it is a Pták space (see [24, Section IV.8, p. 162]). Thus, the continuity of E →
S ′∗(Rd) follows from the Pták closed graph theorem (see [24, Theorem 8.5, p.

166]). The proof of (a) is complete.

We now show that E is a Banach module over L1
ω . Let ϕ,ψ ∈ D∗(Rd), and

denote K = suppϕ. We prove that

‖ϕ ∗ ψ‖E ≤ ‖ψ‖E
∫
Rd

∣∣ϕ(x)∣∣ω(x)dx.(4.7)

The Riemann sums

Lε(·) = εd
∑

n∈Zd,εn∈K

ϕ(εn)ψ(· − εn) = εd
∑

n∈Zd,εn∈K

ϕ(εn)T−εnψ

converge to ϕ ∗ ψ in S∗(Rd) as ε→ 0+. By (a) they also converge in E to the

same element, that is, Lε → ϕ ∗ ψ as ε→ 0+ in E. Set ωψ(t) = ‖T−tψ‖E . Then
ωψ is continuous by (b). Observe that

‖Lε‖E ≤
∑

y∈Zd,εy∈K

∣∣ϕ(εy)∣∣‖T−εyψ‖Eεd =
∑

y∈Zd,εy∈K

∣∣ϕ(εy)∣∣ωψ(εy)ε
d,(4.8)

and the last term converges to
∫
K
|ϕ(y)|ωψ(y)dy. Since ωψ(t) = ‖T−tψ‖E ≤

‖ψ‖Eω(t), if we let ε → 0+ in (4.8), then we obtain (4.7). By using (I) and a

standard density argument, the convolution can be extended to ∗ : L1
ω ×E →E

and (4.7) leads to (4.1). The continuity of the convolution as a bilinear mapping

S∗(Rd)×E →E in the (Mp) case is an easy consequence of (4.1). In the {Mp}
case, we can conclude separate continuity from (4.1), but then, [29, Theorem 41.1,

p. 421] implies the desired continuity. This shows (e).

Finally, if g ∈ S∗(Rd) and ϕ ∈ S∗(Rd), then by property (a) and (4.1),

limε→0+ ‖cg − ϕε ∗ g‖E = 0. The general case of (f), namely, the case g ∈ E,

can be established via a density argument. �

As in Theorem 4.2(e), one can also extend the convolution as a mapping ∗ :

E ×L1
ω →E and obviously u ∗ g = g ∗ u.

We now discuss some properties that automatically transfer to the dual

space E′ by duality. Note that Theorem 4.2(a) implies the continuous injec-

tions S∗(Rd)→E′ →S ′∗(Rd). Definition 4.1(II) remains valid for E′. We define

the weight function of E′ as

ω̌(h) := ‖T−h‖L(E′) = ‖T

h ‖L(E′) = ω(−h),

where one of the equalities follows from the well-known bipolar theorem (see

[24, p. 160]). Thus, Theorems 4.2(c) and 4.2(c̃) hold for the weight function ω̌

of E′. In particular, Definition 4.1(III) holds for E′. In general, however, E′
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may fail to be a translation-invariant (B)-space of tempered ultradistributions

because Definition 4.1(I) may no longer be true for it. Note also that E′ can be

nonseparable. In addition, Theorem 4.2(b) may also fail for E′, but on the other

hand it follows by duality that, given f ∈E′,

(b′′) the mappings Rd →E′ given by h �→ Thf are continuous for the weak∗

topology.

The associated Beurling algebra to E′ is L1
ω̌ . We define the convolution u ∗ f =

f ∗u of f ∈E′ and u ∈ L1
ω̌ via transposition: 〈u∗f, g〉 := 〈f, ǔ∗g〉, g ∈E. In view of

Theorem 4.2(e), this convolution is well defined because ǔ ∈ L1
ω . It readily follows

that Theorem 4.2(e) holds when E and ω are replaced by E′ and ω̌; so E′ is a

Banach module over the Beurling algebra L1
ω̌ , that is, ‖u ∗ f‖E′ ≤ ‖u‖1,ω̌‖f‖E′ .

Concerning Theorem 4.2(f), it may no longer be satisfied by E′.

In summary, E′ might not be as rich as E. We introduce the following space

that enjoys better properties than E′ with respect to the translation group.

DEFINITION 4.3

The (B)-space E′
∗ stands for E′ = L1

ω̌ ∗E′.

Note that E′
∗ is a closed linear subspace of E′, due to the Cohen–Hewitt factoriza-

tion theorem [10, p. 178] and the fact that L1
ω̌ possesses bounded approximation

unities. The ensuing theorem shows that E′
∗ possesses many of the properties that

E′ lacks. It also gives a characterization of E′
∗ and tells us that Definition 4.1(I)

holds for E′ when E is reflexive.

THEOREM 4.4

The (B)-space E′
∗ satisfies the following.

(i) S∗(Rd)→E′
∗ →S ′∗(Rd) and E′

∗ is a Banach module over L1
ω̌.

(ii) Definition 4.1(II) and Theorems 4.2(b) and 4.2(f) are valid when E is

replaced by E′
∗.

(iii) E′
∗ = {f ∈E′ | limh→0 ‖Thf − f‖E′ = 0}.

(iv) If E is reflexive, then E′
∗ = E′ and E′ is also a translation-invariant

(B)-space of tempered ultradistributions of class ∗.

Proof

Except for the inclusion S∗(Rd) ⊆ E′
∗, the rest of the assertions can be proved

in exactly the same way as for the distribution case; we therefore omit details

and refer to [4, Section 3]. To show the inclusion S∗(Rd)⊆E′
∗, note that S∗(Rd) =

span(S∗(Rd) ∗ S∗(Rd)) where the closure is taken in S∗(Rd). (This follows because

ϕ ∗ δj → ϕ in S∗(Rd), where the sequence {δj}∞j=1 can be taken as in the proof

of Proposition 3.1.) Hence, S∗(Rd) is a subset of the closure of span(S∗(Rd) ∗
S∗(Rd)) in E′, and so the inclusion S∗(Rd)⊆E′

∗ must hold. �
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It is worth noticing that E′ carries another useful convolution structure. In fact,

we can define the convolution mapping ∗ :E′ × Ě → L∞
ω by

(f ∗ g)(x) =
〈
f(t), g(x− t)

〉
=
〈
f(t), T−xǧ(t)

〉
,

where Ě = {g ∈ S ′∗(Rd) | ǧ ∈ E} with norm ‖g‖Ě := ‖ǧ‖E and L∞
ω is the dual

of the Beurling algebra L1
ω , that is, the (B)-space of all measurable functions

satisfying ‖u‖∞,ω = ess supx∈Rd |g(x)|/ω(x)<∞. We consider the following two

closed subspaces of L∞
ω :

UCω =
{
u ∈ L∞

ω

∣∣ lim
h→0

‖Thu− u‖∞,ω = 0
}

and

Cω =
{
u ∈C(Rd)

∣∣∣ lim
|x|→∞

u(x)

ω(x)
= 0

}
.

(4.9)

The first part of the next proposition is a direct consequence of Theorem 4.2(b).

The range refinement in the reflexive case follows from the density of S∗(Rd) in

E′ (Theorem 4.4(iv)).

PROPOSITION 4.5

We have that E′ ∗Ě ⊆ UCω and ∗ :E′×Ě → UCω is continuous. If E is reflexive,

then E′ ∗ Ě ⊆Cω.

5. The test function space D∗
E

In this section we define and study the test function space D∗
E , whose construction

is based on the (B)-space E. Let

D{Mp},m
E =

{
ϕ ∈E

∣∣∣Dαϕ ∈E,∀α ∈N
d,‖ϕ‖E,m = sup

α∈Nd

mα‖Dαϕ‖E
Mα

<∞
}
.

It is a (B)-space with the norm ‖ · ‖E,m. One easily verifies that none of these

spaces is trivial; indeed, they contain D∗(Rd). Also, D{Mp},m1

E ⊆ D{Mp},m2

E for

m2 <m1 with continuous inclusion mapping. As LCSs we define

D(Mp)
E = lim←−

m→∞
D{Mp},m

E , D{Mp}
E = lim−→

m→0

D{Mp},m
E .

Since D{Mp},m
E is continuously injected in E for each m> 0, D{Mp}

E is indeed a

(Hausdorff) LCS. Moreover, D{Mp}
E is a barreled, bornological (DF )-space as an

inductive limit of (B)-spaces. Obviously, D(Mp)
E is an (F )-space. Of course D∗

E is

continuously injected into E.

Additionally, in the {Mp} case, for each fixed (rp) ∈R we define the (B)-

space

D{Mp},(rp)
E =

{
ϕ ∈E

∣∣∣Dαϕ ∈E,∀α ∈N
d,‖ϕ‖E,(rp) = sup

α

‖Dαϕ‖E
Mα

∏|α|
j=1 rj

<∞
}
,

with norm ‖ · ‖E,(rp). Since, for k > 0 and (rp) ∈R, there exists C > 0 such that

k|α| ≥ C/(
∏|α|

j=1 rj), D
{Mp},k
E is continuously injected into D{Mp},(rp)

E . Define as
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LCS D̃{Mp}
E = lim ←−

(rp)∈R
D{Mp},(rp)

E . Then D̃{Mp}
E is a complete LCS and D{Mp}

E

is continuously injected into it.

PROPOSITION 5.1

The space D{Mp}
E is regular, namely, every bounded set B in D{Mp}

E is bounded

in some D{Mp},m
E . In addition D{Mp}

E is complete.

Proof

For (rp) ∈ R denote by Rα the product
∏|α|

j=1 rj . Let B be a bounded set in

D{Mp}
E . Then B is bounded in D̃{Mp}

E ; hence, for each (rp) ∈ R there exists

C(rp) > 0 such that supα
‖Dαϕ‖E

RαMα
≤ C(rp), for all ϕ ∈ B. By [13, Lemma 3.4]

we obtain that there exist m,C2 > 0 such that supα
m|α|‖Dαϕ‖E

Mα
≤ C2, ∀ϕ ∈ B,

which proves the regularity of D{Mp}
E .

