
Modules that detect finite homological
dimensions

Olgur Celikbas, Hailong Dao, and Ryo Takahashi

Abstract We study homological properties of test modules that are, in principle, mod-

ules that detect finite homological dimensions. Themain outcome of our results is a gen-

eralization of a classical theorem of Auslander and Bridger: we prove that if a commuta-

tive Noetherian complete local ring R admits a test module of finite Gorenstein dimen-

sion, then R is Gorenstein.

1. Introduction

Throughout this paper, we assume that all rings are commutative Noetherian

rings and all modules are finitely generated. Unless otherwise specified, R denotes

a local ring with maximal ideal m and residue field k. The aim of this paper is

to study test modules.

DEFINITION 1.1

An R-moduleM is called a test module if all R-modules N with TorR�0(M,N) = 0

have finite projective dimension.

There are many examples of test modules with interesting consequences in the

literature. For instance, it is well known that the residue field k of R is a test

module (see [9, Section 1.3]). In general it requires highly nontrivial results to

characterize all test modules, even over specific rings. One such result is due to

Huneke and Wiegand [20, Theorem 1.9]: a test module over a singular hyper-

surface is nothing but a module of infinite projective dimension. This result was

later obtained by Miller (see proof of [28, Theorem 1.1] in Section 1) and the

third author [31, Corollary 7.2] by using different techniques.

In this paper we consider test modules discussed above in a broader context

by studying their homological properties. We investigate when a module-finite

algebra is a test module, and we prove the following.
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THEOREM 1.2

Let R→ S be a finite local homomorphism of local rings. Assume that either

(1) the ring S is regular or

(2) there exists a test S-module that has finite projective dimension over R.

Then S is a test R-module.

It is remarkable that the existence of a test module of finite homological dimen-

sion characterizes the ring itself: if there exists a test module of finite projective

dimension, then R is regular (see [9, Theorem 2.2.7]). Auslander and Bridger [3]

proved that if the residue field k has finite G-dimension (see Definition 3.1), then

R is Gorenstein. Corso–Huneke–Katz–Vasconcelos and Goto–Hayasaka, under

mild technical conditions, generalized this classical theorem: Let I be an inte-

grally closed m-primary ideal of a local ring R. Then I is a test module (see [14,

Corollary 3.3]). If I has finite G-dimension and contains a non-zero-divisor of R,

then R is Gorenstein (see [17, Theorem 1.1(2)]). We will obtain a generalization

in this direction.

THEOREM 1.3

Let R be a homomorphic image of a Gorenstein local ring. If there exists a test

module of finite G-dimension, then R is Gorenstein.

We also study the structure of test and nontest modules over complete inter-

sections. Recall that R is called a complete intersection (resp., hypersurface) if

its completion is a quotient of a regular local ring by a regular sequence (resp.,

regular element). Auslander and Bridger [3] introduced the notion of a resolving

subcategory of the category modR of finitely generated R-modules, which is a full

subcategory containing free modules and closed under direct summands, exten-

sions, and syzygies. For each R-module M the smallest resolving subcategory

containing M is called the resolving closure of M . We will prove the following.

THEOREM 1.4

Let R be a complete intersection.

(1) The test R-modules are precisely the R-modules of maximal complexity.

(2) The nontest R-modules form a resolving subcategory of modR. If it is

written as the resolving closure of some module, then R is a hypersurface.

The first assertion extends the result of Huneke and Wiegand stated above. The

second says that nontest modules form a good subcategory but its structure is

not simple in general.

The organization of this paper is as follows. In Section 2, we analyze basic

properties of test modules. Theorem 1.2(1) and an extended version of Theo-

rem 1.2(2) are shown in this section (Proposition 2.4 and Theorem 2.5). We also

prove Theorem 1.4(1) in this section (Proposition 2.7). In Section 3, we study
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the existence of test modules of finite homological dimensions. We characterize

test modules in terms of the vanishing of Ext, which yields a generalized version

of Theorem 1.3 (Theorem 3.2). In Section 4, we develop categorical approaches

for nontest modules. Theorem 1.4(2) is proved in this section (Corollaries 4.4

and 4.10).

