Homological algebra modulo exact zero-divisors

Petter Andreas Bergh, Olgur Celikbas, and David A. Jorgensen

Abstract

We study the homological behavior of modules over local rings modulo exact zero-divisors. We obtain new results which are in some sense "opposite" to those known for modules over local rings modulo regular elements.

1. Introduction

Given a local (meaning also commutative and Noetherian) ring S and an ideal I, one may ask whether the homological behavior of modules over S / I is related to that over S. In general this is hopeless; one needs to restrict the ideal I. When I is generated by a regular sequence, there is a well-developed and powerful theory relating the homological properties of modules over these two rings (see for instance [Av2], [AvBu], [Be], [Dao1], [Eis], [Gu1], [Jo1], and [Jo2]). For example, suppose that the ideal I is generated by a single regular element $x \in S$, denote the factor ring $S /(x)$ by R, and let M and N be R-modules. Then a primary result is that

$$
\operatorname{Tor}_{1}^{R}(M, N)=\operatorname{Tor}_{2}^{R}(M, N)=\cdots=\operatorname{Tor}_{n}^{R}(M, N)=0
$$

for some $n \geq 2$, implies that

$$
\operatorname{Tor}_{2}^{S}(M, N)=\cdots=\operatorname{Tor}_{n}^{S}(M, N)=0 .
$$

In other words, the vanishing of homology over R implies the vanishing of homology over S. An analogous statement for cohomology also holds.

Another primary result compares the complexity of a finitely generated R module with its complexity as an S-module (see Section 3 for the definition of complexity). Namely, there are inequalities (see [Av2, Remark 3.2(3)])

$$
\operatorname{cx}_{S}(M) \leq \operatorname{cx}_{R}(M) \leq \operatorname{cx}_{S}(M)+1 .
$$

In this paper we study the case where the element $x \in S$ is in some sense the "next best thing" to being a regular element. More precisely, we consider the case where the annihilator of x is a nonzero principal ideal whose annihilator is also principal (and therefore is the ideal (x)). In accord with [He§], the element x is said to be an exact zero-divisor if it is nonzero, it belongs to the maximal
ideal of S, and there exists another element $y \in S$ such that $\operatorname{ann}_{S}(x)=(y)$ and $\operatorname{ann}_{S}(y)=(x)$. In this case we say that (x, y) is a pair of exact zero-divisors of S. The ideal (x) is then an example of a quasicomplete intersection ideal, a notion introduced in [AHS]. In that same paper, results relating certain invariants of modules over S with those over $S /(x)$ are proved. We continue along similar, but more homological lines, and show that even if the element x is the next best thing to being regular, namely, an exact zero-divisor, then the homological relationships between $S /(x)$-modules over $S /(x)$ and over S change dramatically compared to the case where x is regular. Two of our main results in Section 2 concern the vanishing of (co)homology. In particular, the result for homology takes the following form.

THEOREM

Let $R=S /(x)$ where S is a local ring and (x, y) is a pair of exact zero-divisors in S. Furthermore, let M and N be R-modules such that $y N=0$. If there exists an integer $n \geq 2$ such that $\operatorname{Tor}_{i}^{R}(M, N)=0$ for $1 \leq i \leq n$, then $\operatorname{Tor}_{i}^{S}(M, N) \cong$ $M \otimes_{S} N$ for $1 \leq i \leq n-1$.

Compared with the vanishing result for the case where x is regular, the conclusion of the previous theorem is opposite in the sense that it is a nonvanishing result: the vanishing of homology over R implies the nonvanishing of homology over S (when the modules involved are nonzero and finitely generated). For cohomology, we obtain the following analogue.

THEOREM

Let $R=S /(x)$ where S is a local ring and (x, y) is a pair of exact zero-divisors in S. Furthermore, let M and N be R-modules such that $y N=0$. If there exists an integer $n \geq 2$ such that $\operatorname{Ext}_{R}^{i}(M, N)=0$ for $1 \leq i \leq n$, then $\operatorname{Ext}_{S}^{i}(M, N) \cong$ $\operatorname{Hom}_{S}(M, N)$ for $1 \leq i \leq n-1$.

We also compare the complexities of finitely generated modules over R and over S. Similar to our previous results, we show that such a comparison is quite different from the case where x is regular. The following theorem is the main result of Section 3.
theorem
Let $R=S /(x)$ where S is a local ring and x is an exact zero-divisor in S. If M is a finitely generated R-module, then for any n there are inequalities

$$
\beta_{n}^{R}(M)-\sum_{i=0}^{n-2} \beta_{i}^{R}(M) \leq \beta_{n}^{S}(M) \leq \sum_{i=0}^{n} \beta_{i}^{R}(M)
$$

of Betti numbers. In particular, the inequality $\operatorname{cx}_{S}(M) \leq \operatorname{cx}_{R}(M)+1$ holds.

In the final section, Section 4, we discuss canonical endomorphisms of complexes of finitely generated free R-modules, and canonical elements of $\operatorname{Ext}_{R}^{2}(M, M)$, for finitely generated R-modules M, in the case where $R=S /(x)$ and (x, x) is a pair of exact zero-divisors of S. The main result, Theorem 4.2, equates the ability to lift a finitely generated R-module M from R to S to the triviality of the canonical element in $\operatorname{Ext}_{R}^{2}(M, M)$. This generalizes classical results (see, e.g., [ADS]) on lifting modules from $T /(x)$ to $T /\left(x^{2}\right)$ in the case where x is a nonzero-divisor of the local ring T (cf. Example 4.3 below).

2. Vanishing results

In this section we prove our vanishing results, starting with the homology version. We fix a local ring S and a pair of exact zero-divisors (x, y), and denote the local ring $S /(x)$ by R. It should be mentioned that the modules we consider in this section are not necessarily assumed to be finitely generated.

Since a (deleted) free resolution of R over S has the form

$$
\cdots \rightarrow S \xrightarrow{y} S \xrightarrow{x} S \xrightarrow{y} S \xrightarrow{x} S \rightarrow 0
$$

one has for any R-module N the following:

$$
\operatorname{Tor}_{q}^{S}(R, N) \cong \begin{cases}N & \text { for } q=0 \\ N / y N & \text { for } q>0 \text { odd } \\ \operatorname{ann}_{N}(y) & \text { for } q>0 \text { even }\end{cases}
$$

and

$$
\operatorname{Ext}_{S}^{q}(R, N) \cong \begin{cases}N & \text { for } q=0 \\ \operatorname{ann}_{N}(y) & \text { for } q>0 \text { odd } \\ N / y N & \text { for } q>0 \text { even. }\end{cases}
$$

Our main theorem on the vanishing of homology is the following.