It remains to prove the completeness. Since D{Mp}
E is a (DF )-space it is

enough to prove that it is quasicomplete (see [16, Theorem 3, p. 402]). Let ϕν be a

bounded Cauchy net in D{Mp}
E . Hence, there exist m,C > 0 such that ‖ϕν‖E,m ≤

C, and since the inclusions D{Mp}
E → D{Mp},(rp)

E are continuous it follows that

ϕν is a Cauchy net in D{Mp},(rp)
E for each (rp) ∈R. It is obvious that without

losing generality we can assume that m≤ 1. Fix m1 <m. Let ε > 0. There exists

p0 ∈ Z+ such that (m1/m)p ≤ ε/(2C) for all p≥ p0, p ∈N. Let rp = p. Obviously

(rp) ∈R. Since ϕν is a Cauchy net in D{Mp},(rp)
E , there exists ν0 such that for all

ν,λ≥ ν0 we have ‖ϕν −ϕλ‖E,(rp) ≤ ε/(p0!). Hence, for |α|< p0

m
|α|
1 ‖Dαϕν −Dαϕλ‖E

Mα
≤ ‖Dαϕν −Dαϕλ‖E

Mα
≤ ε

and for |α| ≥ p0

m
|α|
1 ‖Dαϕν −Dαϕλ‖E

Mα
≤ 2C

(m1

m

)|α|
≤ ε.

We obtain that, for ν,λ≥ ν0, ‖ϕν − ϕλ‖E,m1 ≤ ε, that is, ϕν is a Cauchy net in

the (B)-space D{Mp},m1

E ; hence, it converges to ϕ ∈D{Mp},m1

E in it and thus also

in D{Mp}
E . �

Similarly as in the first part of the proof of this proposition one can prove, by

using [13, Lemma 3.4], that D{Mp}
E and D̃{Mp}

E are equal as sets, that is, the

canonical inclusion D{Mp}
E → D̃{Mp}

E is surjective. We will actually show later

(see Theorem 6.7) that the equality D̃{Mp}
E = D{Mp}

E also holds topologically;

however, we need to study intrinsic properties of their duals in Section 6 in order

to reach such a result.

PROPOSITION 5.2

The following dense inclusions hold: S∗(Rd) ↪→ D∗
E ↪→ E ↪→ S ′∗(Rd), and D∗

E
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is a topological module over the Beurling algebra L1
ω, that is, the convolution ∗ :

L1
ω×D∗

E →D∗
E is continuous. Moreover, in the (Mp) case the following estimate:

(5.1) ‖u ∗ϕ‖E,m ≤ ‖u‖1,ω‖ϕ‖E,m, m > 0,

holds. In the {Mp} case, for each m > 0 the convolution is also a continuous

bilinear mapping L1
ω ×D{Mp},m

E →D{Mp},m
E and (5.1) holds.

Proof

Clearly D∗
E is continuously injected into E. We will consider the {Mp} case.

We will prove that, for every h > 0, S{Mp},h
∞ (Rd) is continuously injected into

D{Mp},h/H
E . From this it readily follows that S{Mp}(Rd) is continuously injected

intoD{Mp}
E . Denote by σh the norm in S{Mp},h

∞ (Rd) (see (2.1)). Since S{Mp}(Rd)→
E, it follows that S{Mp},h/H

∞ (Rd) → E. Hence, there exists C1 > 0 such that

‖ϕ‖E ≤C1σh/H(ϕ), ∀ϕ ∈ S{Mp},h/H
∞ (Rd). Let ψ ∈ S{Mp},h

∞ (Rd). It is easy to ver-

ify that, for every β ∈N
d, Dβψ ∈ S{Mp},h/H

∞ (Rd). We have

h|α|‖Dαψ‖E
H |α|Mα

≤ C1
h|α|

H |α|Mα
sup
β

h|β|‖eM( h
H |·|)Dα+βψ‖L∞(Rd)

H |β|Mβ

≤ c0C1 sup
β

h|α|+|β|‖eM(h|·|)Dα+βψ‖L∞(Rd)

Mα+β
≤ c0C1σh(ψ),

which proves the continuity of the inclusion S{Mp},h
∞ (Rd)→D{Mp},h/H

E . The proof

that S(Mp)(Rd) is continuously injected into D(Mp)
E is similar and we omit it. We

have shown that S∗(Rd)→D∗
E ↪→ E ↪→S ′∗(Rd). To prove that D∗

E is a module

over the Beurling algebra L1
ω we first consider the (Mp) case. For u ∈D(Mp)(Rd),

ϕ ∈D(Mp)
E , and m> 0 we have

m|γ|

Mγ

∥∥Dγ(u ∗ϕ)
∥∥
E
=
∥∥∥u ∗ m|γ|

Mγ
Dγϕ

∥∥∥
E
≤ ‖u‖1,ω‖ϕ‖E,m.

By a density argument, the same inequality holds true for u ∈ L1
ω and ϕ ∈D(Mp)

E .

After taking the supremum over γ ∈ N
d, we obtain (5.1). In the {Mp} case,

by a similar calculation as above, we again obtain (5.1) for ϕ ∈ D{Mp},m
E and

u ∈ L1
ω . Hence, the convolution is a continuous bilinear mapping L1

ω×D{Mp},m
E →

D{Mp},m
E . From this we obtain that the convolution is a separately continuous

mapping L1
ω × D{Mp}

E → D{Mp}
E , and since L1

ω and D{Mp}
E are barreled (DF )-

spaces, it follows that it is continuous (see [16, Theorem 11, p. 161]).

It remains to prove the density of the injection S∗(Rd) ↪→D∗
E . Let ϕ ∈ D∗

E .

Pick then φ ∈ D∗(Rd) with support in the unit ball of R
d with center at the

origin such that φ(x)≥ 0 and
∫
Rd φ(x)dx= 1, and set φj(x) = jdφ(jx). We only

consider the {Mp} case; the (Mp) case is similar. There exists m> 0 such that

φ,ϕ ∈ D{Mp},m
E and |Dαφ(x)| ≤ C̃Mα/m

|α|, for some C̃ > 0. Let 0<m1 <m be

arbitrary but fixed. We will prove that ‖ϕ−ϕ ∗φj‖E,m1 → 0. Let ε > 0. Observe

that there exists C1 ≥ 1 such that ‖φj‖1,ω ≤ C1, ∀j ∈ Z+, and ‖φ‖1,ω ≤C1.
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Choose p0 ∈ Z+ such that (m1/m)p ≤ ε/(2C2) for all p ≥ p0, p ∈ N, where

C2 = C1(1 + ‖ϕ‖E,m) ≥ 1. By Theorem 4.2(f) we can choose j0 ∈ Z+ such that
m

|α|
1

Mα
‖Dαϕ−Dαϕ ∗ φj‖E ≤ ε for all |α| ≤ p0 and all j ≥ j0, j ∈ N. Observe that

if |α| ≥ p0; then we have

m
|α|
1

Mα
‖Dαϕ−Dαϕ ∗ φj‖E ≤ m

|α|
1

Mα
‖Dαϕ‖E +

m
|α|
1

Mα
‖Dαϕ‖E‖φj‖1,ω

≤
(m1

m

)|α|
‖ϕ‖E,m +C1

(m1

m

)|α|
‖ϕ‖E,m ≤ ε.

Hence, for j ≥ j0, ‖ϕ− ϕ ∗ φj‖E,m1 ≤ ε, so ϕ ∗ φj → ϕ in D{Mp},m1

E and conse-

quently also in D{Mp}
E . Let V be a neighborhood of 0 in D{Mp}

E . Choose a neigh-

borhood of 0 in D{Mp}
E such that W +W ⊆ V . Then Wm1 =W ∩D{Mp},m1

E is a

neighborhood of 0 in D{Mp},m1

E ; hence, there exists j1 ∈ Z+ such that ϕ∗φj1 −ϕ ∈
Wm1 ⊆W . Choose m2 > 0 such that m2 <m1/j1. Then Wm2 =W ∩D{Mp},m2

E is

a neighborhood of 0 in D{Mp},m2

E . So there exists ε > 0 such that {χ ∈D{Mp},m2

E |
‖χ‖E,m2 ≤ ε} ⊆ Wm2 . Since j1m2 < m, |Dαφ(x)| ≤ C̃Mα/(j1m2)

|α|. Pick ψ ∈
S{Mp} such that ‖ϕ−ψ‖E ≤ ε/(C̃C ′) where C ′ = supj∈Z+

∫
|x|≤1

ω(x/j)dx, which

is finite by the growth estimate for ω. Now we have

m
|α|
2

Mα

∥∥(ϕ−ψ) ∗Dαφj1

∥∥
E
≤ ‖ϕ−ψ‖E

∫
Rd

jd1 (j1m2)
|α|

Mα

∣∣Dαφ(j1x)
∣∣ω(x)dx

≤ C̃‖ϕ−ψ‖E
∫
|x|≤1

ω(x/j1)dx≤ ε.

We obtain that ψ ∗ φj1 − ϕ ∗ φj1 ∈ Wm2 ⊆ W . Hence, ψ ∗ φj1 − ϕ = ψ ∗ φj1 −
ϕ ∗ φj1 + ϕ ∗ φj1 − ϕ ∈W +W ⊆ V . Since ψ ∗ φj ∈ S{Mp}(Rd) we conclude that

S{Mp}(Rd) is dense in D{Mp}
E . �

Let P (D) be an ultradifferential operator of ∗ type. Via standard arguments, one

can prove that P (D) :D∗
E →D∗

E is continuous.

In order to prove that ultradifferential operators of class {Mp} act contin-

uously on D̃{Mp}
E , we need the following technical result (see [23, Lemma 2.3]).

Let (kp) ∈R. There exists (k′p) ∈R such that k′p ≤ kp and

(5.2)

p+q∏
j=1

k′j ≤ 2p+q

p∏
j=1

k′j ·
q∏

j=1

k′j , for all p, q ∈ Z+.

PROPOSITION 5.3

Every ultradifferential operator of class {Mp} acts continuously on D̃{Mp}
E .

Proof

Since P (D) =
∑

α cαD
α is of class {Mp}, for every L> 0 there exists C > 0 such

that |cα| ≤ CL|α|/Mα. Now, [13, Lemma 3.4] implies that there exist (rp) ∈R

and C1 > 0 such that |cα| ≤C1/(Mα

∏|α|
j=1 rj). Let (lp) ∈R be arbitrary but fixed.
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Define kp =min{rp, lp}, p ∈ Z+. Then (kp) ∈R, and for this (kp) we take (k
′
p) ∈R

as in (5.2). Then, there exists C ′ > 0 such that ‖P (D)ϕ‖E,(lp) ≤C ′‖ϕ‖E,(k′
p/(4H))

for ϕ ∈ D̃{Mp}
E , which implies the continuity of P (D). Indeed, for all β ∈N

d,

‖DβP (D)ϕ‖E
Mβ

∏|β|
j=1 lj

≤ C
∑
α

‖Dα+βϕ‖E
MαMβ

∏|α|
j=1 rj

∏|β|
j=1 lj

≤ C1

∑
α

H |α|+|β|‖Dα+βϕ‖E
Mα+β

∏|α|
j=1 k

′
j

∏|β|
j=1 k

′
j

≤ C2‖ϕ‖(k′
p/(4H))

∑
α

2−|α| ≤C ′‖ϕ‖(k′
p/(4H)). �

Interestingly, all the elements of our test space D∗
E are ultradifferentiable func-

tions of class ∗. To establish this fact we need the following lemma.