2. Basic properties of test modules

In this section we analyze basic properties of test modules. We should note that

modules akin to test modules were studied in the literature before (see, e.g., [21]

and [27]).

First of all, we remark that our definition of a test module is different from

the one defined by Ramras [29, Lemma 1.1] (see also [1] and [25]). He defined

and studied test modules for projectivity in terms of the vanishing of a single

Ext module. More precisely, an R-module M is called an Ext-test module (a test

module in the sense of [25] and [29]) if every R-module P with Ext1R(P,M) = 0 is

free. We record a few observations concerned with the test and Ext-test modules.

REMARK 2.1

(1) Nontrivial examples of test modules over arbitrary local rings are abun-

dant: if (R,m) is a local ring and M ∈modR, then there exists an integer n > 0

such that mnM is a test module (see [2, 1.5(1), Definition 2.1, Propositions 2.2,

and 2.3(5)] and [33, Lemma 2.4(b)].

(2) Test and Ext-test modules are different in general: by definition an Ext-

test module has depth at most one, but a test module does not necessarily have

this depth restriction.

(3) Ext-test modules are indeed test modules over complete intersections:

this follows from the fact that the vanishing of Ext�0(−,−) is equivalent to the

vanishing of Tor�0(−,−) over complete intersections by [5, Theorem 6.1].

(4) Test modules are indeed Ext-test modules over hypersurfaces that are

either Artinian rings or one-dimensional domains: Assume that R is such a ring,

assume that M is a test R-module, and assume that Ext1R(P,M) = 0 for some

P ∈ modR. We may assume by [25, Theorem 1] that R is nonregular, whence

pdRM =∞. We see that Ext>0
R (P,M) = 0 from [8, Corollary 3.5] and [10, Corol-

lary 4.14]. This implies that P is free by [5, 5.12].

Next we prove that test modules behave well modulo non-zero-divisors. We

denote by T(R) the full subcategory of modR consisting of test modules, and by

ΩnM (or Ωn
RM when necessary) the nth syzygy of an R-module M .

PROPOSITION 2.2

Let (R,m) be a local ring, and let M be an R-module. Let x ∈m be a non-zero-

divisor on M . Then:

(i) M ∈ T(R) if and only if M/xM ∈ T(R).

(ii) Assume further that x is a non-zero-divisor on R.
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(a) If M/xM ∈ T(R/xR), then M ∈ T(R).

(b) If x /∈m2 and M ∈ T(R), then M/xM ∈ T(R/xR).

Proof

There is an exact sequence 0→M
x−→M →M/xM → 0. Hence, TorR�0(M,N) = 0

if and only if TorR�0(M/xM,N) = 0 for all R-modules N . This proves (i). For

the rest of the proof, we assume that x is a non-zero-divisor on both R and M .

Assume that M/xM ∈ T(R/xR), and assume that TorR�0(M,N) = 0 for some

R-module N . Then, by the above exact sequence, TorR�0(M/xM,N ′) = 0, where

N ′ := ΩN . Then, since x is a non-zero-divisor on both R and N ′, it follows that

Tor
R/xR
�0 (M/xM,N ′/xN ′) = 0. Therefore, pdR/xR(N

′/xN ′)<∞. As pdR(N
′) =

pdR/xR(N
′/xN ′) by [9, Lemma 1.3.5], this proves (ii)(a). Finally, assume that

x /∈ m2 and M ∈ T(R). Suppose that Tor
R/xR
�0 (M/xM,T ) = 0 for some R/xR-

module T . Then, as Tor
R/xR
i (M/xM,T ) ∼= TorRi (M,T ) for all i ≥ 0, we have

pdR T <∞. Since x /∈ m2, we have pdR/xR T <∞ by [4, Proposition 3.3.5(1)].

This proves that M/xM ∈ T(R/xR) and hence finishes the proof. �

REMARK 2.3

The assumption that x /∈m2 in Proposition 2.2(ii)(b) is necessary: Assume that

(R,m) is a regular local ring, and assume that 0 �= x ∈ m2. Set S = R/xR, and

set M =R. Then M ∈modR= T(R). However, since S is not regular, M/xM /∈
T(R/xR).