THEOREM 2.1

Let $R=S /(x)$ where S is a local ring and (x, y) is a pair of exact zero-divisors in S. Furthermore, let M and N be R-modules. If there exists an integer $n \geq 2$ such that $\operatorname{Tor}_{i}^{R}(M, N)=\operatorname{Tor}_{i}^{R}(M, N / y N)=\operatorname{Tor}_{i}^{R}\left(M, \operatorname{ann}_{N}(y)\right)=0$ for $1 \leq i \leq n$, then

$$
\operatorname{Tor}_{i}^{S}(M, N) \cong \begin{cases}M \otimes_{S} N & \text { for } i=0 \\ M \otimes_{S} N / y N & \text { for } 0<i<n \text { and } i \text { odd } \\ M \otimes_{S} \operatorname{ann}_{N}(y) & \text { for } 0<i<n \text { and } i \text { even } .\end{cases}
$$

Proof
Consider the first quadrant change of rings spectral sequence (see [Rot, Theorem 10.73])

$$
\operatorname{Tor}_{p}^{R}\left(M, \operatorname{Tor}_{q}^{S}(R, N)\right) \underset{p}{\Longrightarrow} \operatorname{Tor}_{p+q}^{S}(M, N) .
$$

From (\dagger), the term $E_{p, q}^{2}$ is given by

$$
E_{p, q}^{2} \cong \begin{cases}\operatorname{Tor}_{p}^{R}(M, N) & \text { for } q=0 \\ \operatorname{Tor}_{p}^{R}(M, N / y N) & \text { for } q>0 \text { odd } \\ \operatorname{Tor}_{p}^{R}\left(M, \operatorname{ann}_{N}(y)\right) & \text { for } q>0 \text { even }\end{cases}
$$

The vanishing assumptions imply that columns 1 through n of the E^{2}-page of this spectral sequence vanish, that is, $E_{p, q}^{2}=0$ for all $q \in \mathbb{Z}$ and $1 \leq p \leq n$. Fixing such p and q, we see that $E_{p, q}^{\infty}$ also vanishes since this term is a subquotient of $E_{p, q}^{2}$. Letting H_{i} denote $\operatorname{Tor}_{i}^{S}(M, N)$ for all i, we have a filtration $\left\{\Phi^{j} H_{i}\right\}$ of H_{i} satisfying

$$
0=\Phi^{-1} H_{i} \subseteq \Phi^{0} H_{i} \subseteq \cdots \subseteq \Phi^{i-1} H_{i} \subseteq \Phi^{i} H_{i}=H_{i}
$$

with $E_{j, i-j}^{\infty} \cong \Phi^{j} H_{i} / \Phi^{j-1} H_{i}$ for all i and j. Thus the vanishing of $E_{p, q}^{\infty}$ implies that $\Phi^{p} H_{p+q}=\Phi^{p-1} H_{p+q}$, that is, $\Phi^{p} H_{q}=\Phi^{p-1} H_{q}$ for all $q \in \mathbb{Z}$ and $1 \leq p \leq n$.

Now consider the zeroth column of the E^{2}-page. For a positive q, the $E_{0, q^{-}}^{2}$ term is isomorphic to $M \otimes_{R} N / y N$ when q is odd, and isomorphic to $M \otimes_{R}$ $\operatorname{ann}_{N}(y)$ when q is even. Since $E_{p, q}^{2}=0$ for all $q \in \mathbb{Z}$ and $1 \leq p \leq n$, there is an isomorphism $E_{0, q}^{\infty} \cong E_{0, q}^{2}$ for $q \leq n-1$, giving

$$
E_{0, q}^{\infty} \cong \begin{cases}M \otimes_{S} N & \text { for } q=0 \\ M \otimes_{R} N / y N & \text { for } 0<q<n \text { and } q \text { odd } \\ M \otimes_{R} \operatorname{ann}_{N}(y) & \text { for } 0<q<n \text { and } q \text { even. }\end{cases}
$$

But it follows from above that the equalities

$$
E_{0, q}^{\infty} \cong \Phi^{0} H_{q}=\Phi^{1} H_{q}=\cdots=\Phi^{q} H_{q}
$$

hold when $q<n$. Therefore, since $\Phi^{q} H_{q}=\operatorname{Tor}_{q}^{S}(M, N)$, we are done.
As an immediate corollary we obtain the result, for the vanishing of homology, stated in the introduction.

COROLLARY 2.2

Let $R=S /(x)$ where S is a local ring and (x, y) is a pair of exact zero-divisors in S. Furthermore, let M and N be R-modules such that $y N=0$. If there exists an integer $n \geq 2$ such that $\operatorname{Tor}_{i}^{R}(M, N)=0$ for $1 \leq i \leq n$, then $\operatorname{Tor}_{i}^{S}(M, N) \cong$ $M \otimes_{S} N$ for $0 \leq i \leq n-1$. Consequently, if M and N are nonzero and finitely generated, then $\operatorname{Tor}_{i}^{S}(M, N) \neq 0$ for $0 \leq i \leq n-1$.

Thus when the modules involved are finitely generated and nonzero, the corollary shows that the vanishing of homology over R implies the nonvanishing of homology over S. This is in stark contrast to the case when x is a regular element.

In certain cases we can show that the Tor's over S cannot vanish irrespective of the vanishing of the Tor's over R.

PROPOSITION 2.3

Let $R=S /(x)$ where S is a local ring and (x, y) is a pair of exact zero-divisors, both of which are minimal generators of the maximal ideal of S. Furthermore, let M and N be nonzero finitely generated R-modules such that $y N=0$. Then $\operatorname{Tor}_{i}^{S}(M, N) \neq 0$ for all $i \geq 0$.

Proof
Consider a minimal free resolution of M over S :

$$
F: \cdots \rightarrow F_{2} \xrightarrow{\partial_{2}} F_{1} \xrightarrow{\partial_{1}} F_{0} \rightarrow 0 .
$$

Letting m denote a minimal generator of M, we can define the homomorphism $f: S /(x) \rightarrow M$ sending $\overline{1}$ to m. Because x and y are minimal generators of the maximal ideal of S, we can lift this homomorphism to a chain map

in such a way that each f_{i} is a split injection. Tensoring the entire diagram with N we get the commutative diagram

Now let n be a minimal generator of N. Then $f_{i}(1) \otimes_{S} n$ is a minimal generator of $F_{i} \otimes_{S} N$ and, by commutativity, is in $\operatorname{ker}\left(\partial_{i} \otimes_{S} N\right)$ for all $i \geq 1$. This element is not a boundary, however, since $\partial_{i+1} \subseteq \mathfrak{m} F_{i}$, and no element in the image of $\partial_{i+1} \otimes_{S} N$ is a minimal generator of $F_{i} \otimes_{S} N$. It follows that $\operatorname{Tor}_{i}^{S}(M, N) \neq 0$ for all $i \geq 0$.

We next state the cohomological versions of Theorem 2.1 and Corollary 2.2; they are proved dually.

THEOREM 2.4

Let $R=S /(x)$ where S is a local ring and (x, y) is a pair of exact zero-divisors in S. Furthermore, let M and N be R-modules. If there exists an integer $n \geq 2$ such that $\operatorname{Ext}_{R}^{i}(M, N)=\operatorname{Ext}_{R}^{i}(M, N / y N)=\operatorname{Ext}_{R}^{i}\left(M, \operatorname{ann}_{N}(y)\right)=0$ for $1 \leq i \leq n$, then

$$
\operatorname{Ext}_{S}^{i}(M, N) \cong \begin{cases}\operatorname{Hom}_{S}(M, N) & \text { for } i=0, \\ \operatorname{Hom}_{S}\left(M, \operatorname{ann}_{N}(y)\right) & \text { for } 0<i<n \text { and } i \text { odd } \\ \operatorname{Hom}_{S}(M, N / y N) & \text { for } 0<i<n \text { and } i \text { even } .\end{cases}
$$

COROLLARY 2.5
Let $R=S /(x)$ where S is a local ring and (x, y) is a pair of exact zero-divisors in S. Furthermore, let M and N be R-modules with $y N=0$. If there exists an integer $n \geq 2$ such that $\operatorname{Ext}_{R}^{i}(M, N)=0$ for $1 \leq i \leq n$, then $\operatorname{Ext}_{S}^{i}(M, N) \cong$ $\operatorname{Hom}_{S}(M, N)$ for $0 \leq i<n$. Consequently, if $N=M \neq 0$, then $\operatorname{Ext}_{S}^{i}(M, M) \neq 0$ for $0<i<n$.

