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Abstract We study the homological behavior of modules over local ringsmodulo exact

zero-divisors. We obtain new results which are in some sense “opposite” to those known

for modules over local rings modulo regular elements.

1. Introduction

Given a local (meaning also commutative and Noetherian) ring S and an ideal I ,

one may ask whether the homological behavior of modules over S/I is related to

that over S. In general this is hopeless; one needs to restrict the ideal I . When

I is generated by a regular sequence, there is a well-developed and powerful

theory relating the homological properties of modules over these two rings (see for

instance [Av2], [AvBu], [Be], [Dao1], [Eis], [Gu1], [Jo1], and [Jo2]). For example,

suppose that the ideal I is generated by a single regular element x ∈ S, denote

the factor ring S/(x) by R, and let M and N be R-modules. Then a primary

result is that

TorR1 (M,N) = TorR2 (M,N) = · · ·=TorRn (M,N) = 0,

for some n≥ 2, implies that

TorS2 (M,N) = · · ·=TorSn(M,N) = 0.

In other words, the vanishing of homology over R implies the vanishing of homol-

ogy over S. An analogous statement for cohomology also holds.

Another primary result compares the complexity of a finitely generated R-

module with its complexity as an S-module (see Section 3 for the definition of

complexity). Namely, there are inequalities (see [Av2, Remark 3.2(3)])

cxS(M)≤ cxR(M)≤ cxS(M) + 1.

In this paper we study the case where the element x ∈ S is in some sense

the “next best thing” to being a regular element. More precisely, we consider the

case where the annihilator of x is a nonzero principal ideal whose annihilator is

also principal (and therefore is the ideal (x)). In accord with [HeŞ], the element

x is said to be an exact zero-divisor if it is nonzero, it belongs to the maximal
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ideal of S, and there exists another element y ∈ S such that annS(x) = (y) and

annS(y) = (x). In this case we say that (x, y) is a pair of exact zero-divisors of S.

The ideal (x) is then an example of a quasicomplete intersection ideal, a notion

introduced in [AHŞ]. In that same paper, results relating certain invariants of

modules over S with those over S/(x) are proved. We continue along similar,

but more homological lines, and show that even if the element x is the next

best thing to being regular, namely, an exact zero-divisor, then the homological

relationships between S/(x)-modules over S/(x) and over S change dramatically

compared to the case where x is regular. Two of our main results in Section 2

concern the vanishing of (co)homology. In particular, the result for homology

takes the following form.

THEOREM

Let R= S/(x) where S is a local ring and (x, y) is a pair of exact zero-divisors

in S. Furthermore, let M and N be R-modules such that yN = 0. If there exists

an integer n ≥ 2 such that TorRi (M,N) = 0 for 1 ≤ i ≤ n, then TorSi (M,N) ∼=
M ⊗S N for 1≤ i≤ n− 1.

Compared with the vanishing result for the case where x is regular, the conclusion

of the previous theorem is opposite in the sense that it is a nonvanishing result:

the vanishing of homology over R implies the nonvanishing of homology over S

(when the modules involved are nonzero and finitely generated). For cohomology,

we obtain the following analogue.

THEOREM

Let R= S/(x) where S is a local ring and (x, y) is a pair of exact zero-divisors

in S. Furthermore, let M and N be R-modules such that yN = 0. If there exists

an integer n ≥ 2 such that ExtiR(M,N) = 0 for 1 ≤ i ≤ n, then ExtiS(M,N) ∼=
HomS(M,N) for 1≤ i≤ n− 1.

We also compare the complexities of finitely generated modules over R and

over S. Similar to our previous results, we show that such a comparison is quite

different from the case where x is regular. The following theorem is the main

result of Section 3.

THEOREM

Let R= S/(x) where S is a local ring and x is an exact zero-divisor in S. If M

is a finitely generated R-module, then for any n there are inequalities

βR
n (M)−

n−2∑
i=0

βR
i (M)≤ βS

n (M)≤
n∑

i=0

βR
i (M)

of Betti numbers. In particular, the inequality cxS(M)≤ cxR(M) + 1 holds.
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In the final section, Section 4, we discuss canonical endomorphisms of complexes

of finitely generated free R-modules, and canonical elements of Ext2R(M,M), for

finitely generated R-modules M , in the case where R= S/(x) and (x,x) is a pair

of exact zero-divisors of S. The main result, Theorem 4.2, equates the ability to

lift a finitely generated R-module M from R to S to the triviality of the canonical

element in Ext2R(M,M). This generalizes classical results (see, e.g., [ADS]) on

lifting modules from T/(x) to T/(x2) in the case where x is a nonzero-divisor of

the local ring T (cf. Example 4.3 below).

2. Vanishing results

In this section we prove our vanishing results, starting with the homology version.

We fix a local ring S and a pair of exact zero-divisors (x, y), and denote the local

ring S/(x) by R. It should be mentioned that the modules we consider in this

section are not necessarily assumed to be finitely generated.