LEMMA 5.4

Let K ⊆ R
d be compact. There exists m > 0 (there exists (lp) ∈ R) such that

D{Mp}
K,m ⊆E ∩E′

∗ (D{Mp}
K,(lp)

⊆E ∩E′
∗). Moreover, the inclusion mappings D{Mp}

K,m →
E and D{Mp}

K,m →E′
∗ (D{Mp}

K,(lp)
→E and D{Mp}

K,(lp)
→E′

∗) are continuous.

Proof

We will give the proof in the Roumieu case; the Beurling case is similar. Let

U be a bounded open subset of R
d such that K � U , and set K1 = U . Since

the inclusion D{Mp}
K1

→ E is continuous and D{Mp}
K1

= lim ←−
(rp)∈R

D{Mp}
K1,(rp)

there

exist C > 0 and (rp) ∈ R such that ‖ϕ‖E ≤ C‖ϕ‖K1,(rp). Let χm, m ∈ Z+, be

a δ-sequence from D{Mp} such that diam(suppχm) ≤ dist(K,∂U)/2, for m ∈
Z+. Take lp = rp−1/(2H), p ≥ 2, and take l1 = r1/(2H). Then (lp) ∈ R. Let

ψ ∈ D{Mp}
K,(lp)

. Then ψ ∗ χm ∈ D{Mp}
K1

and one easily obtains that ψ ∗ χm → ψ in

D{Mp}
K1,(rp)

. We have ‖ψ ∗ χm‖E ≤ C‖ψ ∗ χm‖K1,(rp); hence, ψ ∗ χm is a Cauchy

sequence in E, so it converges. Since ψ ∗ χm → ψ in D′{Mp}(Rd) and E is con-

tinuously injected into D′{Mp}(Rd), the limit of ψ ∗ χm in E must be ψ. If we

let m → ∞ in the last inequality, then we have ‖ψ‖E ≤ C‖ψ‖K1,(rp). Observe

that ‖ψ‖K1,(rp) ≤ ‖ψ‖K,(lp). (Since ψ ∈ D{Mp}
K,(lp)

, suppψ ⊆ K.) Hence, ‖ψ‖E ≤
C‖ψ‖K,(lp), which gives the desired continuity of the inclusion D{Mp}

K,(lp)
→E. Sim-

ilarly, one obtains the continuous inclusion D{Mp}
K,(l′p)

→ E′
∗ possibly with another

(l′p) ∈ R. The conclusion of the lemma now follows with (l̃p) ∈ R defined as

l̃p =min{lp, l′p}, p ∈ Z+. �

PROPOSITION 5.5

The embedding D∗
E ↪→O∗

C(R
d) holds. Furthermore, for ϕ ∈ D∗

E , D
αϕ ∈ Cω̌ for

all α ∈ N
d and they satisfy the following growth condition: for every m> 0 (for
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some m> 0)

(5.3) sup
α∈Nd

m|α|

Mα
‖Dαϕ‖L∞

ω̌ (Rd) <∞.

Proof

Let U be the open unit ball in R
d with center at 0, and let K = U . Let r > 0 (let

(rp) ∈R) be as in Lemma 5.4; that is, D{Mp}
K,r ⊆E∩E′

∗ (D
{Mp}
K,(rp)

⊆E∩E′
∗) and the

inclusion mappings D{Mp}
K,r → E and D{Mp}

K,r → E′
∗ (D{Mp}

K,(rp)
→ E and D{Mp}

K,(rp)
→

E′
∗) are continuous. By the parametrix of Komatsu, there exist u ∈ D(Mp)

U,r , ψ ∈
D(Mp)(U), and P (D) of type (Mp) (u ∈ D{Mp}

U,(rp)
satisfying ‖Dαu‖L∞

RαMα
→ 0 when

|α| →∞, ψ ∈D{Mp}(U), and P (D) of type {Mp}) such that P (D)u= δ+ψ. Let

f ∈ D∗
E . Then f = u ∗ P (D)f − ψ ∗ f . Observe that ψ ∗ f ∈ E∗(Rd). For β ∈ N

d,

DβP (D)f ∈ D∗
E . By Lemma 5.4, ǔ ∈ D{Mp}

K,(rp)
⊆ E′ and so u ∈ (E′)̌ = Ě′. Hence,

by the discussion before Proposition 4.5, all ultradistributional derivatives of

u∗P (D)f are continuous functions on R
d. From this we obtain that u∗P (D)f ∈

C∞(Rd). Indeed, this result is of a local nature, so it is enough to use the Sobolev

embedding theorem on an open disk V of an arbitrary point x ∈ R
d and the

fact that D∗(V ) is dense in D(V ). Hence f ∈ C∞(Rd). For β ∈ N
d, Dβf(x) =

u ∗DβP (D)f(x)−ψ ∗Dβf(x) = F1(x)−F2(x). By the above discussion, the last

equality, and Proposition 4.5, it follows that Dβf ∈ UCω̌ . To prove the inclusion

D∗
E → O∗

C(R
d), we consider first the (Mp) case. Let m > 0 be arbitrary but

fixed. Since P (D) =
∑

α cαD
α is of (Mp) type, there exist m1,C

′ > 0 such that

|cα| ≤C ′m
|α|
1 /Mα. Letm2 = 4max{m,m1}. For F1, since P (D) acts continuously

on D∗
E , we have∣∣F1(x)

∣∣≤ ‖u‖Ě′

∥∥DβP (D)f(x)
∥∥
E
ω(−x)≤C2ω(−x)‖ǔ‖E′‖f‖E,m2H

Mβ

(2m)|β|

and, similarly,∣∣F2(x)
∣∣≤C3ω(−x)‖ψ̌‖E′‖f‖E,2m

Mβ

(2m)|β|
≤C3ω(−x)‖ψ̌‖E′‖f‖E,m2H

Mβ

(2m)|β|
.

Hence

(5.4)
(2m)|β||Dβf(x)|

Mβw(−x)
≤C ′′(‖ǔ‖E′ + ‖ψ̌‖E′

)
‖f‖E,m2H .

Since there exist τ,C ′′′ > 0 such that ω(x)≤ C ′′′eM(τ |x|), by using [11, Proposi-

tion 3.6], we obtain ω(−x)eM(τ |x|) ≤C4e
M(τH|x|). Hence,(∑

α

m2|α|

M2
α

‖Dαfe−M(τH|·|)‖2L2

)1/2

≤ C5

(∑
α

m2|α|

M2
α

∥∥∥ Dαf

ω(−·)

∥∥∥2
L∞

)1/2

≤ C
(
‖ǔ‖E′ + ‖ψ̌‖E′

)
‖f‖E,m2H ,

which proves the continuity of the inclusion D(Mp)
E →O(Mp)

C,τH(Rd) and hence also

the continuity of the inclusion D(Mp)
E →O(Mp)

C (Rd).
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In order to prove that the inclusion D{Mp}
E → O{Mp}

C (Rd) is continuous it

is enough to prove that, for each h > 0, D{Mp}
E → O{Mp}

C,h (Rd) is a continuous

inclusion. And in order to prove this, it is enough to prove that for every m>

0 there exists m′ > 0 such that we have the continuous inclusion D{Mp},m
E →

O{Mp}
C,m′,h(R

d). So, let h,m > 0 be arbitrary but fixed. Take m′ ≤ m/(4H). For

f ∈D{Mp},m
E , using the same technique as above, we have

(2m′)|β||Dβf(x)|
Mβw(−x)

≤C ′′(‖ǔ‖E′ + ‖ψ̌‖E′
)
‖f‖E,m.(5.5)

For the fixed h take τ > 0 such that τH ≤ h. Then there exists C ′′′ > 0 such that

ω(x)≤ C ′′′eM(τ |x|) and by using [11, Proposition 3.6] we obtain ω(x)eM(τ |x|) ≤
C4e

M(τH|x|). Similarly as above, we have(∑
α

m′2|α|

M2
α

‖Dαfe−M(h|·|)‖2L2

)1/2

≤C
(
‖ǔ‖E′ + ‖ψ̌‖E′

)
‖f‖E,m,

which proves the continuity of the inclusion D{Mp},m
E →O{Mp}

C,m′,h(R
d).

Observe that (5.3) follows by (5.4) in the (Mp) case and by (5.5) in the {Mp}
case. It remains to prove that Dαf ∈ Cω̌ . We will prove this in the {Mp} case;

the (Mp) case is similar. By using Proposition 5.3, with a similar technique to

that above, one can prove that for every (kp) ∈R there exists (lp) ∈R such that

for f ∈D{Mp}
E we have

|Dβf(x)|
w(−x)Mβ

∏|β|
j=1 kj

≤C ′′(‖ǔ‖E′ + ‖ψ̌‖E′
)
‖f‖E,(lp).(5.6)

Let ε > 0. Since D{Mp}(Rd) is dense in D{Mp}
E (Proposition 5.2), it is dense in

D̃{Mp}
E . Pick χ ∈ D{Mp}(Rd) such that ‖f − χ‖E,(lp) ≤ ε/(C ′′(‖ǔ‖E′ + ‖ψ̌‖E′)).

Then, by (5.6), for x ∈R
d\ suppχ we have

|Dβf(x)|
w(−x)Mβ

∏|β|
j=1 kj

=
|Dβ(f(x)− χ(x))|
w(−x)Mβ

∏|β|
j=1 kj

≤ ε,

which proves that Dβf ∈Cω̌ . �

REMARK 5.6

If f ∈ S∗(Rd), then by the proof of the previous proposition (and (4.1)), we have

‖Dβf‖E ≤ ‖u‖E
∥∥DβP (D)f

∥∥
1,ω

+ ‖ψ‖E‖Dβf‖1,ω,

since u,ψ ∈ E (by their choice). Also, one easily verifies that (see the proof of

Proposition 5.3) for every m> 0 there exist m̃ > 0 and C1 > 0 (for every (kp) ∈R

there exist (lp) ∈R and C1 > 0) such that

‖f‖E,m ≤C1 sup
α

m̃|α|‖Dαf‖1,ω
Mα

(
‖f‖E,(kp) ≤C1 sup

α

‖Dαf‖1,ω
Mα

∏|α|
j=1 lj

)
.(5.7)
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6. The ultradistribution space D′∗
E′

∗

We denote by D′∗
E′

∗
the strong dual of D∗

E . Then, D
′(Mp)
E′

∗
is a complete (DF )-space

since D(Mp)
E is an (F )-space. Also, D′{Mp}

E′
∗

is an (F )-space as the strong dual of

a (DF )-space. When E is reflexive, we write D′∗
E′ =D′∗

E′
∗
in accordance with the

last assertion of Theorem 4.4. The notation D′∗
E′

∗
= (D∗

E)
′ is motivated by the

next structural theorem.