3. Complexity

As in the previous section, we fix a local ring S and a pair of exact zero-divisors (x, y), and denote the local ring $S /(x)$ by R. In this section all modules are assumed to be finitely generated. Our aim is to compare free resolutions of modules over R with those over S and determine relationships involving complexities.

Given a local ring A and an A-module M, there exists a (deleted) free resolution of M

$$
\cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow 0
$$

which is minimal, that is, it appears as a direct summand of every free resolution of M. The cokernel of the map $F_{n+1} \rightarrow F_{n}$ is the nth syzygy module of M and is denoted by $\Omega_{A}^{n}(M)$. Minimal free resolutions are unique up to isomorphism and hence the syzygies are uniquely determined up to isomorphism. Moreover, for every nonnegative integer n, the nth Betti number $\beta_{n}^{A}(M) \stackrel{\text { def }}{=} \operatorname{rank} F_{n}$ is a well-defined invariant of M. It is well known that $\operatorname{dim}_{k} \operatorname{Ext}_{A}^{n}(M, k)=\beta_{n}^{A}(M)=$ $\operatorname{dim}_{k} \operatorname{Tor}_{n}^{A}(M, k)$ for every integer n where k is the residue field of A. It is also clear that the projective dimension of M is finite if and only if the Betti numbers of M eventually vanish. Thus the asymptotic behavior of the Betti sequence $\beta_{0}^{A}(M), \beta_{1}^{A}(M), \beta_{2}^{A}(M), \ldots$ determines an important homological property of M. Following ideas from modular representation theory (see [Alp]), an invariant measuring how "fast" the Betti sequence grows was introduced by Avramov [Av2] (see also [Av1]). The complexity of M, denoted by $\operatorname{cx}_{A}(M)$, is defined as

$$
\operatorname{cx}_{A}(M) \stackrel{\text { def }}{=} \inf \left\{t \in \mathbb{N} \cup\{0\} \mid \exists a \in \mathbb{R} \text { such that } \beta_{n}^{A}(M) \leq a n^{t-1} \text { for all } n\right\},
$$

and measures the polynomial rate of growth of the Betti sequence of M. It follows from the definition that M has finite projective dimension if and only if $\operatorname{cx}_{A}(M)=0$, whereas $\mathrm{cx}_{A}(M)=1$ if and only if the Betti sequence of M is bounded. For an arbitrary local ring, the complexity of a module is not necessarily finite (see [Av3, Example 4.2.2]). In fact, by [Gu2, Theorem 2.3], the finiteness of the complexity for all finitely generated A-modules is equivalent to A being a complete intersection.

We now return to our previous setting of exact zero-divisors. We first remark that every nonzero R-module has infinite projective dimension over S, that is, every such module has positive complexity over S. Indeed, (\dagger) from the second paragraph of Section 2 shows that if $\operatorname{Tor}_{i}^{S}(R, M)=0$ for all $i \gg 0$, then $M / y M=0$. Thus $M=0$ by Nakayama's lemma.

Over a local ring A, the complexity of a module equals the complexity of any of its syzygies: their minimal free resolutions are the same except at the beginning. Moreover, given a short exact sequence

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow M_{3} \rightarrow 0
$$

of A-modules, the inequality

$$
\begin{equation*}
\operatorname{cx}_{A}\left(M_{u}\right) \leq \max \left\{\operatorname{cx}_{A}\left(M_{v}\right), \operatorname{cx}_{A}\left(M_{w}\right)\right\} \tag{*}
\end{equation*}
$$

holds for $\{u, v, w\}=\{1,2,3\}$. This follows simply by comparing the k-vector space dimensions of the Tor modules in the long exact sequence

$$
\cdots \rightarrow \operatorname{Tor}_{n}^{A}\left(M_{1}, k\right) \rightarrow \operatorname{Tor}_{n}^{A}\left(M_{2}, k\right) \rightarrow \operatorname{Tor}_{n}^{A}\left(M_{3}, k\right) \rightarrow \operatorname{Tor}_{n-1}^{A}\left(M_{1}, k\right) \rightarrow \cdots,
$$

where k is the residue field of A.
In the next proposition we use the inequality $(*)$ and prove that if M is an R-module with $\operatorname{cx}_{S}(M) \neq 1$, then $\operatorname{cx}_{S}(M)=\operatorname{cx}_{S}\left(\Omega_{R}^{n}(M)\right)$ for all n. Here the assumption $\operatorname{cx}_{S}(M) \neq 1$ is necessary: the S-module R has a minimal free resolution

$$
\cdots \rightarrow S \xrightarrow{y} S \xrightarrow{x} S \xrightarrow{y} S \xrightarrow{x} S \rightarrow 0
$$

and hence has complexity one over S. However its syzygies $\Omega_{R}^{n}(R)$ are all zero for $n>0$.

PROPOSITION 3.1

Let $R=S /(x)$ where S is a local ring and x is an exact zero-divisor in S. Then, for every finitely generated R-module M with $\operatorname{cx}_{S}(M) \neq 1$, the equality $\operatorname{cx}_{S}(M)=$ $\operatorname{cx}_{S}\left(\Omega_{R}^{n}(M)\right)$ holds for all n.

Proof

If $\operatorname{cx}_{S}(M)=0$, then $M=0$ (see the third paragraph of Section 3). Thus the result is trivial in this case. Next suppose that $\operatorname{cx}_{S}(M)>1$. Consider the short exact sequence

$$
0 \rightarrow \Omega_{R}^{1}(M) \rightarrow F \rightarrow M \rightarrow 0
$$

where F is a free R-module. Since the S-module R has complexity one so does F. Hence the result follows from the inequality (*) and the short exact sequence considered above.

Next we will compare the Betti numbers and complexities of modules over R with those over S. For that we first set some notations that generalize the notion of the Betti number and the complexity of a module.

Let (A, \mathfrak{m}) be a local ring with residue field k, and let M and N be A-modules with the property that $M \otimes_{A} N$ has finite length. Then, for every nonnegative integer n, the length of $\operatorname{Tor}_{n}^{A}(M, N)$ is finite. We define this length to be the nth Betti number $\beta_{n}^{A}(M, N)$ of the pair (M, N), that is, $\beta_{n}^{A}(M, N) \stackrel{\text { def }}{=} \ell\left(\operatorname{Tor}_{n}^{A}(M, N)\right)$. The length complexity of the pair (M, N), denoted by $\ell \operatorname{cx}_{A}(M, N)$, is then defined
as (see [Dao2, the discussion preceding Definition 2.1])
$\ell \operatorname{cx}_{A}(M, N) \stackrel{\text { def }}{=} \inf \left\{t \in \mathbb{N} \cup\{0\} \mid \exists a \in \mathbb{R}\right.$ such that $\beta_{n}^{A}(M, N) \leq a n^{t-1}$ for all $\left.n\right\}$.
Although, letting $N=k$, we recover the Betti number and the ordinary complexity of M, that is,

$$
\beta_{n}^{A}(M)=\beta_{n}^{A}(M, k) \quad \text { and } \quad \operatorname{cx}_{A}(M)=\ell \operatorname{cx}_{A}(M, k),
$$

our definition for $\ell \operatorname{cx}_{A}(M, N)$ of the pair (M, N) is different than the one originally given by Avramov and Buchweitz [AvBu, p. 286, para 2], where the minimal number of generators of the cohomology modules $\operatorname{Ext}_{A}^{n}(M, N)$ is used. In general there is no comparison between these two definitions of Betti numbers of the pair (M, N) (see also [Dao2, Theorem 5.4]).