Since a (deleted) free resolution of R over S has the form

· · · → S
y−→ S

x−→ S
y−→ S

x−→ S → 0

one has for any R-module N the following:

(†) TorSq (R,N)∼=

⎧⎪⎪⎨
⎪⎪⎩
N for q = 0,

N/yN for q > 0 odd,

annN (y) for q > 0 even,

and

(‡) ExtqS(R,N)∼=

⎧⎪⎪⎨
⎪⎪⎩
N for q = 0,

annN (y) for q > 0 odd,

N/yN for q > 0 even.

Our main theorem on the vanishing of homology is the following.

THEOREM 2.1

Let R= S/(x) where S is a local ring and (x, y) is a pair of exact zero-divisors

in S. Furthermore, let M and N be R-modules. If there exists an integer n≥ 2

such that TorRi (M,N) = TorRi (M,N/yN) = TorRi (M,annN (y)) = 0 for 1≤ i≤ n,

then

TorSi (M,N)∼=

⎧⎪⎪⎨
⎪⎪⎩
M ⊗S N for i= 0,

M ⊗S N/yN for 0< i < n and i odd,

M ⊗S annN (y) for 0< i < n and i even.

Proof

Consider the first quadrant change of rings spectral sequence (see [Rot, Theo-

rem 10.73])

TorRp
(
M,TorSq (R,N)

)
=⇒
p

TorSp+q(M,N).
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From (†), the term E2
p,q is given by

E2
p,q

∼=

⎧⎪⎪⎨
⎪⎪⎩
TorRp (M,N) for q = 0,

TorRp (M,N/yN) for q > 0 odd,

TorRp (M,annN (y)) for q > 0 even.

The vanishing assumptions imply that columns 1 through n of the E2-page of this

spectral sequence vanish, that is, E2
p,q = 0 for all q ∈ Z and 1 ≤ p ≤ n. Fixing

such p and q, we see that E∞
p,q also vanishes since this term is a subquotient

of E2
p,q . Letting Hi denote TorSi (M,N) for all i, we have a filtration {ΦjHi} of

Hi satisfying

0 = Φ−1Hi ⊆Φ0Hi ⊆ · · · ⊆Φi−1Hi ⊆ΦiHi =Hi,

with E∞
j,i−j

∼= ΦjHi/Φ
j−1Hi for all i and j. Thus the vanishing of E∞

p,q implies

that ΦpHp+q =Φp−1Hp+q , that is, Φ
pHq =Φp−1Hq for all q ∈ Z and 1≤ p≤ n.

Now consider the zeroth column of the E2-page. For a positive q, the E2
0,q-

term is isomorphic to M ⊗R N/yN when q is odd, and isomorphic to M ⊗R

annN (y) when q is even. Since E2
p,q = 0 for all q ∈ Z and 1≤ p≤ n, there is an

isomorphism E∞
0,q

∼=E2
0,q for q ≤ n− 1, giving

E∞
0,q

∼=

⎧⎪⎪⎨
⎪⎪⎩
M ⊗S N for q = 0,

M ⊗R N/yN for 0< q < n and q odd,

M ⊗R annN (y) for 0< q < n and q even.

But it follows from above that the equalities

E∞
0,q

∼=Φ0Hq =Φ1Hq = · · ·=ΦqHq

hold when q < n. Therefore, since ΦqHq =TorSq (M,N), we are done. �

As an immediate corollary we obtain the result, for the vanishing of homology,

stated in the introduction.

COROLLARY 2.2

Let R= S/(x) where S is a local ring and (x, y) is a pair of exact zero-divisors

in S. Furthermore, let M and N be R-modules such that yN = 0. If there exists

an integer n ≥ 2 such that TorRi (M,N) = 0 for 1 ≤ i ≤ n, then TorSi (M,N) ∼=
M ⊗S N for 0≤ i≤ n− 1. Consequently, if M and N are nonzero and finitely

generated, then TorSi (M,N) 
= 0 for 0≤ i≤ n− 1.

Thus when the modules involved are finitely generated and nonzero, the corol-

lary shows that the vanishing of homology over R implies the nonvanishing of

homology over S. This is in stark contrast to the case when x is a regular element.

In certain cases we can show that the Tor’s over S cannot vanish irrespective

of the vanishing of the Tor’s over R.
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PROPOSITION 2.3

Let R= S/(x) where S is a local ring and (x, y) is a pair of exact zero-divisors,

both of which are minimal generators of the maximal ideal of S. Furthermore,

let M and N be nonzero finitely generated R-modules such that yN = 0. Then

TorSi (M,N) 
= 0 for all i≥ 0.

Proof

Consider a minimal free resolution of M over S:

F : · · · → F2
∂2−→ F1

∂1−→ F0 → 0.