Recall that a local homomorphism f :R→ S of local rings is called a finite local

ring homomorphism if S is a finitely generated R-module via f . Now we study

the behavior of test modules under finite local ring homomorphisms. First, we

point out that regular extensions of local rings are test modules.

PROPOSITION 2.4

Let (R,m, k)→ (S,n, l) be a finite local ring homomorphism. If S is regular, then

S ∈ T(R).

Proof

Suppose that TorR�0(M,S) = 0 for some R-module M . There is an exact sequence

0→Gd →Gd−1 → · · · →G0 → S/mS → 0 of S-modules with Gi being free. We

see from this that TorR�0(M,S/mS) = 0. Since S/mS = k(n) for some n > 0, we

get TorR�0(M,k) = 0. This implies that M has finite projective dimension, and

hence S ∈ T(R). �

THEOREM 2.5

Let R → S be a finite local ring homomorphism, and let M ∈ T(S). Assume

that any R-module X with TorR�0(S,X) = 0 satisfies TorR�0(M,X) = 0. Then

S ∈ T(R).
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Proof

Assume on the contrary that S /∈ T(R). Then there exists an R-module L such

that TorR�0(S,L) = 0 and pdRL=∞. Hence, TorR>0(S,T ) = 0 for some T =Ωn
RL.

Set d= depthS, and let N =Ωd
RT . There is an exact sequence 0→N → Fd−1 →

· · · → F0 → T → 0 of R-modules, where each Fi is a free R-module. We deduce

that

0→N ⊗R S → Fd−1 ⊗R S → · · · → F0 ⊗R S → T ⊗R S → 0

is exact. This implies that depthS(N ⊗R S) ≥ d. Using [11, A.4.20], we have

isomorphisms

N ⊗L
R M 	N ⊗L

R (S ⊗L
S M)	 (N ⊗L

R S)⊗L
S M 	 (N ⊗R S)⊗L

S M

in the derived category of R, whose last isomorphism holds by TorR>0(S,N) = 0.

Thus, TorRi (M,N)∼=TorSi (M,N⊗RS) for all i > 0. By assumption, we have that

TorR�0(M,N) = 0, whence TorS�0(M,N ⊗R S) = 0. As M ∈ T(S), it holds that

pdS(N ⊗R S)<∞. The Auslander–Buchsbaum formula shows that N ⊗R S is a

free S-module. Let G be a minimal free resolution of N over R. Then G⊗R S

is a minimal free resolution of N ⊗R S over S. The uniqueness of minimal free

resolutions implies that Gi ⊗R S = 0, and hence Gi = 0, for all i > 0. Therefore,

N is a free R-module, and pdRL<∞. This is a contradiction. �

We record a direct consequence of Theorem 2.5.

COROLLARY 2.6

Let R → S be a finite local ring homomorphism. If there is M ∈ T(S) with

pdRM < ∞, then S ∈ T(R). In particular, if S = R/(x) where x is a regular

sequence on R, then the ring R is regular.

The category of test modules over complete intersection rings is determined in

terms of complexity. Recall that the complexity cxRM of an R-module M is

the dimension of the support variety V (M) associated to M (see [4] and [5] for

details). In an earlier version of this article, we made use of Corollary 2.6 and [23,

Theorem 1.3] and proved Proposition 2.7 below for complete intersection local

rings which are complete. The authors are grateful to Petter Andreas Bergh for

explaining a completion-free proof of this fact.

PROPOSITION 2.7

Let R be a local complete intersection. Then

T(R) = {M ∈modR | cxRM = codimR}.

Proof

(⊇): This follows from [22, Corollary 1.2].