THEOREM 3.2

Let $R=S /(x)$ where S is a local ring and (x, y) is a pair of exact zero-divisors in S. Furthermore, let M and N be finitely generated R-modules such that $y N=0$ and $M \otimes_{R} N$ has finite length. Then, for all n,

$$
\begin{equation*}
\beta_{n}^{R}(M, N)-\sum_{i=0}^{n-2} \beta_{i}^{R}(M, N) \leq \beta_{n}^{S}(M, N) \leq \sum_{i=0}^{n} \beta_{i}^{R}(M, N) . \tag{3.2}
\end{equation*}
$$

REMARK
We have used the convention that negative Betti numbers are zero.

Proof

As in the proof of Theorem 2.1, we consider the first quadrant change of rings spectral sequence:

$$
\operatorname{Tor}_{p}^{R}\left(M, \operatorname{Tor}_{q}^{S}(R, N)\right) \underset{p}{\Longrightarrow} \operatorname{Tor}_{p+q}^{S}(M, N)
$$

Since $y N=0$, we see from (\dagger) that the E^{2}-page entries are given by $E_{p, q}^{2}=$ $\operatorname{Tor}_{p}^{R}(M, N)$.

We first prove the left-hand inequality of (3.2). Fix an integer n, and consider the short exact sequence

$$
0 \rightarrow \Phi^{n-1} H_{n} \rightarrow \operatorname{Tor}_{n}^{S}(M, N) \rightarrow E_{n, 0}^{\infty} \rightarrow 0
$$

where $\Phi^{i} H_{n}$ is the filtration of H_{n} from the proof of Theorem 2.1. Since $E_{n, 0}^{\infty}=$ $\operatorname{Ker} d_{n, 0}^{n}$, we obtain the inequality $\ell\left(\operatorname{Tor}_{n}^{S}(M, N)\right) \geq \ell\left(\operatorname{Ker} d_{n, 0}^{n}\right)$. Now for all $2 \leq$ $p \leq n$, there is an exact sequence

$$
0 \rightarrow \operatorname{Ker} d_{n, 0}^{p} \rightarrow \operatorname{Ker} d_{n, 0}^{p-1} \rightarrow \operatorname{Im} d_{n, 0}^{p} \rightarrow 0,
$$

which implies that

$$
\begin{aligned}
\ell\left(\operatorname{Ker} d_{n, 0}^{n}\right) & =\ell\left(\operatorname{Ker} d_{n, 0}^{n-1}\right)-\ell\left(\operatorname{Im} d_{n, 0}^{n}\right) \\
& =\ell\left(\operatorname{Ker} d_{n, 0}^{n-2}\right)-\left(\ell\left(\operatorname{Im} d_{n, 0}^{n-1}\right)+\ell\left(\operatorname{Im} d_{n, 0}^{n}\right)\right)
\end{aligned}
$$

$$
=\ell\left(\operatorname{Ker} d_{n, 0}^{1}\right)-\sum_{i=2}^{n} \ell\left(\operatorname{Im} d_{n, 0}^{i}\right) .
$$

For $2 \leq i \leq n$, the image of $d_{n, 0}^{i}$ is a submodule of $E_{n-i, i-1}^{i}$, and the latter is a subquotient of $E_{n-i, i-1}^{2}$. Then since $E_{n-i, i-1}^{2}=\operatorname{Tor}_{n-i}^{R}(M, N)$, there is an inequality $\ell\left(\operatorname{Im} d_{n, 0}^{i}\right) \leq \ell\left(\operatorname{Tor}_{n-i}^{R}(M, N)\right)$. Moreover, the module $E_{n, 0}^{2}$ is a subquotient of $\operatorname{Ker} d_{n, 0}^{1}$. Thus, since $E_{n, 0}^{2}=\operatorname{Tor}_{n}^{R}(M, N)$, we have that $\ell\left(\operatorname{Ker} d_{n, 0}^{1}\right) \geq$ $\ell\left(\operatorname{Tor}_{n}^{R}(M, N)\right)$. This gives

$$
\begin{aligned}
\ell\left(\operatorname{Tor}_{n}^{S}(M, N)\right) & \geq \ell\left(\operatorname{Ker} d_{n, 0}^{n}\right) \\
& =\ell\left(\operatorname{Ker} d_{n, 0}^{1}\right)-\sum_{i=2}^{n} \ell\left(\operatorname{Im} d_{n, 0}^{i}\right) \\
& \geq \ell\left(\operatorname{Tor}_{n}^{R}(M, N)\right)-\sum_{i=0}^{n-2} \ell\left(\operatorname{Tor}_{i}^{R}(M, N)\right),
\end{aligned}
$$

proving the left-hand inequality.
For the right-hand inequality, we fix an integer n and consider the short exact sequence

$$
0 \rightarrow \Phi^{p-1} H_{n} \rightarrow \Phi^{p} H_{n} \rightarrow E_{p, n-p}^{\infty} \rightarrow 0
$$

for $0 \leq p \leq n$. Counting the lengths, we obtain the equalities

$$
\begin{aligned}
\ell\left(\Phi^{n} H_{n}\right) & =\ell\left(\Phi^{n-1} H_{n}\right)+\ell\left(E_{n, 0}^{\infty}\right) \\
& =\ell\left(\Phi^{n-2} H_{n}\right)+\ell\left(E_{n-1,1}^{\infty}\right)+\ell\left(E_{n, 0}^{\infty}\right) \\
& \vdots \\
& =\sum_{i=0}^{n} \ell\left(E_{i, n-i}^{\infty}\right) .
\end{aligned}
$$

Each $E_{i, n-i}^{\infty}$ is a subquotient of $E_{i, n-i}^{2}$, and so since $E_{i, n-i}^{2}=\operatorname{Tor}_{i}^{R}(M, N)$, we obtain the inequality $\ell\left(E_{i, n-i}^{\infty}\right) \leq \ell\left(\operatorname{Tor}_{i}^{R}(M, N)\right)$. Then since $\Phi^{n} H_{n}=$ $\operatorname{Tor}_{n}^{S}(M, N)$, we obtain

$$
\begin{aligned}
\ell\left(\operatorname{Tor}_{n}^{S}(M, N)\right) & =\ell\left(\Phi^{n} H_{n}\right) \\
& =\sum_{i=0}^{n} \ell\left(E_{i, n-i}^{\infty}\right) \\
& \leq \sum_{i=0}^{n} \ell\left(\operatorname{Tor}_{i}^{R}(M, N)\right),
\end{aligned}
$$

proving the right-hand inequality.

As a consequence, using the right-hand side of the inequality (3.2), we obtain an upper bound for $\ell \operatorname{cx}_{S}(M, N)$ in terms of the complexity of (M, N) over R.