Letting m denote a minimal generator of M , we can define the homomorphism

f : S/(x)→M sending 1̄ to m. Because x and y are minimal generators of the

maximal ideal of S, we can lift this homomorphism to a chain map

· · · S
y

f2

S
x

f1

S

f0

S/(x)

f

0

· · · F2
∂2

F1
∂1

F0 M 0

in such a way that each fi is a split injection. Tensoring the entire diagram with

N we get the commutative diagram

· · · N
0

f2⊗N

N
0

f1⊗N

N
=

f0⊗N

N

f⊗N

0

· · · F2 ⊗S N
∂2⊗N

F1 ⊗S N
∂1⊗N

F0 ⊗S N M ⊗S N 0

Now let n be a minimal generator of N . Then fi(1)⊗S n is a minimal generator

of Fi ⊗S N and, by commutativity, is in ker(∂i ⊗S N) for all i≥ 1. This element

is not a boundary, however, since ∂i+1 ⊆ mFi, and no element in the image of

∂i+1⊗S N is a minimal generator of Fi⊗S N . It follows that TorSi (M,N) 
= 0 for

all i≥ 0. �

We next state the cohomological versions of Theorem 2.1 and Corollary 2.2; they

are proved dually.

THEOREM 2.4

Let R= S/(x) where S is a local ring and (x, y) is a pair of exact zero-divisors

in S. Furthermore, let M and N be R-modules. If there exists an integer n≥ 2

such that ExtiR(M,N) = ExtiR(M,N/yN) = ExtiR(M,annN (y)) = 0 for 1≤ i≤ n,

then

ExtiS(M,N)∼=

⎧⎪⎪⎨
⎪⎪⎩
HomS(M,N) for i= 0,

HomS(M,annN (y)) for 0< i < n and i odd,

HomS(M,N/yN) for 0< i < n and i even.
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COROLLARY 2.5

Let R= S/(x) where S is a local ring and (x, y) is a pair of exact zero-divisors

in S. Furthermore, let M and N be R-modules with yN = 0. If there exists

an integer n ≥ 2 such that ExtiR(M,N) = 0 for 1 ≤ i ≤ n, then ExtiS(M,N) ∼=
HomS(M,N) for 0≤ i < n. Consequently, if N =M 
= 0, then ExtiS(M,M) 
= 0

for 0< i < n.

3. Complexity

As in the previous section, we fix a local ring S and a pair of exact zero-divisors

(x, y), and denote the local ring S/(x) by R. In this section all modules are

assumed to be finitely generated. Our aim is to compare free resolutions of mod-

ules over R with those over S and determine relationships involving complexities.

Given a local ring A and an A-module M , there exists a (deleted) free reso-

lution of M

· · · → F2 → F1 → F0 → 0,

which is minimal, that is, it appears as a direct summand of every free resolution

of M . The cokernel of the map Fn+1 → Fn is the nth syzygy module of M and

is denoted by Ωn
A(M). Minimal free resolutions are unique up to isomorphism

and hence the syzygies are uniquely determined up to isomorphism. Moreover,

for every nonnegative integer n, the nth Betti number βA
n (M)

def
= rankFn is a

well-defined invariant of M . It is well known that dimk Ext
n
A(M,k) = βA

n (M) =

dimkTor
A
n (M,k) for every integer n where k is the residue field of A. It is also

clear that the projective dimension of M is finite if and only if the Betti num-

bers of M eventually vanish. Thus the asymptotic behavior of the Betti sequence

βA
0 (M), βA

1 (M), βA
2 (M), . . . determines an important homological property of M .

Following ideas from modular representation theory (see [Alp]), an invariant mea-

suring how “fast” the Betti sequence grows was introduced by Avramov [Av2]

(see also [Av1]). The complexity of M , denoted by cxA(M), is defined as

cxA(M)
def
= inf

{
t ∈N∪ {0}

∣∣ ∃a ∈R such that βA
n (M)≤ ant−1 for all n

}
,

and measures the polynomial rate of growth of the Betti sequence of M . It

follows from the definition that M has finite projective dimension if and only

if cxA(M) = 0, whereas cxA(M) = 1 if and only if the Betti sequence of M is

bounded. For an arbitrary local ring, the complexity of a module is not necessarily

finite (see [Av3, Example 4.2.2]). In fact, by [Gu2, Theorem 2.3], the finiteness

of the complexity for all finitely generated A-modules is equivalent to A being a

complete intersection.

We now return to our previous setting of exact zero-divisors. We first remark

that every nonzero R-module has infinite projective dimension over S, that is,

every such module has positive complexity over S. Indeed, (†) from the sec-

ond paragraph of Section 2 shows that if TorSi (R,M) = 0 for all i  0, then

M/yM = 0. Thus M = 0 by Nakayama’s lemma.
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Over a local ring A, the complexity of a module equals the complexity of

any of its syzygies: their minimal free resolutions are the same except at the

beginning. Moreover, given a short exact sequence

0→M1 →M2 →M3 → 0

of A-modules, the inequality

(∗) cxA(Mu)≤max
{
cxA(Mv), cxA(Mw)

}
holds for {u, v,w}= {1,2,3}. This follows simply by comparing the k-vector space

dimensions of the Tor modules in the long exact sequence

· · · →TorAn (M1, k)→TorAn (M2, k)→TorAn (M3, k)→TorAn−1(M1, k)→ · · · ,

where k is the residue field of A.