THEOREM 6.1

Let f ∈D′∗(Rd). The following statements are equivalent.

(i) f ∈D′∗
E′

∗
.

(ii) f ∗ ψ ∈E′ for all ψ ∈D∗(Rd).

(iii) f ∗ ψ ∈E′
∗ for all ψ ∈D∗(Rd).

(iv) f can be expressed as f = P (D)g+g1, where P (D) is an ultradifferential

operator of ∗ type with g, g1 ∈E′.

(v) There exist ultradifferential operators Pk(D) of ∗ type and fk ∈ E′
∗ ∩

UCω for k in a finite set J such that

(6.1) f =
∑
k∈J

Pk(D)fk.

Moreover, if E is reflexive, then we may choose fk ∈E′ ∩Cω.

REMARK 6.2

One can replace D′∗(Rd) and D∗(Rd) by S ′∗(Rd) and S∗(Rd) in every statement

of Theorem 6.1.

Proof

We denote BE = {ϕ ∈D∗(Rd) | ‖ϕ‖E ≤ 1}.
(i) ⇒ (ii). Fix first ψ ∈D∗(Rd). By (5.1) the set ψ̌ ∗BE = {ψ̌ ∗ϕ | ϕ ∈BE} is

bounded in D∗
E . Hence, |〈f ∗ψ,ϕ〉|= |〈f, ψ̌∗ϕ〉| ≤Cψ for ϕ ∈BE . So, |〈f ∗ψ,ϕ〉| ≤

Cψ‖ϕ‖E , for all ϕ ∈ D∗(Rd). Since D∗(Rd) is dense in E, we obtain f ∗ ψ ∈ E′,

for each ψ ∈D∗(Rd).

(ii) ⇒ (iv). Let Ω be a bounded open symmetric neighborhood of 0 in R
d,

and set K =Ω. For arbitrary but fixed ψ ∈D∗
K we have 〈f ∗ ϕ̌, ψ̌〉= 〈f ∗ψ,ϕ〉. We

obtain that the set {〈f ∗ ϕ̌, ψ̌〉 | ϕ ∈BE} is bounded in C, that is, {f ∗ ϕ̌ | ϕ ∈BE}
is weakly bounded in D′∗

K ; hence, it is equicontinuous. Using the same technique

as in the proof of Proposition 3.1, we obtain that there exists r > 0 such that

for each ρ ∈ D(Mp)
Ω,r there exists Cρ > 0 (there exists (rp) ∈R such that for each

ρ ∈ D{Mp}
Ω,(rp)

there exists Cρ > 0) satisfying |〈f ∗ ρ,ϕ〉| ≤ Cρ for all ϕ ∈ BE . The

density of D∗(Rd) in E implies that f ∗ ρ ∈ E′ for each ρ ∈ D(Mp)
Ω,r (for each

ρ ∈ D{Mp}
Ω,(rp)

). The parametrix of Komatsu implies the existence of u ∈ D(Mp)
Ω,r ,

ψ ∈ D(Mp)(Ω), and ultradifferential operator P (D) of class (Mp) (the existence
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of u ∈D{Mp}
Ω,(rp)

, ψ ∈D{Mp}(Ω), and ultradifferential operator P (D) of class {Mp})
satisfying f = P (D)(u ∗ f) +ψ ∗ f . This gives the desired representation.

(iv) ⇒ (i). This is obvious.

(ii) ⇒ (v). Proceed as in (ii) ⇒ (iv) to obtain f = P (D)(u ∗ f) + ψ ∗ f for

some u ∈D(Mp)
Ω,r , ψ ∈D(Mp)(Ω), and ultradifferential operator P (D) of class (Mp)

(for some u ∈D{Mp}
Ω,(rp)

, ψ ∈D{Mp}(Ω), and ultradifferential operator P (D) of class

{Mp}). Moreover, by using Lemma 5.4, one can easily see from the proof of (ii) ⇒
(iv) that we can choose r such that D(Mp)

Ω,r ⊆ Ě (we can choose (rp) such that

D{Mp}
Ω,(rp)

⊆ Ě). Observe that the composition of ultradifferential operators of class

* is again an ultradifferential operator of class *. We obtain

f = P (D)
(
u ∗

(
P (D)(u ∗ f) +ψ ∗ f

))
+ψ ∗

(
P (D)(u ∗ f) +ψ ∗ f

)
= P (D)

(
P (D)

(
u ∗ (u ∗ f)

))
+ P (D)

(
u ∗ (ψ ∗ f)

)
+ P (D)

(
ψ ∗ (u ∗ f)

)
+ψ ∗ (ψ ∗ f)

and u ∗ (u ∗ f), u ∗ (ψ ∗ f), ψ ∗ (u ∗ f), ψ ∗ (ψ ∗ f) ∈E′
∗ ∩UCω by the definition of

E′
∗ and Proposition 4.5. If E is reflexive, then all of these are in fact elements of

Cω by the same proposition.

The proofs of (v) ⇒ (i), (iv) ⇒ (iii), and (iii) ⇒ (ii) are obvious. �

PROPOSITION 6.3

Let f :D∗(Rd)→D′∗(Rd) be linear and continuous. The following statements are

equivalent.

(i) f commutates with every translation; that is, 〈f , T−hϕ〉 = Th〈f , ϕ〉, for
all h ∈R

d and ϕ ∈D∗(Rd).

(ii) f commutates with every convolution; that is, 〈f , ψ ∗ϕ〉= ψ̌ ∗ 〈f , ϕ〉, for
all ψ,ϕ ∈D∗(Rd).

(iii) There exists f ∈D′∗(Rd) such that 〈f , ϕ〉= f ∗ ϕ̌ for every ϕ ∈D∗(Rd).

Proof

(i) ⇒ (ii). Let ϕ,ψ ∈D∗(Rd), and denote K = suppψ. Then the Riemann sums

Lε(·) =
∑

y∈Zd,εy∈K

ψ(εy)ϕ(· − εy)εd =
∑

y∈Zd,εy∈K

ψ(εy)T−εyϕε
d

converge to ψ ∗ϕ in D∗(Rd), when ε→ 0+. The continuity of f implies

〈f , ψ ∗ϕ〉= lim
ε→0+

∑
y∈Zd,εy∈K

ψ(εy)〈f , T−εyϕ〉εd = lim
ε→0+

∑
y∈Zd,εy∈K

ψ(εy)Tεy〈f , ϕ〉εd,

in D′∗(Rd). Let χ ∈D∗(Rd). Then〈
lim

ε→0+

∑
y∈Zd,εy∈K

ψ(εy)Tεy〈f , ϕ〉εd, χ
〉
=
〈
〈f , ϕ〉, ψ ∗ χ

〉
=
〈
ψ̌ ∗ 〈f , ϕ〉, χ

〉
.

(ii) ⇒ (iii). Let Ω be an arbitrary symmetric bounded open neighborhood

of 0 in R
d, and set K =Ω. Take δm ∈D∗(Rd) as in the proof of Proposition 3.1.
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For every ψ ∈D∗(Rd) we have that ψ ∗ δm → ψ in D∗(Rd) when m→∞. Also,

(6.2) ψ̌ ∗ 〈f , δm〉= 〈f , ψ ∗ δm〉 → 〈f , ψ〉 when m→∞.

First we will prove that the set {〈f , δm〉 |m ∈ Z+} is an equicontinuous subset of

D′∗(Rd) or, equivalently, bounded in D′∗(Rd) (since D∗(Rd) is barreled). By (6.2),

for each fixed ψ ∈D∗(Rd), the set {ψ ∗ 〈f , δm〉 |m ∈ Z+} is bounded in D′∗(Rd).

Denote by Gm the bilinear mapping (ϕ,ψ) �→ 〈f , δm〉 ∗ϕ ∗ψ|K , Gm :D∗
K ×D∗

K →
C(K). For fixed ψ ∈ D∗

K , the mappings Gm,ψ defined by ϕ �→ 〈f , δm〉 ∗ ϕ ∗ ψ|K ,

D∗
K →C(K) are linear and continuous, and the set {Gm,ψ |m ∈ Z+} is pointwise

bounded in L(D∗
K ,C(K)). Since D∗

K is barreled, this set is equicontinuous. Sim-

ilarly, for each fixed ϕ ∈ D∗
K , the mappings ψ �→ 〈f , δm〉 ∗ ϕ ∗ ψ|K , D∗

K → C(K)

form an equicontinuous subset of L(D∗
K ,C(K)). We obtain that the set of bilin-

ear mappings {Gm | m ∈ Z+} is separately equicontinuous, and since D(Mp)
K is

an (F )-space and D{Mp}
K is a barreled (DF )-space, it is equicontinuous (see [16,

Theorem 2, p. 158] for the case of (F )-spaces and [16, Theorem 11, p. 161] for

the case of barreled (DF )-spaces). We will continue the proof by considering

only the {Mp} case; the (Mp) case can be treated similarly. By the equiconti-

nuity of the mappings Gm, m ∈ Z+, there exist C > 0 and (kp) ∈R such that,

for all ϕ,ψ ∈D{Mp}
K , m ∈ Z+, we have ‖Gm(ϕ,ψ)‖L∞(K) ≤C‖ϕ‖K,(kp)‖ψ‖K,(kp).