COROLLARY 3.3
Let $R=S /(x)$ where S is a local ring and (x, y) is a pair of exact zero-divisors in S. Furthermore, let M and N be finitely generated R-modules such that $y N=0$ and $M \otimes_{R} N$ has finite length. Then $\ell \operatorname{cx}_{S}(M, N) \leq \ell \operatorname{cx}_{R}(M, N)+1$.

Proof
If $\ell \operatorname{cx}_{R}(M, N)=\infty$, then there is nothing to prove. So suppose that $\ell \operatorname{cx}_{R}(M$, $N)=c<\infty$. Then, by the definition, there exists a real number a such that $\beta_{n}^{R}(M, N) \leq a n^{c-1}$ for all n. By Theorem 3.2, the inequality

$$
\beta_{n}^{S}(M, N) \leq \sum_{i=0}^{n} \beta_{i}^{R}(M, N) \leq \sum_{i=0}^{n} a i^{c-1} \leq(n+1) a n^{c-1}
$$

holds for all n. Therefore there is a real number b such that $\beta_{n}^{S}(M, N) \leq b n^{c}$ for all n. This shows that $\ell \operatorname{cx}_{S}(M, N) \leq c+1$.

We are unaware of an example of a pair of R-modules for which equality holds on the left-hand side of (3.2). On the other hand, equality may occur on the righthand side. Indeed, when the exact zero-divisors x and y are minimal generators of the maximal ideal of S, Henriques and Şega [HeŞ, Theorem 1.7] proved that the equality

$$
\sum_{n=0}^{\infty} \beta_{n}^{S}(M) t^{n}=\frac{1}{1-t} \sum_{n=0}^{\infty} \beta_{n}^{R}(M) t^{n}
$$

of Poincaré series holds for every finitely generated R-module M. This gives that

$$
\beta_{n}^{S}(M)=\sum_{i=0}^{n} \beta_{i}^{R}(M) .
$$

However, when x and y are arbitrary, the equality of the Poincaré series stated above may fail.

EXAMPLE 3.4

Let $S=k[[x]] /\left(x^{3}\right)$ where k is a field. Then x^{2} is an exact zero divisor in S. Set $R=S /\left(x^{2}\right) \cong k[[x]] /\left(x^{2}\right)$. It can be seen that

$$
\sum_{n=0}^{\infty} \beta_{n}^{S}(k) t^{n}=\frac{1}{1-t}=\sum_{n=0}^{\infty} \beta_{n}^{R}(k) t^{n}
$$

This example also shows that the inequality of Corollary 3.3 can be strict.
We now give an example illustrating the fact that the left-hand inequality of (3.2) does give useful lower bounds in some cases.

EXAMPLE 3.5

Let $R=k\left[x_{1}, \ldots, x_{e}\right] /\left(x_{1}, \ldots, x_{e}\right)^{2}$, and let M be a finitely generated R-module. Then $\Omega_{R}^{1}(M)$ is a finite-dimensional vector space over k of dimension $\beta_{1}^{R}(M)$. It is easy to see that the Betti numbers of k are $\beta_{n}^{R}(k)=e^{n}$. It follows that $\beta_{n}^{R}(M)=\beta_{1}^{R}(M) e^{n-1}$ for all $n \geq 1$. From the left-hand inequality of (3.2) we have

$$
\begin{aligned}
\beta_{n}^{S}(M) & \geq \beta_{n}^{R}(M)-\sum_{i=0}^{n-2} \beta_{i}^{R}(M) \\
& =\beta_{1}^{R}(M) e^{n-1}-\left(\sum_{i=1}^{n-2} \beta_{1}^{R}(M) e^{i-1}\right)-\beta_{0}^{R}(M) \\
& =\beta_{1}^{R}(M)\left(e^{n-1}-\frac{e^{n-2}-1}{e-1}\right)-\beta_{0}^{R}(M) \\
& =\beta_{1}^{R}(M)\left(\frac{e^{n}-e^{n-1}-e^{n-2}+1}{e-1}\right)-\beta_{0}^{R}(M) \\
& \geq \frac{\beta_{1}^{R}(M)}{2} e^{n-1}-\beta_{0}^{R}(M)
\end{aligned}
$$

for $e \geq 2$ and for any ring S such that there exists an exact zero-divisor x with $R \cong$ $S /(x)$. Note that the last inequality follows since for $e \geq 2$ we have $e^{2}-e-2 \geq 0$. Then $e^{n-2}\left(e^{2}-e-2\right) \geq 0$, which implies that $e^{n}-e^{n-1}-2 e^{n-2}+2 \geq 0$. Thus $2\left(e^{n}-e^{n-1}-e^{n-2}+1\right) \geq e^{n-1}(e-1)$, and the desired inequality follows. In particular, R-modules must have exponential growth over S as well. As a specific example, let $S=k[x, y, z] /\left(x^{2}, y^{2}, z^{2}, y z\right)$. Then x is an exact zero-divisor in S, and $R=S /(x) \cong k[y, z] /(y, z)^{2}$ has the form above.

When $N=k$, the assumptions that $M \otimes N$ has finite length and $y N=0$ hold automatically. Therefore, in this situation, Theorem 3.2 and Corollary 3.3 can be summarized as follows.

COROLLARY 3.6

Let $R=S /(x)$ where S is a local ring and x is an exact zero-divisor in S. Then, for every finitely generated R-module M, the inequalities

$$
\beta_{n}^{R}(M)-\sum_{i=0}^{n-2} \beta_{i}^{R}(M) \leq \beta_{n}^{S}(M) \leq \sum_{i=0}^{n} \beta_{i}^{R}(M)
$$

hold for all n. Consequently $\operatorname{cx}_{S}(M) \leq \operatorname{cx}_{R}(M)+1$ holds.

REMARK

It follows from [AHS, Remark 4.4] that R is a complete intersection if and only if S is a complete intersection. The complexity inequality obtained in Corollary 3.6 gives a different proof for the 'only if' direction of this result: if $\mathrm{cx}_{R}(k)<\infty$, where k is the residue field of R, then it follows from Corollary 3.6 that $\mathrm{cx}_{S}(k)<\infty$ and hence, by [Gu2, Corollary 2.5], S is a complete intersection.

Another observation related to the result stated above concerns commutative local Cohen-Macaulay Golod rings (see [Av3, Section 5.2]). Assume that S is such a ring. Since a finitely generated module has infinite complexity over S in the case in which it has infinite projective dimension over S and $\operatorname{codepth}(S) \geq 2$ (see [Av3, Theorem 5.3.3(2)]), we conclude that codepth $(S) \leq 1$. (Recall that $\operatorname{cx}_{S}(R)=1$.) Moreover, as x is not regular, $\operatorname{codepth}(S)=1$. This implies that S is a hypersurface and hence R is a complete intersection.

As discussed in the introduction, when x is regular the complexity inequality is quite different than the one obtained in Corollary 3.6. More precisely, in that case the inequalities $\operatorname{cx}_{S}(M) \leq \operatorname{cx}_{R}(M) \leq \operatorname{cx}_{S}(M)+1$ hold. In particular, the complexity of M over R is finite if and only if it is finite over S. However, in our situation, when x is an exact zero-divisor, we are unable to deduce any further inequalities, such as $\operatorname{cx}_{R}(M) \leq \operatorname{cx}_{S}(M)$, from Theorem 3.2. In fact we do not know whether there exists an R-module M with $\mathrm{cx}_{S}(M)<\infty$ and $\mathrm{cx}_{R}(M)=\infty$. We record this in the next question.