(⊆): Put c= codimR. Let M ∈modR with cxR(M)< c. Then dimV (M)<

c= dimkc, where k is the algebraic closure of k. This implies that there exists a
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closed homogeneous variety W in kc with dimW > 0 and W ∩V (M) = {0}. Now,
by [7, Corollary 2.3], there exists N ∈ modR with V (N) = W . Since cxRN =

dimV (N) = dimW > 0, the R-moduleN has infinite projective dimension. Recall

that V (N)∩V (M) = {0}; thus, we deduce from [5, Theorem IV] that TorR�0(M,

N) = 0. Consequently, M /∈ T(R). �

Here are some consequences of Proposition 2.7; the first one is the result of

Huneke and Wiegand [20, Theorem 1.9] discussed in the introduction.

COROLLARY 2.8

(i) (Huneke–Wiegand) Let R be a hypersurface. Then an R-module M is

in T(R) if and only if M has infinite projective dimension.

(ii) Let R→ S be a finite local ring homomorphism of local complete intersec-

tions. If there exists an S-module M such that cxRM = 0 and cxS M = codimS,

then cxR S = codimR. In other words, if M has minimal complexity over R and

has maximal complexity over S, then S has maximal complexity over R.

Proof

Only the second claim in (ii) requires a proof. By Proposition 2.7, M ∈ T(S).

Corollary 2.6 implies that S ∈ T(R). Again by Proposition 2.7, we have cxR S =

codimR. �

REMARK 2.9

(1) Local rings over which all modules of infinite projective dimension are

test modules are not necessarily hypersurfaces. A natural example of such a ring

is a Golod ring that is not Gorenstein (e.g., C[[t3, t4, t5]]).

(2) Test modules do not behave well under localization. Let (R,m) be a 2-

dimensional local hypersurface such that Rp is not regular for some p ∈ SpecR \
{m} (e.g., R=C[[x, y, z]]/(xy) and p= (x, y)R). Let M =Ω2

Rk. Then M ∈ T(R)

by Corollary 2.8(i). However, Mp is free over Rp, and hence Mp /∈ T(Rp).

(3) Nontest modules do not behave well under localization. Let (R,m) be a

complete intersection of codimension 2 such that Rp is regular for all p ∈ SpecR\
{m} (e.g., R=C[[x, y, z, v]]/(x2+y2+z2+v2, x3+y3+z3+v3)). Let M ∈modR

with cxRM = 1 (see [6, Example 5.7]). Then M /∈ T(R) by Proposition 2.7.

However, Mp ∈ T(Rp) for all p ∈ SpecR \ {m}.

3. Homological dimensions of test modules

In this section we study the existence of test modules of finite homological dimen-

sions. We start by recalling GC -dimension; it is a homological invariant for mod-

ules, originally introduced by Golod [16], associated to a fixed semidualizing

module C.
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DEFINITION 3.1

Let C be a semidualizing R-module, that is, an R-module C such that the natu-

ral homomorphism R→HomR(C,C) is an isomorphism and Ext>0
R (C,C) = 0. An

R-moduleX is called totally C-reflexive if the natural mapX →HomR(HomR(X,

C),C) is an isomorphism and Ext>0
R (X,C) = Ext>0

R (HomR(X,C),C) = 0. The

GC -dimension of an R-module M , denoted by GC -dimRM , is defined as the

infimum of the integers n≥ 0 such that there exists an exact sequence 0→Xn →
· · · →X0 →M → 0, where each Xi is totally C-reflexive.

A totally R-reflexive module is simply called totally reflexive. The GR-dimension

of M is nothing but the Gorenstein dimension (G-dimension for short) intro-

duced by Auslander and Bridger [3] and simply denoted by G-dimRM . A lot of

studies on G-dimension have been done so far. The details are stated in the book

[11] and the survey article [12].

Corso, Huneke, Katz, and Vasconcelos [14, Corollary 3.3] proved that inte-

grally closed m-primary ideals can be used to test for finite projective dimension.

More precisely, they proved that if (R,m) is a local ring and I is an integrally

closed m-primary ideal of R, then TorRn (R/I,N) = 0 if and only if pdRN < n.

Goto and Hayasaka [17, Theorem 1.1] proved that if such an ideal I contains a

non-zero-divisor of R and G-dimR I <∞, then R is Gorenstein. Thus, integrally

closed m-primary ideals are test modules, and the existence of such ideals having

finite G-dimension and positive grade forces the ring to be Gorenstein.