In the next proposition we use the inequality (∗) and prove that if M is

an R-module with cxS(M) 
= 1, then cxS(M) = cxS(Ω
n
R(M)) for all n. Here the

assumption cxS(M) 
= 1 is necessary: the S-module R has a minimal free resolu-

tion

· · · → S
y−→ S

x−→ S
y−→ S

x−→ S → 0

and hence has complexity one over S. However its syzygies Ωn
R(R) are all zero

for n > 0.

PROPOSITION 3.1

Let R= S/(x) where S is a local ring and x is an exact zero-divisor in S. Then,

for every finitely generated R-module M with cxS(M) 
= 1, the equality cxS(M) =

cxS(Ω
n
R(M)) holds for all n.

Proof

If cxS(M) = 0, then M = 0 (see the third paragraph of Section 3). Thus the

result is trivial in this case. Next suppose that cxS(M)> 1. Consider the short

exact sequence

0→Ω1
R(M)→ F →M → 0,

where F is a free R-module. Since the S-module R has complexity one so does F .

Hence the result follows from the inequality (∗) and the short exact sequence

considered above. �

Next we will compare the Betti numbers and complexities of modules over R

with those over S. For that we first set some notations that generalize the notion

of the Betti number and the complexity of a module.

Let (A,m) be a local ring with residue field k, and let M and N be A-modules

with the property that M ⊗A N has finite length. Then, for every nonnegative

integer n, the length of TorAn (M,N) is finite. We define this length to be the nth

Betti number βA
n (M,N) of the pair (M,N), that is, βA

n (M,N)
def
= �(TorAn (M,N)).

The length complexity of the pair (M,N), denoted by � cxA(M,N), is then defined
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as (see [Dao2, the discussion preceding Definition 2.1])

� cxA(M,N)
def
= inf

{
t ∈N∪ {0}

∣∣ ∃a ∈R such that βA
n (M,N)≤ ant−1 for all n

}
.

Although, letting N = k, we recover the Betti number and the ordinary complex-

ity of M , that is,

βA
n (M) = βA

n (M,k) and cxA(M) = � cxA(M,k),

our definition for � cxA(M,N) of the pair (M,N) is different than the one origi-

nally given by Avramov and Buchweitz [AvBu, p. 286, para 2], where the minimal

number of generators of the cohomology modules ExtnA(M,N) is used. In general

there is no comparison between these two definitions of Betti numbers of the pair

(M,N) (see also [Dao2, Theorem 5.4]).

THEOREM 3.2

Let R= S/(x) where S is a local ring and (x, y) is a pair of exact zero-divisors

in S. Furthermore, let M and N be finitely generated R-modules such that yN = 0

and M ⊗R N has finite length. Then, for all n,

(3.2) βR
n (M,N)−

n−2∑
i=0

βR
i (M,N)≤ βS

n (M,N)≤
n∑

i=0

βR
i (M,N).

REMARK

We have used the convention that negative Betti numbers are zero.

Proof

As in the proof of Theorem 2.1, we consider the first quadrant change of rings

spectral sequence:

TorRp
(
M,TorSq (R,N)

)
=⇒
p

TorSp+q(M,N).

Since yN = 0, we see from (†) that the E2-page entries are given by E2
p,q =

TorRp (M,N).

We first prove the left-hand inequality of (3.2). Fix an integer n, and consider

the short exact sequence

0→Φn−1Hn →TorSn(M,N)→E∞
n,0 → 0,

where ΦiHn is the filtration of Hn from the proof of Theorem 2.1. Since E∞
n,0 =

Kerdnn,0, we obtain the inequality �(TorSn(M,N))≥ �(Kerdnn,0). Now for all 2≤
p≤ n, there is an exact sequence

0→Kerdpn,0 →Kerdp−1
n,0 → Imdpn,0 → 0,

which implies that

�(Kerdnn,0) = �(Kerdn−1
n,0 )− �(Imdnn,0)

= �(Kerdn−2
n,0 )−

(
�(Imdn−1

n,0 ) + �(Imdnn,0)
)
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...

= �(Kerd1n,0)−
n∑

i=2

�(Imdin,0).

For 2 ≤ i ≤ n, the image of din,0 is a submodule of Ei
n−i,i−1, and the latter

is a subquotient of E2
n−i,i−1. Then since E2

n−i,i−1 = TorRn−i(M,N), there is an

inequality �(Imdin,0) ≤ �(TorRn−i(M,N)). Moreover, the module E2
n,0 is a sub-

quotient of Kerd1n,0. Thus, since E2
n,0 =TorRn (M,N), we have that �(Kerd1n,0)≥

�(TorRn (M,N)). This gives

�
(
TorSn(M,N)

)
≥ �(Kerdnn,0)

= �(Kerd1n,0)−
n∑

i=2

�(Imdin,0)

≥ �
(
TorRn (M,N)

)
−

n−2∑
i=0

�
(
TorRi (M,N)

)
,

proving the left-hand inequality.