QUESTION

Let $R=S /(x)$ where S is a local ring and x is an exact zero-divisor in S. Is $\operatorname{cx}_{R}(M) \leq \operatorname{cx}_{S}(M)$ for all finitely generated R-modules M ?

4. Canonical elements of $\operatorname{Ext}_{R}^{2}(M, M)$ and lifting

In this section we restrict our attention to the case where (x, x) is a pair of exact zero-divisors in the local ring S, and $R=S /(x)$. We discuss natural chain endomorphisms of complexes over R, following the construction in [Eis, Section 1], and show that whether or not they are null-homotopic dictates the liftability of R-modules to S. These results generalize classical results (see, e.g., [ADS]) for lifting modules modulo a regular element to modulo the square of the regular element.

4.1. Canonical endomorphisms of complexes

Let

$$
\begin{equation*}
F: \cdots \rightarrow F_{i+1} \xrightarrow{\partial_{i+1}} F_{i} \xrightarrow{\partial_{i}} F_{i-1} \rightarrow \cdots \tag{1}
\end{equation*}
$$

be a complex of finitely generated free R-modules. We let

$$
\begin{equation*}
\widetilde{F}: \cdots \rightarrow \widetilde{F}_{i+1} \xrightarrow{\widetilde{\partial}_{i+1}} \widetilde{F}_{i} \xrightarrow{\widetilde{\partial}_{i}} \widetilde{F}_{i-1} \rightarrow \cdots \tag{2}
\end{equation*}
$$

denote a preimage over S of the complex F, that is, a sequence of homomorphisms $\widetilde{\partial}_{i}: \widetilde{F}_{i} \rightarrow \widetilde{F}_{i-1}$ of free S-modules such that F and $\widetilde{F} \otimes_{S} R$ are isomorphic R complexes. From the fact that $\widetilde{\partial}_{i-1} \widetilde{\partial}_{i}\left(\widetilde{F}_{i}\right) \subseteq x \widetilde{F}_{i-2}$ for all i, we can write that

$$
\begin{equation*}
\widetilde{\partial}_{i-1} \widetilde{\partial}_{i}=x \widetilde{s}_{i} \tag{3}
\end{equation*}
$$

for some homomorphism $\widetilde{s}_{i}: \widetilde{F}_{i} \rightarrow \widetilde{F}_{i-2}$. Now we define the homomorphisms s_{i} : $F_{i} \rightarrow F_{i-2}$ by

$$
\begin{equation*}
s_{i}=\widetilde{s}_{i} \otimes_{S} R \tag{4}
\end{equation*}
$$

for all i.
There are several properties of the s_{i} 's which we should like to mention. See [Eis, Section 1] for the proofs. (Note that in our case $(x) /(x)^{2}=(x) \cong S /(x)$ is a free $S /(x)$-module.)
(a) The definition of s_{i} is independent of the factorization in (3).
(b) The family $s=\left\{s_{i}\right\}$ is a chain endomorphism of F of degree -2 .
(c) Let

$$
G: \cdots \rightarrow G_{i+1} \xrightarrow{\delta_{i+1}} G_{i} \xrightarrow{\delta_{i}} G_{i-1} \rightarrow \cdots
$$

be another complex of finitely generated free R-modules, and assume that there exists a chain map $f: F \rightarrow G$. Let $t=\left\{t_{i}=\widetilde{t}_{i} \otimes_{S} R: G_{i} \rightarrow G_{i-2}\right\}$ be the chain map defined by the factorizations $\widetilde{\delta}_{i-1} \widetilde{\delta}_{i}=x \widetilde{x t}_{i}$ for all i, where \widetilde{G} is a preimage over S of G. Then the chain maps $f s$ and $t f$ are homotopic.
(d) From (c) it follows that the definition of the s_{i} 's is independent, up to homotopy, of the preimage \widetilde{F} of F chosen in (2).

4.2. The group $\operatorname{Ext}_{A}^{n}(M, M)$

Let A be an associative ring, and let M be an A-module. Suppose that F is a projective resolution of M. Then $\mathrm{H}^{n}\left(\operatorname{Hom}_{A}(F, F)\right)$ is the group of homotopy equivalence classes of chain endomorphisms of F of degree n. For a chain endomorphism s of F of degree n, we let $[s]$ denote the class of s in $\mathrm{H}^{n}\left(\operatorname{Hom}_{A}(F, F)\right)$. Let G be another projective resolution of M over A. Then the comparison maps $f: F \rightarrow G$ and $g: G \rightarrow F$ lifting the identity map on M are homotopically equivalent. That is, $f g$ is homotopic to the identity map on G and $g f$ is homotopic to the identity map on F. It follows that the map

$$
\begin{equation*}
\theta_{G}^{F}: \mathrm{H}^{n}\left(\operatorname{Hom}_{A}(F, F)\right) \rightarrow \mathrm{H}^{n}\left(\operatorname{Hom}_{A}(G, G)\right) \tag{5}
\end{equation*}
$$

given by $[s] \mapsto[f s g]$ is an isomorphism, with inverse $\theta_{F}^{G}:[s] \mapsto[g s f]$. It is well known that this group is $\operatorname{Ext}_{A}^{n}(M, M)$ (see, e.g., [AV]).
4.3. Canonical elements of $\operatorname{Ext}_{R}^{2}(M, M)$

Returning to the situation where $R=S /(x)$ for the pair (x, x) of exact zerodivisors, let F be a free resolution of M over R, and let s be the endomorphism of F defined by (4). Thus we have the element $[s] \in \mathrm{H}^{2}\left(\operatorname{Hom}_{R}(F, F)\right)$. That we call $[s]$ a canonical element of $\operatorname{Ext}_{R}^{2}(M, M)$ is reinforced by the following lemma.

LEMMA 4.1

Let $R=S /(x)$ where S is a local ring and (x, x) is a pair of exact zero-divisors in S. Suppose that F and G are free resolutions of a finitely generated module M over R, that s is the canonical endomorphism of F as defined in (4), and that t
is the canonical endomorphism of G as defined in (4). Then we have that

$$
\theta_{F}^{G}([t])=[s],
$$

where θ_{F}^{G} is the isomorphism defined in (5).
Proof
First assume that F is a minimal free resolution of M. Then the comparison map $f: F \rightarrow G$ lifting the identity map on M can be chosen to be a split injection, with splitting $g: G \rightarrow F$ also lifting the identity map on M. In particular, we have $g f=\operatorname{id}_{F}$, the identity map on F.

Denote the differential on F by ∂, and denote that on G by δ. Let $(\widetilde{F}, \widetilde{\partial})$ be a preimage over S of (F, ∂), and let $(\widetilde{G}, \widetilde{\delta})$ be a preimage over S of (G, δ). We choose preimages \widetilde{f} of f and \widetilde{g} of g over S such that $\widetilde{g} \widetilde{f}=\operatorname{id}_{\tilde{F}}$.