Let rp = kp−1/H , for p ∈ N, p≥ 2, and set r1 =min{1, r2}. Then (rp) ∈R. For

χ ∈ D{Mp}
Ω,(rp)

, for large enough j, χ ∗ δj ∈ D{Mp}
K , and by a similar technique as

in the proof of Proposition 3.1, one can prove that χ ∗ δj → χ in D{Mp}
K,(kp)

, where

δj ∈ D∗(Rd), j ∈ Z+, is the same sequence as that used in the proof of Proposi-

tion 3.1. Let ϕ,ψ ∈D{Mp}
Ω,(rp)

, and set ϕj = ϕ ∗ δj , ψj = ψ ∗ δj . Since∥∥Gm(ϕj , ψj)−Gm(ϕs, ψs)
∥∥
L∞(K)

≤
∥∥Gm(ϕj , ψj −ψs)

∥∥
L∞(K)

+
∥∥Gm(ϕj −ϕs, ψs)

∥∥
L∞(K)

≤C
(
‖ϕj‖K,(kp)‖ψj − ψs‖K,(kp) + ‖ϕj −ϕs‖K,(kp)‖ψs‖K,(kp)

)
,

it follows that, for each fixed m, Gm(ϕj , ψj) is a Cauchy sequence in C(K);

hence, it must converge. On the other hand, 〈f , δm〉 ∗ϕj ∗ψj → 〈f , δm〉 ∗ϕ ∗ψ in

D′{Mp}(Rd), and since C(K) is continuously injected into D′{Mp}
K , it follows that

Gm(ϕj , ψj) converges to 〈f , δm〉 ∗ ϕ ∗ ψ|K in D′{Mp}
K . (Here the restriction to K

is in fact the transposed mapping of the inclusion D{Mp}
K →D{Mp}(Rd).) Thus,

Gm(ϕj , ψj)→ 〈f , δm〉 ∗ ϕ ∗ ψ|K in C(K). By the arbitrariness of ϕ,ψ ∈ D{Mp}
Ω,(rp)

and by passing to the limit in the inequality ‖Gm(ϕj , ψj)‖L∞(K) ≤C‖ϕj‖K,(kp) ×
‖ψj‖K,(kp), we have ‖〈f , δm〉 ∗ ϕ ∗ ψ|K‖L∞(K) ≤ C‖ϕ‖K,(kp)‖ψ‖K,(kp) for all

m ∈ Z+, ϕ,ψ ∈ D{Mp}
Ω,(rp)

. For the fixed (rp) ∈R, by the parametrix of Komatsu,

there exist ultradifferential operator P (D) of class {Mp}, u ∈ D{Mp}
Ω,(rp)

, and

ψ ∈D{Mp}(Ω) such that 〈f , δm〉= P (D)(〈f , δm〉 ∗u)+ 〈f , δm〉 ∗ψ. Applying again

the parametrix we have

〈f , δm〉= P (D)P (D)
(
〈f , δm〉 ∗ u ∗ u

)
+ 2P (D)

(
〈f , δm〉 ∗ψ ∗ u

)
+ 〈f , δm〉 ∗ψ ∗ψ.
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Since each of the sets {〈f , δm〉∗u∗u|K |m ∈ Z+}, {〈f , δm〉∗ψ∗u|K |m ∈ Z+}, and
{〈f , δm〉 ∗ψ ∗ψ|K |m ∈ Z+} is bounded in D′{Mp}

K and, hence, also in D′{Mp}(Ω),

we obtain that {〈f , δm〉|Ω |m ∈N} is bounded in D′{Mp}(Ω). By the arbitrariness

of Ω it follows that this set is bounded in D′{Mp}(Rd). Hence, it is relatively

compact (D′{Mp}(Rd) is Montel); thus, there exists a subsequence 〈f , δms〉 which
converges to an f in D′{Mp}(Rd). Since 〈f , δms ∗ χ〉 = 〈f , δms〉 ∗ χ̌ for each χ ∈
D{Mp}(Rd), after passing to the limit we have 〈f , χ〉= f ∗ χ̌.

(iii) ⇒ (i). This is obvious. �

We also have the following interesting corollary.

COROLLARY 6.4

Let f ∈ D′∗(Rd,E′
σ(E′,E)), that is, a continuous linear mapping f : D∗(Rd) →

E′
σ(E′,E). If f commutes with every translation in the sense of Proposition 6.3,

then there exists f ∈D′∗
E′

∗
such that f is of the form

(6.3) 〈f , ϕ〉= f ∗ ϕ̌, ϕ ∈D∗(Rd).

Proof

Since the inclusion E′
σ(E′,E) → D′∗

σ (Rd) is continuous (as the transposed map-

ping of D∗(Rd) ↪→ E), f :D∗(Rd)→D′∗
σ (Rd) is also continuous. For B bounded

in D∗(Rd), f(B) is bounded in D′∗
σ (Rd) and, hence, bounded in D′∗(Rd). Since

D∗(Rd) is bornological, f :D∗(Rd)→D′∗(Rd) is continuous. Now the claim fol-

lows from Proposition 6.3 and Theorem 6.1. �

If F is a complete LCS, then we define S ′∗(Rd, F ) = S ′∗(Rd)εF . Since S ′∗(Rd) is

nuclear, it satisfies the weak approximation property and we obtain Lb(S∗(Rd),

F ) ∼= S ′∗(Rd)εF ∼= S ′∗(Rd) ⊗̂ F . (For the definition of the ε tensor product,

the definition of the weak approximation property, and their connection, we refer

to [26] and [13].)

We now embed the ultradistribution space D′∗
E′

∗
into the space of E′-valued

tempered ultradistributions as follows. Define first the continuous injection ι :

S ′∗(Rd)→S ′∗(Rd,S ′∗(Rd)), where ι(f) = f is given by (6.3). Observe the restric-

tion of ι to D′∗
E′

∗
, ι :D′∗

E′
∗
→S ′∗(Rd,E′). (The range of ι is a subset of S ′∗(Rd,E′)

by Theorem 6.1 and the remark after it.) Let B1 be an arbitrary bounded sub-

set of S∗(Rd). The set B = {ψ ∗ ϕ | ϕ ∈ B1,‖ψ‖E ≤ 1} is bounded in D∗
E (by

Theorem 4.2(e)). For f ∈D′∗
E′

∗
,

sup
ϕ∈B1

∥∥〈f , ϕ〉∥∥
E′ = sup

ϕ∈B1

‖f ∗ ϕ̌‖E′ = sup
ϕ∈B1

sup
‖ψ‖E≤1

∣∣〈f,ψ ∗ϕ〉
∣∣= sup

χ∈B

∣∣〈f,χ〉∣∣.
Hence, the mapping ι is continuous. Furthermore, by Theorem 6.1(iii), ι(D′

E′
∗
)⊆

S ′∗(Rd,E′
∗) and Proposition 6.3 tells us that ι(D′∗

E′
∗
) is precisely the subspace

of S ′(Rd,E′
∗) consisting of those f ’s which commute with all translations in the

sense of Proposition 6.3. Since the translations Th are continuous operators on
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E′
∗, we actually obtain that the range ι(D′∗

E′
∗
) is a closed subspace of S ′∗(Rd,E′

∗).

Note that we may consider D′∗(Rd) instead of S ′∗(Rd) in these embeddings.

COROLLARY 6.5

Let B′ ⊆D′∗
E′

∗
. The following properties are equivalent.

(i) B′ is a bounded subset of D′∗
E′

∗
.

(ii) ι(B′) is bounded in S ′∗(Rd,E′) (or equivalently in S ′∗(Rd,E′
∗)).

(iii) There exist a bounded subset B̃ of E′ and an ultradifferential operator

P (D) of class * such that each f ∈B′ can be represented as f = P (D)g + g1 for

some g, g1 ∈ B̃.

(iv) There are C > 0 and a finite set J such that every f ∈B′ admits a repre-

sentation (6.1) with continuous functions fk ∈E′
∗ ∩ UCω satisfying the uniform

bounds ‖fk‖E′ ≤ C and ‖fk‖∞,ω ≤ C. (If E is reflexive, then one may choose

fk ∈E′ ∩Cω.)

Proof

(i) ⇒ (ii). This follows from the continuity of the mapping ι.

(ii)⇒ (iii). Let Ω be a bounded open symmetric neighborhood of 0 in R
d, and

set K =Ω. Let ι(B′) be bounded in S ′∗(Rd,E′) = Lb(S∗(Rd),E′). Then it is an

equicontinuous subset of Lb(D∗
K ,E′). We will continue the proof in the {Mp} case;

the (Mp) case is similar. There exist (kp) ∈R and C > 0 such that ‖〈f , ϕ〉‖E′ ≤
C‖ϕ‖K,(kp) for all f ∈ ι(B′) and ϕ ∈D{Mp}

K , that is, ‖f ∗ ϕ̌‖E′ ≤C‖ϕ‖K,(kp) for all

f ∈B′ and ϕ ∈D{Mp}
K . By a similar technique as in the proof of Proposition 3.1,

one obtains that there exists (rp) ∈R such that ‖f ∗ ϕ̌‖E′ ≤C‖ϕ‖K,(kp) for all f ∈
B′, ϕ ∈D{Mp}

Ω,(rp)
. For the fixed (rp) ∈R, by the parametrix of Komatsu, there exist

an ultradifferential operator P (D) of class {Mp}, u ∈D{Mp}
Ω,(rp)

, and ψ ∈D{Mp}(Ω)

such that f = P (D)(f ∗ u) + f ∗ ψ. By what we proved above, {f ∗ u | f ∈ B′}
and {f ∗ψ | f ∈B′} are bounded in E′ and (iii) follows.

(ii) ⇒ (iv). Proceed as in (ii) ⇒ (iii) and then use the same technique as in

the proof of (ii) ⇒ (v) of Theorem 6.1.

The proofs of (iii) ⇒ (i) and (iv) ⇒ (i) are obvious. �

COROLLARY 6.6

Let {fj}∞j=0 ⊆D′∗
E′

∗
(or similarly, a filter with a countable or bounded basis). The

following three statements are equivalent.

(i) {fj}∞j=0 is (strongly) convergent in D′∗
E′

∗
.

(ii) {ι(fj)}∞j=0 is convergent in S ′∗(Rd,E′) (or equivalently in S ′∗(Rd,E′
∗)).

(iii) There exist convergent sequences {gj}j ,{g̃j}j in E′ and an ultradiffer-

ential operator P (D) of class ∗ such that each fj = P (D)gj + g̃j .

(iv) There exist N ∈ Z+, sequences {g(k)j }j , k = 1, . . . ,N , in E′
∗∩UCω, each

convergent in E′
∗ and in L∞

ω , and ultradifferential operators Pk(D), k = 1, . . . ,N ,
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of class ∗ such that fj =
∑N

k=1Pk(D)g
(k)
j . (If E is reflexive, then one may choose

g
(k)
j ∈E′ ∩Cω.)

Proof

The proof is similar to the proof of the above corollary and we omit it. �

Observe that Corollaries 6.5 and 6.6 are still valid if S ′∗(Rd) is replaced by

D′∗(Rd).

At the beginning of Section 5, we defined the spaces D̃{Mp},(rp)
E and D̃{Mp}

E .

As we saw there, D{Mp}
E and D̃{Mp}

E are equal as sets and the former has a stronger

topology than the latter. In fact we will prove that these are also topologically

isomorphic.

THEOREM 6.7

The spaces D{Mp}
E and D̃{Mp}

E are isomorphic as LCSs.

Proof

By the above considerations, it is enough to prove that the topology of D̃{Mp}
E is

stronger than the topology of D{Mp}
E . Let V be a neighborhood of 0 in D{Mp}

E .