For the right-hand inequality, we fix an integer n and consider the short

exact sequence

0→Φp−1Hn →ΦpHn →E∞
p,n−p → 0

for 0≤ p≤ n. Counting the lengths, we obtain the equalities

�(ΦnHn) = �(Φn−1Hn) + �(E∞
n,0)

= �(Φn−2Hn) + �(E∞
n−1,1) + �(E∞

n,0)

...

=

n∑
i=0

�(E∞
i,n−i).

Each E∞
i,n−i is a subquotient of E2

i,n−i, and so since E2
i,n−i = TorRi (M,N),

we obtain the inequality �(E∞
i,n−i) ≤ �(TorRi (M,N)). Then since ΦnHn =

TorSn(M,N), we obtain

�
(
TorSn(M,N)

)
= �(ΦnHn)

=
n∑

i=0

�(E∞
i,n−i)

≤
n∑

i=0

�
(
TorRi (M,N)

)
,

proving the right-hand inequality. �
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As a consequence, using the right-hand side of the inequality (3.2), we obtain an

upper bound for � cxS(M,N) in terms of the complexity of (M,N) over R.

COROLLARY 3.3

Let R= S/(x) where S is a local ring and (x, y) is a pair of exact zero-divisors

in S. Furthermore, let M and N be finitely generated R-modules such that yN = 0

and M ⊗R N has finite length. Then � cxS(M,N)≤ � cxR(M,N) + 1.

Proof

If � cxR(M,N) =∞, then there is nothing to prove. So suppose that � cxR(M,

N) = c < ∞. Then, by the definition, there exists a real number a such that

βR
n (M,N)≤ anc−1 for all n. By Theorem 3.2, the inequality

βS
n (M,N)≤

n∑
i=0

βR
i (M,N)≤

n∑
i=0

aic−1 ≤ (n+ 1)anc−1

holds for all n. Therefore there is a real number b such that βS
n (M,N)≤ bnc for

all n. This shows that � cxS(M,N)≤ c+ 1. �

We are unaware of an example of a pair of R-modules for which equality holds on

the left-hand side of (3.2). On the other hand, equality may occur on the right-

hand side. Indeed, when the exact zero-divisors x and y are minimal generators

of the maximal ideal of S, Henriques and Şega [HeŞ, Theorem 1.7] proved that

the equality
∞∑

n=0

βS
n (M)tn =

1

1− t

∞∑
n=0

βR
n (M)tn

of Poincaré series holds for every finitely generated R-module M . This gives

that

βS
n (M) =

n∑
i=0

βR
i (M).

However, when x and y are arbitrary, the equality of the Poincaré series stated

above may fail.

EXAMPLE 3.4

Let S = k[[x]]/(x3) where k is a field. Then x2 is an exact zero divisor in S. Set

R= S/(x2)∼= k[[x]]/(x2). It can be seen that

∞∑
n=0

βS
n (k)t

n =
1

1− t
=

∞∑
n=0

βR
n (k)t

n.

This example also shows that the inequality of Corollary 3.3 can be strict.

We now give an example illustrating the fact that the left-hand inequality of

(3.2) does give useful lower bounds in some cases.
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EXAMPLE 3.5

Let R= k[x1, . . . , xe]/(x1, . . . , xe)
2, and let M be a finitely generated R-module.

Then Ω1
R(M) is a finite-dimensional vector space over k of dimension βR

1 (M).

It is easy to see that the Betti numbers of k are βR
n (k) = en. It follows that

βR
n (M) = βR

1 (M)en−1 for all n ≥ 1. From the left-hand inequality of (3.2) we

have

βS
n (M) ≥ βR

n (M)−
n−2∑
i=0

βR
i (M)

= βR
1 (M)en−1 −

(n−2∑
i=1

βR
1 (M)ei−1

)
− βR

0 (M)

= βR
1 (M)

(
en−1 − en−2 − 1

e− 1

)
− βR

0 (M)

= βR
1 (M)

(en − en−1 − en−2 + 1

e− 1

)
− βR

0 (M)

≥ βR
1 (M)

2
en−1 − βR

0 (M)

for e≥ 2 and for any ring S such that there exists an exact zero-divisor x with R∼=
S/(x). Note that the last inequality follows since for e≥ 2 we have e2− e−2≥ 0.

Then en−2(e2 − e− 2)≥ 0, which implies that en − en−1 − 2en−2 + 2≥ 0. Thus

2(en − en−1 − en−2 + 1) ≥ en−1(e − 1), and the desired inequality follows. In

particular, R-modules must have exponential growth over S as well. As a specific

example, let S = k[x, y, z]/(x2, y2, z2, yz). Then x is an exact zero-divisor in S,

and R= S/(x)∼= k[y, z]/(y, z)2 has the form above.