As $g_{i-1} \delta_{i}=\partial_{i} g_{i}$ for all i, there exists $u_{i}: \widetilde{G}_{i} \rightarrow \widetilde{F}_{i-1}$ such that $\widetilde{g}_{i-1} \widetilde{\delta}_{i}=\widetilde{\partial}_{i} \widetilde{g}_{i}+$ $x u_{i}$ for all i. Similarly, there exists $v_{i}: \widetilde{F}_{i} \rightarrow \widetilde{G}_{i-1}$ such that $\widetilde{\delta}_{i} \widetilde{f}_{i}=\widetilde{f}_{i-1} \widetilde{\partial}_{i}+x v_{i}$ for all i. Thus we have

$$
\begin{aligned}
x\left(\widetilde{g}_{i-2} \tilde{t}_{i} \widetilde{f}_{i}-\widetilde{s}_{i}\right) & =\widetilde{g}_{i-2} \widetilde{\delta}_{i-1} \widetilde{\delta}_{i} \tilde{f}_{i}-\widetilde{\partial}_{i-1} \widetilde{\partial}_{i} \\
& =\left(\widetilde{\partial}_{i-1} \widetilde{g}_{i-1}+x u_{i-1}\right)\left(\widetilde{f}_{i-1} \widetilde{\partial}_{i}+x v_{i}\right)-\widetilde{\partial}_{i-1} \widetilde{\partial}_{i} \\
& =x\left(\widetilde{\partial}_{i-1} \widetilde{g}_{i-1} v_{i}+u_{i-1} \widetilde{f}_{i-1} \widetilde{\partial}_{i}\right) .
\end{aligned}
$$

It follows that $g_{i-2} t_{i} f_{i}-s_{i}=\partial_{i-1}\left(g_{i-1} \bar{v}_{i}\right)+\left(\bar{u}_{i-1} f_{i-1}\right) \partial_{i}$ for all i, where $\bar{u}_{i}=$ $u_{i} \otimes_{S} R$ and $\bar{v}_{i}=v_{i} \otimes_{S} R$. We will have shown that $g t f$ is homotopic to s with homotopy $h_{i}=\bar{u}_{i} f_{i}$ once we know that $\bar{u}_{i} f_{i}=g_{i-1} \bar{v}_{i}$ for all i. But this is easy:

$$
\begin{aligned}
x\left(u_{i} \widetilde{f}_{i}-\widetilde{g}_{i-1} v_{i}\right) & =\left(\widetilde{g}_{i-1} \widetilde{\delta}_{i}-\widetilde{\partial}_{i} \widetilde{g}_{i}\right) \widetilde{f}_{i}-\widetilde{g}_{i-1}\left(\widetilde{\delta}_{i} \widetilde{f}_{i}-\widetilde{f}_{i-1} \widetilde{\partial}_{i}\right) \\
& =-\widetilde{\partial}_{i} \widetilde{g}_{i} \widetilde{f}_{i}+\widetilde{g}_{i-1} \widetilde{f}_{i-1} \widetilde{\partial}_{i} \\
& =0,
\end{aligned}
$$

hence the claim follows.
Notice that we also have $\theta_{G}^{F}([s])=[t]$ when F is minimal. Therefore, for two arbitrary free resolutions F and G of $M, \theta_{F}^{G}([t])=[s]$ follows from composing $\theta_{F}^{G}=\theta_{L}^{G} \theta_{F}^{L}$ where L is a minimal free resolution of M.

4.4. Lifting

Let B be an associative ring, let I be an ideal of B, and let $A=B / I$. Recall that a finitely generated A-module M is said to lift to B with lifting M^{\prime} if there exists a finitely generated B-module M^{\prime} such that $M \cong M^{\prime} \otimes_{B} A$ and $\operatorname{Tor}_{i}^{B}\left(M^{\prime}, A\right)=0$ for all $i \geq 1$. Similarly, a complex of finitely generated free A-modules

$$
F: \cdots \rightarrow F_{i+1} \xrightarrow{\partial_{i+1}} F_{i} \xrightarrow{\partial_{i}} F_{i-1} \rightarrow \cdots
$$

is said to lift to B with lifting \widetilde{F} if there exists a preimage \widetilde{F} of F

$$
\widetilde{F}: \cdots \rightarrow \widetilde{F}_{i+1} \xrightarrow{\widetilde{\partial}_{i+1}} \widetilde{F}_{i} \xrightarrow{\widetilde{\partial}_{i}} \widetilde{F}_{i-1} \rightarrow \cdots
$$

such that $\widetilde{\partial}_{i-1} \widetilde{\partial}_{i}=0$ for all i. A close connection between these two notions of lifting will be explained in the next theorem. We also want to show that, when $R=S /(x)$ for ($x, x)$ a pair of exact zero-divisors, the triviality of the canonical element [s] determines whether the module M lifts to S.

THEOREM 4.2

Let $R=S /(x)$ where S is a local ring and (x, x) is a pair of exact zero-divisors in S. Then for every finitely generated R-module M, the following are equivalent.
(a) M lifts to S.
(b) The canonical element $[s]$ in $\operatorname{Ext}_{R}^{2}(M, M)$ is trivial.
(c) Every free resolution of M by finitely generated free R-modules lifts to S.
(d) Some free resolution of M by finitely generated free R-modules lifts to S.

Proof

$(\mathrm{a}) \Longrightarrow(\mathrm{b})$. Suppose that M^{\prime} is a lifting of M to S. Let

$$
\widetilde{F}: \cdots \rightarrow \widetilde{F}_{2} \xrightarrow{\widetilde{\partial}_{2}} \widetilde{F}_{1} \xrightarrow{\widetilde{\partial}_{1}} \widetilde{F}_{0} \rightarrow 0
$$

be a resolution of M^{\prime} by finitely generated free S-modules. Since $\operatorname{Tor}_{i}^{S}\left(M^{\prime}, R\right)=0$ for all $i>0, F=\widetilde{F} \otimes_{S} R$ is a resolution of $M \cong M^{\prime} \otimes_{S} R$ by finitely generated free R-modules. Computing the endomorphism s from the preimage \widetilde{F} of F, which is exact, we see that s is actually the zero endomorphism, and is therefore certainly trivial in $\operatorname{Ext}_{R}^{2}(M, M)$.
$(\mathrm{b}) \Longrightarrow(\mathrm{c})$. By Lemma 4.1 the canonical element of $\operatorname{Ext}_{R}^{2}(M, M)$ is trivial regardless of which resolution by finitely generated free R-modules F of M we choose to define it. Therefore let F be an arbitrary such resolution of M, and let s be the canonical chain endomorphism defined as in (4) of the section above on canonical endomorphisms of complexes. By assumption, s is homotopic to zero. Therefore there exists a homotopy $h=\left\{h_{i}\right\}$ with $h_{i}: F_{i} \rightarrow F_{i-1}$ such that $s_{i}=\partial_{i-1} h_{i}+h_{i-1} \partial_{i}$ for all i. Let \widetilde{F} be an arbitrary preimage of F, with maps $\widetilde{\partial}$. Let $\widetilde{h}_{i}: \widetilde{F}_{i} \rightarrow \widetilde{F}_{i-1}$ be a preimage of h_{i} for all i. There exists $u_{i}: \widetilde{F}_{i} \rightarrow \widetilde{F}_{i-2}$ such that $\widetilde{s}_{i}=\widetilde{\partial}_{i-1} \widetilde{h}_{i}+\widetilde{h}_{i-1} \widetilde{\partial}_{i}+x u_{i}$ for all i. Now consider the preimage F^{\sharp} of F where we take $F_{i}^{\sharp}=\widetilde{F}_{i}$ for all i, but we take the maps $\partial_{i}^{\sharp}=\widetilde{\partial}_{i}-x \widetilde{h}_{i}$ instead. We have

$$
\begin{aligned}
\partial_{i-1}^{\sharp} \partial_{i}^{\sharp} & =\left(\widetilde{\partial}_{i-1}-x \widetilde{h}_{i-1}\right)\left(\widetilde{\partial}_{i}-x \widetilde{h}_{i}\right) \\
& =\widetilde{\partial}_{i-1} \widetilde{\partial}_{i}-x\left(\widetilde{\partial}_{i-1} \widetilde{h}_{i}+\widetilde{h}_{i-1} \widetilde{\partial}_{i}\right) \\
& =x\left(\widetilde{s}_{i}-\widetilde{\partial}_{i-1} \widetilde{h}_{i}-\widetilde{h}_{i-1} \widetilde{\partial}_{i}\right) \\
& =0 .
\end{aligned}
$$