The main purpose of this section is to generalize this. More precisely, we

would like to replace the ideal I considered with an arbitrary test module of finite

G-dimension and deduce that R is Gorenstein. For this purpose, we introduce

the following category:

EI(R) =
{
M ∈modR | all R-modules N with Ext�0

R (M,N) = 0

satisfy idRN <∞
}
.

The theorem below is the main result of this section. We refer the reader to

[18, V], [11, A.8], and [24, Section 1] for details of dualizing complexes.

THEOREM 3.2

Let R be a commutative Noetherian ring (not necessarily local) admitting a dual-

izing complex. Then one has T(R) = EI(R).

Proof

Let D be a dualizing complex of R. Let M ∈ T(R), and let X ∈ modR such

that Ext�0
R (M,X) = 0. By [11, A.4.24] we have an isomorphism in the derived

category of R:

M ⊗L
R Y 	RHom

(
RHom(M,X),D

)
,
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where Y :=RHom(X,D) is a homologically bounded complex. Since RHom(M,

X) is homologically bounded, so is M ⊗L
R Y . Take a projective resolution of Y :

(F,∂) = (· · · → Fi
∂i−→ Fi−1 → · · · → Ft+1

∂t+1−−−→ Ft → 0).

As H�0(F ) = 0 = H�0(M ⊗R F ), we can choose an integer n such that the

truncation Q= (· · · → Fn+1
∂n+1−−−→ Fn → 0) of F is a projective resolution of N :=

coker∂n+1 and such that TorR>0(M,N) = 0. Since M ∈ T(R), this implies that

pdRN <∞, and hence pdRQ<∞ as Q	ΣnN . There is a short exact sequence

of complexes (see [11, A.1.17])

0→ P → F →Q→ 0,

where P := (0→ Fn−1 → · · · → Ft → 0). Since pdR P <∞, we have pdR F <∞,

and hence pdR Y <∞. Thus, idRRHom(Y,D) < ∞. We have an isomorphism

X 	RHom(Y,D) by [18, V.2.1], which yields idRX <∞. Therefore, M ∈ EI(R).

Conversely, let M ∈ EI(R). Let X ∈ modR such that TorR�0(M,X) = 0.

Similarly to the above, we can prove that fdRX < ∞; use the isomorphism

RHom(M ⊗L
R X,D) 	 RHom(M,RHom(X,D)) (see [11, A.4.21]). We obtain

pdRX <∞ (see [24, Remark 1.6]). �

COROLLARY 3.3

Let R be a commutative Noetherian ring with a dualizing complex. Assume that

there exist M ∈ T(R) and N ∈ modR with SuppN = SpecR and

Ext�0
R (M,N) = 0. Then R is Cohen–Macaulay. If, moreover, pdRN <∞, then

R is Gorenstein.

Proof

Since M ∈ EI(R) by Theorem 3.2, it holds that idRN <∞. For all p ∈ SpecR, we

have Np �= 0 and idRp Np <∞. The theorem called Bass’s conjecture [9, Corol-

laries 9.6.2 and 9.6.4, Remark 9.6.4(iii)] yields that Rp is Cohen–Macaulay, and

so is R. Now assume that pdRN <∞. Then Np is a nonzero Rp-module of finite

projective and injective dimensions for all p ∈ SpecR. Hence, Rp is Gorenstein

by [9, Exercise 3.1.25], and so is R. �

In the next corollary, under the hypothesis that the ring considered has a dual-

izing complex, we obtain a generalization of the result due to Corso–Huneke–

Katz–Vasconcelos and Goto–Hayasaka, which accomplishes our main purpose of

this section.

COROLLARY 3.4

Let R be a ring with a dualizing complex, and let M be a test module.

(i) If GC -dimRM <∞ for some semidualizing module C, then R is Cohen–

Macaulay.

(ii) If G-dimRM <∞, then R is Gorenstein.
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Proof

(i) Since HomR(C,C)∼=R, we have SuppC = SpecR. It is easy to see that

Ext�0
R (M,C) = 0. By Corollary 3.3, R is Cohen–Macaulay.