When N = k, the assumptions that M ⊗N has finite length and yN = 0 hold

automatically. Therefore, in this situation, Theorem 3.2 and Corollary 3.3 can

be summarized as follows.

COROLLARY 3.6

Let R= S/(x) where S is a local ring and x is an exact zero-divisor in S. Then,

for every finitely generated R-module M , the inequalities

βR
n (M)−

n−2∑
i=0

βR
i (M)≤ βS

n (M)≤
n∑

i=0

βR
i (M)

hold for all n. Consequently cxS(M)≤ cxR(M) + 1 holds.

REMARK

It follows from [AHŞ, Remark 4.4] that R is a complete intersection if and only if

S is a complete intersection. The complexity inequality obtained in Corollary 3.6

gives a different proof for the ‘only if’ direction of this result: if cxR(k)<∞, where

k is the residue field of R, then it follows from Corollary 3.6 that cxS(k) <∞
and hence, by [Gu2, Corollary 2.5], S is a complete intersection.
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Another observation related to the result stated above concerns commutative

local Cohen–Macaulay Golod rings (see [Av3, Section 5.2]). Assume that S is such

a ring. Since a finitely generated module has infinite complexity over S in the

case in which it has infinite projective dimension over S and codepth(S) ≥ 2

(see [Av3, Theorem 5.3.3(2)]), we conclude that codepth(S) ≤ 1. (Recall that

cxS(R) = 1.) Moreover, as x is not regular, codepth(S) = 1. This implies that S

is a hypersurface and hence R is a complete intersection.

As discussed in the introduction, when x is regular the complexity inequality is

quite different than the one obtained in Corollary 3.6. More precisely, in that

case the inequalities cxS(M) ≤ cxR(M) ≤ cxS(M) + 1 hold. In particular, the

complexity of M over R is finite if and only if it is finite over S. However, in our

situation, when x is an exact zero-divisor, we are unable to deduce any further

inequalities, such as cxR(M) ≤ cxS(M), from Theorem 3.2. In fact we do not

know whether there exists an R-module M with cxS(M)<∞ and cxR(M) =∞.

We record this in the next question.

QUESTION

Let R = S/(x) where S is a local ring and x is an exact zero-divisor in S. Is

cxR(M)≤ cxS(M) for all finitely generated R-modules M?

4. Canonical elements of Ext2R(M,M) and lifting

In this section we restrict our attention to the case where (x,x) is a pair of exact

zero-divisors in the local ring S, and R= S/(x). We discuss natural chain endo-

morphisms of complexes over R, following the construction in [Eis, Section 1],

and show that whether or not they are null-homotopic dictates the liftability of

R-modules to S. These results generalize classical results (see, e.g., [ADS]) for

lifting modules modulo a regular element to modulo the square of the regular

element.

4.1. Canonical endomorphisms of complexes
Let

(1) F : · · · → Fi+1
∂i+1−−−→ Fi

∂i−→ Fi−1 → · · ·

be a complex of finitely generated free R-modules. We let

(2) F̃ : · · · → F̃i+1
∂̃i+1−−−→ F̃i

∂̃i−→ F̃i−1 → · · ·

denote a preimage over S of the complex F , that is, a sequence of homomorphisms

∂̃i : F̃i → F̃i−1 of free S-modules such that F and F̃ ⊗S R are isomorphic R-

complexes. From the fact that ∂̃i−1∂̃i(F̃i)⊆ xF̃i−2 for all i, we can write that

(3) ∂̃i−1∂̃i = xs̃i
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for some homomorphism s̃i : F̃i → F̃i−2. Now we define the homomorphisms si :

Fi → Fi−2 by

(4) si = s̃i ⊗S R

for all i.

There are several properties of the si’s which we should like to mention. See

[Eis, Section 1] for the proofs. (Note that in our case (x)/(x)2 = (x)∼= S/(x) is a

free S/(x)-module.)

(a) The definition of si is independent of the factorization in (3).

(b) The family s= {si} is a chain endomorphism of F of degree −2.

(c) Let

G : · · · →Gi+1
δi+1−−−→Gi

δi−→Gi−1 → · · ·

be another complex of finitely generated free R-modules, and assume that there

exists a chain map f : F → G. Let t = {ti = t̃i ⊗S R : Gi → Gi−2} be the chain

map defined by the factorizations δ̃i−1δ̃i = xt̃i for all i, where G̃ is a preimage

over S of G. Then the chain maps fs and tf are homotopic.

(d) From (c) it follows that the definition of the si’s is independent, up to

homotopy, of the preimage F̃ of F chosen in (2).

4.2. The group ExtnA(M,M)

Let A be an associative ring, and let M be an A-module. Suppose that F is

a projective resolution of M . Then Hn(HomA(F,F )) is the group of homotopy

equivalence classes of chain endomorphisms of F of degree n. For a chain endo-

morphism s of F of degree n, we let [s] denote the class of s in Hn(HomA(F,F )).