SinceD{Mp}
E is complete and barreled, its topology is in fact the topology b(D′{Mp}

E′
∗

,

D{Mp}
E ). Hence, we can assume that V =B◦ for bounded set B in D′{Mp}

E′
∗

(B◦ is

the polar of B), that is, V = {ϕ ∈D{Mp}
E | supT∈B |〈T,ϕ〉| ≤ 1}. By Corollary 6.5

there exists C > 0 and a finite set J such that every T ∈B admits a representation

(6.1) with continuous functions fk ∈ E′
∗ ∩ UCω satisfying the uniform bounds

‖fk‖E′ ≤C. Since the Pk(D)’s are continuous on D̃{Mp}
E (Proposition 5.3), there

exist (rp) ∈R and C1 > 0 such that ‖Pk(−D)ϕ‖E ≤ C1‖ϕ‖E,(rp) for all k ∈ J ,

ϕ ∈ D̃{Mp}
E . Set N = |J |, and let W = {ϕ ∈ D̃{Mp}

E | ‖ϕ‖E,(rp) ≤ 1/(CC1N)} be

a neighborhood of 0 in D̃{Mp}
E . If ϕ ∈ W , then for T ∈ B one easily obtains

|〈T,ϕ〉| ≤ 1, that is, ϕ ∈ V . Hence, we obtain the desired result. �

When E is reflexive, the space D∗
E is also reflexive. Furthermore, we have the

following result.

PROPOSITION 6.8

If E is reflexive, then D(Mp)
E and D′{Mp}

E′ are (FS∗)-spaces, and D{Mp}
E and

D′(Mp)
E are (DFS∗)-spaces. Consequently, they are reflexive. In addition, S∗(Rd)

is dense in D′∗
E′ .

Proof

Let ˜̃D{Mp},m
E be the (B)-space of all ϕ ∈ D′∗(Rd) such that Dαϕ ∈ E, ∀α ∈ N

d,

and
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‖ϕ‖E,m =
(∑

α

m2|α|

M2
α

‖Dαϕ‖2E
)1/2

<∞.

Then we have the obvious continuous inclusions ˜̃D{Mp},m
E → D{Mp},m

E and

D{Mp},2m
E → ˜̃D{Mp},m

E . Hence, D(Mp)
E = lim ←−

m→∞
˜̃D{Mp},m
E and D{Mp}

E =

lim −→
m→0

˜̃D{Mp},m
E . If l2m(E) is the (B)-space of all (ψα)α∈Nd with ψα ∈ E and

norm ‖(ψα)α‖l2m(E) = (
∑

α∈Nd
m2|α|

M2
α
‖ψα‖2E)1/2, then l2m(E) is reflexive since E

is (see [15, Theorem 2, p. 360]). Observe that ˜̃D{Mp},m
E is isometrically injected

into a closed subspace of l2m(E) by the mapping ϕ �→ (Dαϕ)α; hence,
˜̃D{Mp},m
E

is reflexive. Thus, D(Mp)
E is an (FS∗)-space, and D{Mp}

E is a (DFS∗)-space. In

particular, they are reflexive, D′(Mp)
E is a (DFS∗)-space, and D′{Mp}

E is an (FS∗)-

space. Now, the density of S∗(Rd) in D′∗
E′ is an easy consequence of the Hahn–

Banach theorem. �

7. The weighted spaces D∗
Lp

η
and D′∗

Lp
η

As examples, in this section we discuss the weighted spaces D∗
Lp

η
and D′∗

Lp
η
, which

are particular examples of the spaces D∗
E and D′∗

E′
∗
. They turn out to be important

in the study of properties of the general D′∗
E′

∗
and general convolution in D′∗(Rd)

(see Section 8).

Let η be an ultrapolynomially bounded weight of class ∗, that is, a (Borel)

measurable function η : Rd → (0,∞) that fulfills the requirement η(x + h) ≤
Cη(x)eM(τ |h|), for some C, τ > 0 (for every τ > 0 and a corresponding C =Cτ >

0). An interesting nontrivial example in the (Mp) case is given by the function

η(x) = eη̃(|x|) where η̃ : [0,∞)→ [0,∞) is defined by η̃(ρ) = ρ
∫∞
ρ

M(s)
s2 ds. To see

this, observe that η̃ is a differentiable function with nonnegative monotonically

decreasing derivative. Hence, η̃ is a concave monotonically increasing function

and η̃(0) = 0. Also, it is easy to see that M(ρ)≤ η̃(ρ) and η̃(ρ+λ)≤ η̃(ρ)+ η̃(λ),

for all ρ,λ > 0. By (M.3) and [11, Proposition 4.4] there exist C,C1 > 0 such

that η̃(ρ) ≤ M(Cρ) + C1, for all ρ > 0. For the {Mp} case take (rp) ∈ R, and

perform the same construction with the sequence Np defined by N0 = 1 and

Np =Mp

∏p
j=1 rj , p ∈ Z+, which obviously satisfies (M.1) and (M.3) since Mp

does.

For 1≤ p <∞ we denote as Lp
η the space of measurable functions g such that

‖ηg‖p <∞. Clearly Lp
η are translation-invariant spaces of tempered ultradistri-

butions for p ∈ [1,∞). In the case p=∞, we define L∞
η via the norm ‖g/η‖∞;

the axiom (I) clearly fails for L∞
η since D∗(Rd) is not dense in L∞

η . In the next

considerations the number q always stands for p−1 + q−1 = 1 (p ∈ [1,∞]). Of

course (Lp
η)

′ = Lq
η−1 if 1 < p < ∞ and (L1

η)
′ = L∞

η . In view of Proposition 4.4,

the space E′
∗ corresponding to E = Lp

η−1 is E′
∗ = Lq

η whenever 1 < p < ∞. On

the other hand, Theorem 4.4(iii) gives that E′
∗ = UCη for E = L1

η , where UCη is

defined as in (4.9) with ω replaced by η. We will also consider the Banach space

Cη = {g ∈C(Rd) | lim|x|→∞ g(x)/η(x) = 0} ⊂ UCη ⊂ L∞
η .
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The weight function of Lp
η can be explicitly determined as in [4, Proposi-

tion 10].

PROPOSITION 7.1

Let ωη(h) := ess supx∈Rd η(x+ h)/η(x). Then

‖T−h‖L(Lp
η) =

{
ωη(h) if p ∈ [1,∞),

ωη(−h) if p=∞.

Consequently, the Beurling algebra associated to Lp
η is L1

ωη
if p= [1,∞) and L1

ω̌η

if p=∞.

Proof

See the proof of [4, Proposition 10]. �

Observe that, when the logarithm of η is a subadditive function with η(0) = 1,

one easily obtains from Proposition 7.1 that ωη = η (almost everywhere).

Consider now the spaces D∗
Lp

η
for p ∈ [1,∞] and D̃{Mp}

L∞
η

defined as in Section 5

by taking E = Lp
η . Once again, the case p = ∞ is an exception since D∗(Rd)

is not dense in D∗
L∞

η
nor in D̃{Mp}

L∞
η

. Nevertheless, we can repeat the proof of

Proposition 5.1 to prove that D{Mp}
L∞

η
is regular and complete. One can show

that each ultradifferential operator of ∗ class acts continuously on D∗
L∞

η
and each

ultradifferential operator of class {Mp} acts continuously on D̃{Mp}
L∞

η
(see the proof

of Proposition 5.3). Obviously D{Mp}
L∞

η
is continuously injected into D̃{Mp}

L∞
η

, and

by using [13, Lemma 3.4] and employing a similar technique as in the proof of

Proposition 5.1, one can prove that this inclusion is in fact surjective. We will

also use the notation B∗
η for the space D∗

L∞
η

and we denote by Ḃ∗
η the closure of

D∗(Rd) in B∗
η . We denote by ˙̃B{Mp}

η the closure of D{Mp}(Rd) in D̃{Mp}
L∞

η
. It is

important to notice that in the case η = 1 these spaces were considered in [21]

(see also [3]).

We immediately see that Ḃ(Mp)
η =D(Mp)

Cη
. In the {Mp} case this is not trivial.

The following theorem gives that result.

THEOREM 7.2

The spaces D{Mp}
Cη

, Ḃ{Mp}
η , and ˙̃B{Mp}

η are isomorphic to each other as LCSs.

Proof

By Proposition 5.1, D{Mp}
Cη

is a complete barreled (DF )-space. First we prove that

D{Mp}
Cη

and ˙̃B{Mp}
η are isomorphic LCSs. Observe that D{Mp}

Cη
⊆ D̃{Mp}

L∞
η

. Moreover,

by Theorem 6.7, the topology of D{Mp}
Cη

is the same as the induced topology on

D{Mp}
Cη

by D̃{Mp}
L∞

η
. Since D{Mp}(Rd) is dense in D{Mp}

Cη
and ˙̃B{Mp}

η is the closure of
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D{Mp}(Rd) in the complete LCS D̃{Mp}
L∞

η
, the spaces D{Mp}

Cη
and ˙̃B{Mp}

η are isomor-

phic LCSs and the canonical inclusion D{Mp}
Cη

→ D̃{Mp}
L∞

η
gives the isomorphism.

Now, observe that the inclusion D{Mp}
Cη

→D{Mp}
L∞

η
is continuous. Since D{Mp}(Rd)

is dense in D{Mp}
Cη

and Ḃ{Mp}
η , D{Mp}

Cη
⊆ Ḃ{Mp}

η and the inclusion is continuous.

Also, since the inclusion D{Mp}
L∞

η
→ D̃{Mp}

L∞
η

is continuous and D{Mp}(Rd) is dense

in Ḃ{Mp}
η and ˙̃B{Mp}

η , we obtain that Ḃ{Mp}
η ⊆ ˙̃B{Mp}

η and the inclusion is con-

tinuous. But, since we already proved that the inclusion D{Mp}
Cη

→ ˙̃B{Mp}
η is a

topological isomorphism onto, we obtain that the inclusion D{Mp}
Cη

→ Ḃ{Mp}
η is as

well. �

Proposition 5.5, together with the estimate (5.4) in the (Mp) case and with

the estimate (5.5) in the {Mp} case, implies D∗
Lp

η
↪→ Ḃ∗

ω̌η
for every p ∈ [1,∞). It

follows from Proposition 6.8 that D∗
Lp

η
is reflexive when p ∈ (1,∞).

In accordance with Section 6, the weighted spaces D′∗
Lp

η
are defined as D′∗

Lp
η
=

(D∗
Lq

η−1
)′ where p−1 + q−1 = 1 if p ∈ (1,∞]; if p= 1, then D′∗

L1
η
= (D∗

Cη
)′ = (Ḃ∗

η)
′.