Thus F^{\sharp} is a lifting of F to S.
$(\mathrm{c}) \Longrightarrow(\mathrm{d})$. This is trivial. To show that $(\mathrm{d}) \Longrightarrow(\mathrm{a})$, assume that F is a free resolution of M by finitely generated free R-modules which lifts to the complex
\widetilde{F} over S. We claim that $\mathrm{H}_{i}(\widetilde{F})=0$ for $i \neq 0$. Indeed, if $\widetilde{\partial}_{i}(a)=0$ for some $a \in \widetilde{F}_{i}$, then $a=\widetilde{\partial}_{i+1}(b)+x c$ for some $b \in \widetilde{F}_{i+1}$ and $c \in \widetilde{F}_{i}$ by the exactness of F. Since $x \widetilde{\partial}_{i}(c)=0$, we have that $\widetilde{\partial}_{i}(c) \in x \widetilde{F}_{i-1}$. Again by the exactness of F we have that $c=\widetilde{\partial}_{i+1}(d)+x e$ for some $d \in \widetilde{F}_{i+1}$ and $e \in \widetilde{F}_{i}$. Therefore $a=\widetilde{\partial}_{i+1}(b+x d)$. It follows that \widetilde{F} is a resolution of $M^{\prime}=\mathrm{H}_{0}(\widetilde{F})$ by finitely generated free S-modules, and thus M^{\prime} is a lifting of M to S.

We end with an example showing that there are local rings S admitting a pair of exact zero-divisors (x, x), but no local ring T with regular element \widetilde{x} such that $S=T /\left(\widetilde{x}^{2}\right)$ and $x=\widetilde{x}+\left(\widetilde{x}^{2}\right)$. Therefore the notion of lifting modulo an exact zero-divisor is a more general notion than lifting from modulo a regular element to modulo the square of the regular element.

EXAMPLE 4.3
Let k be field, let $S=k[V, X, Y, Z] / I$ where I is the ideal

$$
\left(V^{2}, Z^{2}, X Y, V X+X Z, V Y+Y Z, V X+Y^{2}, V Y-X^{2}\right)
$$

and set $v=V+I$. Then (v, v) is a pair of exact zero-divisors. Moreover, it is shown in [AGP] that S does not have an embedded deformation. As a consequence there is no local ring T and nonzero-divisor \widetilde{V} of T such that $S \cong T /\left(\widetilde{V}^{2}\right)$.

Acknowledgments. This paper is the result of a visit by the first and second authors to the third in October/November 2010. They thank the Department of Mathematics at the University of Texas at Arlington for their kind hospitality. The authors thank the referee for his/her careful reading, diligence, and helpful suggestions.

References

[Alp] J. L. Alperin, Periodicity in groups, Illinois J. Math. 21 (1977), 776-783, 1977. MR 0450381.
[ADS] M. Auslander, S. Ding, and Ø. Solberg, Liftings and weak liftings of modules, J. Algebra 156 (1993), 273-317. MR 1216471.
DOI 10.1006/jabr.1993.1076.
[Av1] L. L. Avramov, "Homological asymptotics of modules over local rings" in Commutative Algebra (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ. 15, Springer, New York, 1989, 33-62. MR 1015512.
DOI 10.1007/978-1-4612-3660-3_3.
[Av2] __, Modules of finite virtual projective dimension, Invent. Math. 96 (1989), $71-101$. MR 0981738. DOI 10.1007/BF01393971.
[Av3] _ "Infinite free resolutions" in Six Lectures on Commutative Algebra (Bellaterra 1996), Progr. Math. 166, Birkhäuser, Basel, 1998, 1-118. MR 1648664.
[AvBu] L. L. Avramov and R.-O. Buchweitz, Support varieties and cohomology over complete intersections, Invent. Math. 142 (2000), 285-318. MR 1794064. DOI 10.1007/s002220000090.
[AGP] L. L. Avramov, V. N. Gasharov, and I. V. Peeva, A periodic module of infinite virtual projective dimension, J. Pure Appl. Algebra 62 (1989), 1-5. MR 1026870. DOI 10.1016/0022-4049(89)90016-9.
[AHŞ] L. L. Avramov, I. B. Henriques, and L. M. Şega, Quasi-complete intersection homomorphisms, Pure Appl. Math. Q. 9 (2013), 1-9.
[AV] L. L. Avramov and O. Veliche, Stable cohomology over local rings, Adv. Math. 213 (2007), 93-139. MR 2331239. DOI 10.1016/j.aim.2006.11.012.
[Be] P. A. Bergh, On the vanishing of (co)homology over local rings, J. Pure Appl. Algebra 212 (2008), 262-270. MR 2355028. DOI 10.1016/j.jpaa.2007.05.001.
[Dao1] H. Dao, Some observations on local and projective hypersurfaces, Math. Res. Lett. 15 (2008), 207-219. MR 2385635. DOI 10.4310/MRL.2008.v15.n2.a1.
[Dao2] , Asymptotic behaviour of Tor over complete intersections and applications, preprint, arXiv:0710.5818v1 [math.AC]
[Eis] D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), no. 1, 35-64. MR 0570778. DOI 10.2307/1999875.
[Gu1] T. H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167-183. MR 0364232.
[Gu2] , On the deviations of a local ring, Math. Scand. 47 (1980), 5-20. MR 0600076.
[HeŞ] I. B. D. A. Henriques and L. M. Şega, Free resolutions over short Gorenstein local rings, Math. Z. 267 (2011), 645-663. MR 2776052. DOI 10.1007/s00209-009-0639-z.
[Jo1] D. A. Jorgensen, Tor and torsion on a complete intersection, J. Algebra 195 (1997), 526-537. MR 1469637. DOI 10.1006/jabr.1997.7064.
[Jo2] , Complexity and Tor on a complete intersection, J. Algebra 211 (1999), 578-598. MR 1666660. DOI 10.1006/jabr.1998.7743.
[Rot] J. J. Rotman, An Introduction to Homological Algebra, 2nd ed., Universitext, Springer, New York, 2009. MR 2455920. DOI 10.1007/b98977.

Bergh: Institutt for matematiske fag, Norges teknisk-naturvitenskapelige universitet, N-7491 Trondheim, Norway; bergh@math.ntnu.no

Celikbas: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045, USA; current: Department of Mathematics, University of Missouri, Columbia, Missouri 65211, USA; celikbaso@missouri.edu

Jorgensen: Department of Mathematics, University of Texas at Arlington, Arlington, Texas 76019, USA; djorgens@uta.edu