Let G be another projective resolution of M over A. Then the comparison maps

f : F →G and g :G→ F lifting the identity map on M are homotopically equiv-

alent. That is, fg is homotopic to the identity map on G and gf is homotopic

to the identity map on F . It follows that the map

(5) θFG : H
n
(
HomA(F,F )

)
→H

n
(
HomA(G,G)

)
given by [s] �→ [fsg] is an isomorphism, with inverse θGF : [s] �→ [gsf ]. It is well

known that this group is ExtnA(M,M) (see, e.g., [AV]).

4.3. Canonical elements of Ext2R(M,M)

Returning to the situation where R = S/(x) for the pair (x,x) of exact zero-

divisors, let F be a free resolution of M over R, and let s be the endomorphism

of F defined by (4). Thus we have the element [s] ∈ H2(HomR(F,F )). That we

call [s] a canonical element of Ext2R(M,M) is reinforced by the following lemma.

LEMMA 4.1

Let R= S/(x) where S is a local ring and (x,x) is a pair of exact zero-divisors

in S. Suppose that F and G are free resolutions of a finitely generated module M

over R, that s is the canonical endomorphism of F as defined in (4), and that t
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is the canonical endomorphism of G as defined in (4). Then we have that

θGF
(
[t]
)
= [s],

where θGF is the isomorphism defined in (5).

Proof

First assume that F is a minimal free resolution of M . Then the comparison map

f : F →G lifting the identity map on M can be chosen to be a split injection,

with splitting g : G → F also lifting the identity map on M . In particular, we

have gf = idF , the identity map on F .

Denote the differential on F by ∂, and denote that on G by δ. Let (F̃ , ∂̃) be

a preimage over S of (F,∂), and let (G̃, δ̃) be a preimage over S of (G,δ). We

choose preimages f̃ of f and g̃ of g over S such that g̃f̃ = idF̃ .

As gi−1δi = ∂igi for all i, there exists ui : G̃i → F̃i−1 such that g̃i−1δ̃i = ∂̃ig̃i+

xui for all i. Similarly, there exists vi : F̃i → G̃i−1 such that δ̃if̃i = f̃i−1∂̃i + xvi
for all i. Thus we have

x(g̃i−2t̃if̃i − s̃i) = g̃i−2δ̃i−1δ̃if̃i − ∂̃i−1∂̃i

= (∂̃i−1g̃i−1 + xui−1)(f̃i−1∂̃i + xvi)− ∂̃i−1∂̃i

= x(∂̃i−1g̃i−1vi + ui−1f̃i−1∂̃i).

It follows that gi−2tifi − si = ∂i−1(gi−1vi) + (ui−1fi−1)∂i for all i, where ui =

ui ⊗S R and vi = vi ⊗S R. We will have shown that gtf is homotopic to s with

homotopy hi = uifi once we know that uifi = gi−1vi for all i. But this is easy:

x(uif̃i − g̃i−1vi) = (g̃i−1δ̃i − ∂̃ig̃i)f̃i − g̃i−1(δ̃if̃i − f̃i−1∂̃i)

= −∂̃ig̃if̃i + g̃i−1f̃i−1∂̃i

= 0,

hence the claim follows.

Notice that we also have θFG([s]) = [t] when F is minimal. Therefore, for two

arbitrary free resolutions F and G of M , θGF ([t]) = [s] follows from composing

θGF = θGL θ
L
F where L is a minimal free resolution of M . �

4.4. Lifting
Let B be an associative ring, let I be an ideal of B, and let A=B/I . Recall that

a finitely generated A-module M is said to lift to B with lifting M ′ if there exists

a finitely generated B-module M ′ such that M ∼=M ′⊗B A and TorBi (M
′,A) = 0

for all i≥ 1. Similarly, a complex of finitely generated free A-modules

F : · · · → Fi+1
∂i+1−−−→ Fi

∂i−→ Fi−1 → · · ·

is said to lift to B with lifting F̃ if there exists a preimage F̃ of F

F̃ : · · · → F̃i+1
∂̃i+1−−−→ F̃i

∂̃i−→ F̃i−1 → · · ·
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such that ∂̃i−1∂̃i = 0 for all i. A close connection between these two notions of

lifting will be explained in the next theorem. We also want to show that, when

R= S/(x) for (x,x) a pair of exact zero-divisors, the triviality of the canonical

element [s] determines whether the module M lifts to S.

THEOREM 4.2

Let R= S/(x) where S is a local ring and (x,x) is a pair of exact zero-divisors

in S. Then for every finitely generated R-module M , the following are equiva-

lent.

(a) M lifts to S.

(b) The canonical element [s] in Ext2R(M,M) is trivial.

(c) Every free resolution of M by finitely generated free R-modules lifts to S.

(d) Some free resolution of M by finitely generated free R-modules lifts to S.