We write B′∗
η =D′∗

L∞
η

and Ḃ′∗
η for the closure of D∗(Rn) in B′∗

η .

The dual of E =Cη is the space M1
η consisting of all elements ν ∈ (Cc(R

d))′

which are of the form dν = η−1 dμ, for μ ∈M1 (i.e., a finite measure), and the

norm is ‖ν‖M1
η
= ‖μ‖M1 . Observe that then E′

∗ = L1
η . In this case, by using

Theorem 6.1, similarly as in the case of distributions (see [25, p. 99], [26, p. 196]),

one can prove that the bidual of Ḃ(Mp)
η is isomorphic to D(Mp)

L∞
η

as LCSs and that

Ḃ(Mp)
η is a distinguished (F )-space, that is, D′(Mp)

L1
η

is barreled and bornological.

In the {Mp} case, observe that D′{Mp}
L1

η
is an (F )-space as the strong dual of a

barreled (DF )-space. Moreover, we have the following theorem.

THEOREM 7.3

The bidual of Ḃ{Mp}
η is isomorphic to D{Mp}

L∞
η

as LCSs. Moreover, D{Mp}
L∞

η
and

D̃{Mp}
L∞

η
are isomorphic LCSs.

Proof

First note that η can be assumed to be continuous. (The continuous weight

η1 = η ∗ ϕ defines equivalent norms if we choose ϕ ∈ D(Rd) to be nonnegative

with
∫
Rd ϕ(x)dx= 1.) We already saw that D{Mp}

L∞
η

and D̃{Mp}
L∞

η
are equal as sets.

First we prove that the bidual of Ḃ{Mp}
η is isomorphic to D̃{Mp}

L∞
η

. Since E ′{Mp}(Rd)

is continuously and densely injected into D′{Mp}
L1

η
(the density can be proved

by using cutoff functions and Theorem 6.1), we have the continuous inclusion

(D′{Mp}
L1

η
)′b →E{Mp}(Rd) (where b stands for the strong topology). Let (rp) ∈R,

and set Rα =
∏|α|

j=1 rj . Observe the set B = { (η(a))−1Dαδa
MαRα

| a ∈ R
d, α ∈ N

d}. One
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easily proves that it is a bounded subset of D′{Mp}
L1

η
. Hence, if ψ ∈ (D′{Mp}

L1
η

)′b, then

ψ(B) is bounded in C and hence

sup
a,α

|(η(a))−1Dαψ(a)|
MαRα

= sup
T∈B

∣∣〈ψ,T 〉∣∣<∞.

We obtain that (D′{Mp}
L1

η
)′ ⊆D{Mp}

L∞
η

and the inclusion (D′{Mp}
L1

η
)′b →D̃{Mp}

L∞
η

is con-

tinuous.

Let ψ ∈D{Mp}
L∞

η
. If T ∈ D′{Mp}

L1
η

, then by Theorem 6.1 there exist an ultradif-

ferential operator P (D) of {Mp} class and f, f1 ∈M1
η such that T = P (D)f +f1.

Let df = η−1 dg and df1 = η−1 dg1 for g, g1 ∈M1. Define Sψ by

Sψ(T ) =

∫
Rd

P (−D)ψ(x)

η(x)
dg+

∫
Rd

ψ(x)

η(x)
dg1.

Obviously, the integrals on the right-hand side are absolutely convergent. We will

prove that Sψ is a well-defined element of (D′{Mp}
L1

η
)′. Let P̃ (D), f̃ , f̃1 ∈M1

η be

such that T = P̃ (D)f̃ + f̃1, and let df̃ = η−1 dg̃ and df̃1 = η−1 dg̃1 for g̃, g̃1 ∈M1.

Let χ ∈ D{Mp}(Rd) be a function such that χ = 1 on the closed unit ball with

center at 0 and χ = 0 on {x ∈ R
d | |x| > 2}. Set ψn(x) = χ(x/n)ψ(x), n ∈ Z+.

Then it is easy to verify that∫
Rd

P (−D)ψn(x)

η(x)
dg →

∫
Rd

P (−D)ψ(x)

η(x)
dg,

∫
Rd

ψn(x)

η(x)
dg1 →

∫
Rd

ψ(x)

η(x)
dg1,

∫
Rd

P̃ (−D)ψn(x)

η(x)
dg̃ →

∫
Rd

P̃ (−D)ψ(x)

η(x)
dg̃,

∫
Rd

ψn(x)

η(x)
dg̃1 →

∫
Rd

ψ(x)

η(x)
dg̃1,

when n→∞. Also, observe that for each n ∈ Z+∫
Rd

P (−D)ψn(x)

η(x)
dg+

∫
Rd

ψn(x)

η(x)
dg1 =

∫
Rd

P̃ (−D)ψn(x)

η(x)
dg̃+

∫
Rd

ψn(x)

η(x)
dg̃1,

since both terms are equal to 〈T,ψn〉 in the sense of the duality 〈D{Mp}(Rd),

D′{Mp}(Rd)〉. Hence, Sψ is a well-defined mapping D′{Mp}
L1

η
→ C, since it does

not depend on the representation of T . To prove that it is continuous, it is

enough to prove that it maps bounded sets into bounded sets, since D′{Mp}
L1

η
is an

(F )-space. Let B be a bounded set in D′{Mp}
L1

η
. By Corollary 6.5, there exist an

ultradifferential operator P (D) of class {Mp} and bounded subset B1 of M1
η such

that each T ∈B can be represented by T = P (D)f + f1 for some f, f1 ∈B1. By

the way we defined Sψ , it is easy to verify that Sψ(B) is bounded in C, so Sψ ∈
(D′{Mp}

L1
η

)′. We obtain that (D′{Mp}
L1

η
)′ = D̃{Mp}

L∞
η

as sets and (D′{Mp}
L1

η
)′b has stronger

topology than the latter. Let V = B◦ be a neighborhood of 0 in (D′{Mp}
L1

η
)′b for

B a bounded subset of D′{Mp}
L1

η
. By Corollary 6.5, there exist an ultradifferential

operator P (D) of class {Mp} and a bounded subset B1 of M1
η such that each

T ∈B can be represented by T = P (D)f + f1 for some f, f1 ∈B1. There exists

C1 ≥ 1 such that ‖g̃‖M1
η
≤ C1 for all f̃ ∈B1. Also, since P (D) =

∑
α cαD

α is of
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{Mp} class, there exist (rp) ∈R and C2 ≥ 1 such that |cα| ≤ C2/(MαRα) (see

the proof of Proposition 5.3). Observe the neighborhood of 0 defined as W =

{ψ ∈ D̃{Mp}
L∞

η
| supx,α

|(η(x))−1Dαψ(x)|
Mα

∏|α|
j=1(rj/2)

≤ 1
2C1C2C3

} in D̃{Mp}
L∞

η
, where we set C3 =∑

α 2
−|α|. One easily verifies that W ⊆ V . We obtain that (D′{Mp}

L1
η

)′b and D̃{Mp}
L∞

η

are isomorphic LCSs. Hence, D̃{Mp}
L∞

η
is a complete (DF )-space (since D′{Mp}

L1
η

is an

(F )-space). Obviously, the identity mapping D{Mp}
L∞

η
→ D̃{Mp}

L∞
η

is continuous and

bijective. Since D̃{Mp}
L∞

η
is a (DF )-space, to prove the continuity of the inverse

mapping it is enough to prove that its restriction to every bounded subset of

D̃{Mp}
L∞

η
is continuous (see [24, Corollary 6.7, p. 155]). If B is a bounded subset

of D̃{Mp}
L∞

η
, then for every (rp) ∈R, supψ∈B supα

‖Dαψ‖
L∞
η (Rd)

MαRα
<∞. Hence, by [13,

Lemma 3.4], there exists h > 0 such that supψ∈B supα
h|α|‖Dαψ‖

L∞
η (Rd)

Mα
<∞, that

is, B is bounded in D{Mp}
L∞

η
. Since every bounded subset of D{Mp}

L∞
η

is obviously

bounded in D̃{Mp}
L∞

η
, D{Mp}

L∞
η

and D̃{Mp}
L∞

η
have the same bounded sets. Let ψλ be a

bounded net in D̃{Mp}
L∞

η
which converges to ψ in D̃{Mp}

L∞
η

. Then there exist 0< h≤ 1

and C > 0 such that

sup
λ

sup
α

h|α|‖Dαψλ‖L∞
η

Mα
≤C and sup

α

h|α|‖Dαψ‖L∞
η

Mα
≤C.

Fix 0< h1 < h. Let ε > 0 be arbitrary but fixed. Take p0 ∈ Z+ such that (h1/h)
|α| ≤

ε/(2C) for all |α| ≥ p0. Since ψλ → ψ in D̃{Mp}
L∞

η
, for the sequence rp = p, p ∈ Z+,

there exists λ0 such that for all λ≥ λ0 we have supα
‖Dα(ψλ−ψ)‖L∞

η

MαRα
≤ ε

p0!
. Then

for |α|< p0, we have
h
|α|
1 ‖Dα(ψλ−ψ)‖L∞

η

Mα
≤ ε. For |α| ≥ p0, we have

h
|α|
1 ‖Dα(ψλ −ψ)‖L∞

η

Mα
≤ 2C

(h1

h

)|α|
≤ ε.

It follows that ψλ → ψ in D{Mp},h1

L∞
η

and hence in D{Mp}
L∞

η
. We obtain that the

topology induced by D̃{Mp}
L∞

η
on every bounded subset of D̃{Mp}

L∞
η

is stronger than

the topology induced by D{Mp}
L∞

η
. Hence, the identity mapping D̃{Mp}

L∞
η

→D{Mp}
L∞

η
is

continuous. �

8. Convolution of ultradistributions

We now apply our results to the study of the convolution of ultradistributions.

8.1. Convolution of Roumieu ultradistributions
As an application of Theorem 7.3 when η = 1, we obtain a significant improve-

ment to [22, Theorem 1] for the existence of convolution of Roumieu ultradis-

tributions. For the sake of completeness, we recall the definition of the space

Ḃ{Mp}
Δ (see [22, p. 97]) involved in this result. For a > 0, we define Ḃ{Mp}

a = {ϕ ∈
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Ḃ{Mp}(R2d) | suppϕ ⊆ Δa}, where Δa = {(x, y) ∈ R
2d | |x + y| ≤ a}. Provided

with the family of seminorms

ϕ �→ sup
α,β∈Nd

sup
(x,y)∈R2d

|Dα
xD

β
yϕ(x, y)|

Mα+β

∏|α|+|β
j=1 rj

, for (rp) ∈R,

Ḃ{Mp}
a becomes a LCS. We define as LCS Ḃ{Mp}

Δ = lim −→
a→∞ Ḃ{Mp}

a .

THEOREM 8.1 ([22])

Let S,T ∈D′{Mp}(Rd). The following statements are equivalent.

(i) The convolution of S and T exists.

(ii) S ⊗ T ∈ (Ḃ{Mp}
Δ )′.

(iii) For all ϕ ∈D{Mp}(Rd), (ϕ∗ Š)T ∈ D̃′{Mp}
L1 , and for every compact subset

K of Rd, (ϕ,χ) �→ 〈(ϕ ∗ Š)T,χ〉, D{Mp}
K × ˙̃B{Mp} −→ C is a continuous bilinear

mapping.

(iv) For all ϕ ∈D{Mp}(Rd), (ϕ∗ Ť )S ∈ D̃′{Mp}
L1 , and for every compact subset

K of Rd, (ϕ,χ) �→ 〈(ϕ ∗ Ť )S,χ〉, D{Mp}
K × ˙̃B{Mp} −→ C is a continuous bilinear

mapping.

(v) For all ϕ,ψ ∈D{Mp}(Rd), (ϕ ∗ Š)(ψ ∗ T ) ∈ L1(Rd).

We now have the following result.

THEOREM 8.2

Let S,T ∈D′{Mp}(Rd). Then the following conditions are equivalent.

(i) The convolution of S and T exists.

(iii)′ For all ϕ ∈D{Mp}(Rd), (ϕ ∗ Š)T ∈D′{Mp}
L1 .

(iv)′ For all ϕ ∈D{Mp}(Rd), (ϕ ∗ Ť )S ∈D′{Mp}
L1 .

Proof

We will prove that (iii) ⇔ (iii)′; the proof that (iv) ⇔ (iv)′ is similar. Observe

that (iii) ⇒ (iii)′ is trivial. Let (iii)′ hold. Then, by Theorem 7.2, D′{Mp}
L1 is an

(F )-space as the strong dual of a (DF )-space. The mapping χ �→ 〈(ϕ ∗ Š)T,χ〉,
Ḃ{Mp} →C is continuous for each fixed ϕ ∈D{Mp}

K since (ϕ ∗ Š)T ∈D′{Mp}
L1 . Fix

χ ∈ Ḃ{Mp}. Then the mapping ϕ �→ (ϕ∗ Š)T , D{Mp}
K →D′{Mp}(Rd) is continuous;

hence, it has a closed graph. But (ϕ ∗ Š)T ∈D′{Mp}
L1 and D′{Mp}

L1 is continuously

injected into D′{Mp}(Rd); hence, the mapping ϕ �→ (ϕ∗ Š)T , D{Mp}
K →D′{Mp}

L1 has

a closed graph. We have that D{Mp}
K is barreled. (In fact, it is a (DFS)-space.)

Since D′{Mp}
L1 is an (F )-space it is a Pták space; hence, this mapping is continuous

by the Pták closed graph theorem (see [24, Theorem 8.5, p. 166]). We obtain

that, for each fixed χ ∈ Ḃ{Mp}, the mapping ϕ �→ 〈(ϕ ∗ Š)T,χ〉, D{Mp}
K → C is

continuous. Hence, the bilinear mapping (ϕ,χ) �→ 〈(ϕ∗ Š)T,χ〉, D{Mp}
K ×Ḃ{Mp} →
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C is separately continuous. Since D{Mp}
K and Ḃ{Mp} are barreled (DF )-spaces,

this mapping is continuous. �

8.2. Relation between D′∗
E′

∗
, B′∗

ω , and D′∗
L1

ω̌
: Convolution and multiplication

We now study convolution and multiplicative products on D′∗
E′

∗
. For it, we first

need the following proposition.

PROPOSITION 8.3

The following dense and continuous inclusions hold: D∗
L1

ω
↪→D∗

E ↪→ Ḃ∗
ω̌, and the

inclusions D′∗
L1

ω̌
→ D′∗

E′
∗
→ B′∗

ω are continuous. If E is reflexive, then one has

D′∗
L1

ω̌
↪→D′∗

E′ ↪→ Ḃ′∗
ω .

Proof

The proof follows the same lines as in the distribution case from [4, Theorem 4]

(by using the analogous results for ultradistributions); we therefore omit it. �

By the above proposition and the fact that D∗(Rd) ↪→D′∗
L1

η
(which is easily obtain-

able by direct inspection) we have D∗
L1

ωη
↪→D∗

Lp
η
↪→ Ḃ∗

ω̌η
and D′∗

L1
ω̌η

↪→D′∗
Lp

η
↪→ Ḃ′∗

ωη

for 1≤ p <∞.

In addition, a direct consequence of this proposition is that the spaces D∗
E

are never Montel spaces when ω is a bounded weight. In fact, if ϕ ∈ D∗(Rd)

is nonnegative with ϕ(x) = 0 for |x| ≥ 1/2 and θ ∈ R
d is a unit vector, then

{(T−jθϕ)/ω(jθ)}j=0 is a bounded sequence in D∗
L1

ω
and, hence, in D∗

E without

any accumulation point. It is also easy to verify that Ḃ∗
η ↪→ Ḃ∗

ωη
and Ḃ′∗

η ↪→ Ḃ′∗
ωη

.

The multiplicative product mappings · :D′∗
Lp

η
×B∗

η →D′∗
Lp and · : B′∗

η ×D∗
Lp

η
→

D′∗
Lp are well defined and hypocontinuous for 1 ≤ p < ∞. In particular, fϕ is

an integrable ultradistribution whenever f ∈ B′∗
η and ϕ ∈ D∗

L1
η
or f ∈ D′∗

L1
η
and

ϕ ∈ B∗
η . If (1/r) = (1/p1)+ (1/p2) with 1≤ r, p1, p2 <∞, then it is also clear that

the multiplicative product · :D′∗
L

p1
η1

×D∗
L

p2
η2

→D′∗
Lr

η1η2

is hypocontinuous. Clearly,

the convolution product can always be canonically defined as a hypocontinu-

ous mapping in the following situations: ∗ :D′∗
Lp

η
×D′∗

L1
ω
→D′∗

Lp
η
, 1≤ p≤∞, and

∗ : Ḃ′∗
η ×D′∗

L1
ω
→ Ḃ′∗

η . Furthermore, such convolution products are continuous bilin-

ear mappings. In fact, in the Roumieu case these spaces are (F )-spaces and,

therefore, continuity is equivalent to separate continuity; for the Beurling case, it

follows from the equivalence between hypocontinuity and continuity for bilinear

mappings on (DF )-spaces (see [16, Theorem 10, p. 160]).

We can now define multiplication and convolution operations on D′∗
E′

∗
. In the

next proposition we denote by O′∗
C,b(R

d) the space O′∗
C (Rd) equipped with the

strong topology from the duality 〈O∗
C(R

d),O′∗
C (Rd)〉.

PROPOSITION 8.4

The convolution mappings ∗ :D′∗
E′

∗
×D′∗

L1
ω̌
→D′∗

E′
∗
and ∗ :D′∗

E′
∗
×O′∗

C,b(R
d)→D′∗

E′
∗
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are continuous. The convolution and multiplicative products are hypocontinuous

in the following cases: · :D′∗
E′

∗
×D∗

L1
ω
→D′∗

L1 , · :D′∗
L1

ω̌
×D∗

E →D′∗
L1 , and ∗ :D′∗

E′
∗
×

D∗
Ě
→B∗

ω. If E is reflexive, then we have ∗ :D′∗
E′ ×D∗

Ě
→ Ḃ∗

ω.

Proof

The proof goes along the same lines as in the distribution case from [4, Proposi-

tion 11] (again, by using the analogous results for ultradistributions). �

Note that, as a consequence of Proposition 8.4, fϕ is an integrable ultradis-

tribution (i.e., an element of D′∗
L1) if f ∈ D′∗

E′
∗
and ϕ ∈ D∗

L1
ω
or if f ∈ D′∗

L1
ω̌
and

ϕ ∈D∗
E .
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[10] J. Kisyński, On Cohen’s proof of the factorization theorem, Ann. Polon. Math.

75 (2000), 177–192. MR 1821164.

http://www.ams.org/mathscinet-getitem?mr=1970504
http://dx.doi.org/10.1016/S0022-247X(03)00006-4
http://dx.doi.org/10.1016/S0022-247X(03)00006-4
http://www.ams.org/mathscinet-getitem?mr=2347838
http://dx.doi.org/10.1142/9789812708786
http://dx.doi.org/10.1142/9789812708786
http://www.ams.org/mathscinet-getitem?mr=3371361
http://dx.doi.org/10.1007/s00605-014-0706-3
http://dx.doi.org/10.1007/s00605-014-0706-3
http://www.ams.org/mathscinet-getitem?mr=3373735
http://dx.doi.org/10.1080/17476933.2014.1002399
http://dx.doi.org/10.1080/17476933.2014.1002399
http://www.ams.org/mathscinet-getitem?mr=3289982
http://www.ams.org/mathscinet-getitem?mr=0205028
http://www.ams.org/mathscinet-getitem?mr=1382613
http://www.ams.org/mathscinet-getitem?mr=3149748
http://www.ams.org/mathscinet-getitem?mr=1821164


Convolution and translation-invariant spaces 439

[11] H. Komatsu, Ultradistributions, I: Structure theorems and a characterization,

J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25–105. MR 0320743.

[12] , Ultradistributions, II: The kernel theorem and ultradistributions with

support in a submanifold, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977),

607–628. MR 0477770.

[13] , Ultradistributions, III: Vector-valued ultradistributions and the theory

of kernels, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), 653–717.

MR 0687595.

[14] , “Microlocal analysis in Gevrey classes and in complex domains” in

Microlocal Analysis and Applications (Montecatini Terme, 1989), Lecture Notes

in Math. 1495, Springer, Berlin, 1991, 161–236. MR 1178558.

DOI 10.1007/BFb0085124.

[15] G. Köthe, Topological Vector Spaces, I, Grundlehren Math. Wiss. 159,

Springer, New York, 1969. MR 0248498.

[16] , Topological Vector Spaces, II, Grundlehren Math. Wiss. 237, Springer,

New York, 1979. MR 0551623.

[17] N. Ortner and P. Wagner, Applications of weighted D′
Lp

-spaces to the

convolution of distributions, Bull. Polish Acad. Sci. Math. 37 (1989), 579–595.

MR 1101924.

[18] , On the spaces Om
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J. Analyse Math. 4 (1954/55), 88–148. MR 0080268.
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