Proof

(a) =⇒ (b). Suppose that M ′ is a lifting of M to S. Let

F̃ : · · · → F̃2
∂̃2−→ F̃1

∂̃1−→ F̃0 → 0

be a resolution of M ′ by finitely generated free S-modules. Since TorSi (M
′,R) = 0

for all i > 0, F = F̃ ⊗SR is a resolution of M ∼=M ′⊗SR by finitely generated free

R-modules. Computing the endomorphism s from the preimage F̃ of F , which is

exact, we see that s is actually the zero endomorphism, and is therefore certainly

trivial in Ext2R(M,M).

(b) =⇒ (c). By Lemma 4.1 the canonical element of Ext2R(M,M) is trivial

regardless of which resolution by finitely generated free R-modules F of M we

choose to define it. Therefore let F be an arbitrary such resolution of M , and

let s be the canonical chain endomorphism defined as in (4) of the section above

on canonical endomorphisms of complexes. By assumption, s is homotopic to

zero. Therefore there exists a homotopy h= {hi} with hi : Fi → Fi−1 such that

si = ∂i−1hi+hi−1∂i for all i. Let F̃ be an arbitrary preimage of F , with maps ∂̃.

Let h̃i : F̃i → F̃i−1 be a preimage of hi for all i. There exists ui : F̃i → F̃i−2 such

that s̃i = ∂̃i−1h̃i + h̃i−1∂̃i + xui for all i. Now consider the preimage F � of F

where we take F �
i = F̃i for all i, but we take the maps ∂�

i = ∂̃i − xh̃i instead. We

have

∂�
i−1∂

�
i = (∂̃i−1 − xh̃i−1)(∂̃i − xh̃i)

= ∂̃i−1∂̃i − x(∂̃i−1h̃i + h̃i−1∂̃i)

= x(s̃i − ∂̃i−1h̃i − h̃i−1∂̃i)

= 0.

Thus F � is a lifting of F to S.

(c) =⇒ (d). This is trivial. To show that (d) =⇒ (a), assume that F is a free

resolution of M by finitely generated free R-modules which lifts to the complex
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F̃ over S. We claim that Hi(F̃ ) = 0 for i 
= 0. Indeed, if ∂̃i(a) = 0 for some a ∈ F̃i,

then a= ∂̃i+1(b) + xc for some b ∈ F̃i+1 and c ∈ F̃i by the exactness of F . Since

x∂̃i(c) = 0, we have that ∂̃i(c) ∈ xF̃i−1. Again by the exactness of F we have

that c= ∂̃i+1(d)+xe for some d ∈ F̃i+1 and e ∈ F̃i. Therefore a= ∂̃i+1(b+xd). It

follows that F̃ is a resolution of M ′ =H0(F̃ ) by finitely generated free S-modules,

and thus M ′ is a lifting of M to S. �

We end with an example showing that there are local rings S admitting a pair of

exact zero-divisors (x,x), but no local ring T with regular element x̃ such that

S = T/(x̃2) and x = x̃+ (x̃2). Therefore the notion of lifting modulo an exact

zero-divisor is a more general notion than lifting from modulo a regular element

to modulo the square of the regular element.

EXAMPLE 4.3

Let k be field, let S = k[V,X,Y,Z]/I where I is the ideal

(V 2,Z2,XY,V X +XZ,V Y + Y Z,V X + Y 2, V Y −X2),

and set v = V +I . Then (v, v) is a pair of exact zero-divisors. Moreover, it is shown

in [AGP] that S does not have an embedded deformation. As a consequence there

is no local ring T and nonzero-divisor Ṽ of T such that S ∼= T/(Ṽ 2).
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MR 1648664.

http://www.ams.org/mathscinet-getitem?mr=0450381
http://www.ams.org/mathscinet-getitem?mr=1216471
http://dx.doi.org/10.1006/jabr.1993.1076
http://dx.doi.org/10.1006/jabr.1993.1076
http://www.ams.org/mathscinet-getitem?mr=1015512
http://dx.doi.org/10.1007/978-1-4612-3660-3_3
http://dx.doi.org/10.1007/978-1-4612-3660-3_3
http://www.ams.org/mathscinet-getitem?mr=0981738
http://dx.doi.org/10.1007/BF01393971
http://dx.doi.org/10.1007/BF01393971
http://www.ams.org/mathscinet-getitem?mr=1648664


Homological algebra modulo exact zero-divisors 895

[AvBu] L. L. Avramov and R.-O. Buchweitz, Support varieties and cohomology over

complete intersections, Invent. Math. 142 (2000), 285–318. MR 1794064.

DOI 10.1007/s002220000090.

[AGP] L. L. Avramov, V. N. Gasharov, and I. V. Peeva, A periodic module of

infinite virtual projective dimension, J. Pure Appl. Algebra 62 (1989), 1-5.

MR 1026870. DOI 10.1016/0022-4049(89)90016-9.
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