(ii) This follows from Corollary 3.3. �

The conclusion of Corollary 3.4 naturally raises the following question. We refer

to [6] for details of the complete intersection dimension CI-dimR.

QUESTION 3.5

Let R be a local ring. Let M be a test module with CI-dimRM <∞. Then must

R be a complete intersection?

Corollary 2.6 more or less supports an affirmative answer to this question, but we

do not know entirely. The difficulty we face here is that we do not know whether

the property of being a test module is preserved under local flat extensions, even

under completion.

Next we investigate the category EI(R) when R is Cohen–Macaulay. Set

EP(R) =
{
M ∈modR | all R-modules N with Ext�0

R (N,M) = 0

satisfy pdRN <∞
}
.

PROPOSITION 3.6

Let R be a Cohen–Macaulay local ring with a canonical module ω. Put (−)† =

HomR(−, ω). For each maximal Cohen–Macaulay R-module M one has

M ∈ T(R)⇐⇒M† ∈ EP(R).

Proof

There are isomorphisms in the derived category of R: RHomR(X ⊗L
R M,ω) ∼=

RHomR(X,M†) and RHomR(RHomR(X,M†), ω) ∼= X ⊗L
R RHomR(M

†, ω) ∼=
X ⊗L

R M (see [11, A.4.21 and A.4.24]). These give rise to spectral sequences

1Ep,q
2 = ExtpR

(
TorRq (X,M), ω

)
⇒Hp+q =Extp+q

R (X,M†) and

2Ep,q
2 = ExtpR

(
Ext−q

R (X,M†), ω
)
⇒Hp+q =TorR−p−q(X,M).

By using these sequences one can easily deduce the equivalence. �

Recall that a local ring R is called G-regular (see [30]) if G-dimRM = pdRM for

all R-modules M . The above proposition gives a sufficient condition for a local

ring to be G-regular in terms of test modules.

COROLLARY 3.7

Let R be a Cohen–Macaulay local ring with a canonical module ω. If ω is a test

module, then R is G-regular.
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Proof

Proposition 3.6 implies that R ∈ EP(R). Let M be an R-module. If G-dimRM <

∞, then Ext�0
R (M,R) = 0, and hence pdRM <∞. This shows that G-dimRM =

pdRM . �

4. Categorical approaches for nontest modules

In this section we continue studying the homological properties of test modules,

with a special attention to the full subcategory NT(R) of modR consisting of

nontest modules:

NT(R) = T(R)c

=
{
M ∈modR

∣∣TorR�0(M,N) = 0 for some R-module N /∈ fpd(R)
}
,

where fpd(R) denotes the full subcategory of modR consisting of modules of

finite projective dimension. Note that unless R is regular one has

NT(R)⊇ fpd(R).

We begin by considering the closedness of NT(R) under (finite) direct sums.

First we confirm that it does not always hold.

EXAMPLE 4.1

Let k be a field, and put R= k[x, y, z]/(x2, y2, z2, yz). Then R is a non-Gorenstein

local ring such that the cube of the maximal ideal is zero. Let M =R/(x), and

let N = R/(y, z). Then M,N /∈ fpd(R) and TorR>0(M,N) = 0; hence, M,N ∈
NT(R). Suppose that TorR�0(M ⊕N,L) = 0 for some L ∈modR. There are exact

sequences 0 → k2 → M → k → 0 and 0 → k → N → k → 0. The first sequence

implies that TorRi+1(k,L)
∼=TorRi (k

2,L), and hence βR
i+1(L) = 2βR

i (L) for i� 0.

Similarly, it follows from the second sequence that βR
i+1(L) = βR

i (L) for i� 0.

Such equalities of Betti numbers of L can occur only when pdRL < ∞. This

proves that M ⊕N is a test module, that is, that M ⊕N /∈NT(R).

In general we have the following result.

PROPOSITION 4.2

Let (R,m, k) be a non-Gorenstein local ring with m3 = 0. Let M be a nonfree

totally reflexive R-module. Then M,ER(k) ∈NT(R) and M ⊕ER(k) /∈NT(R).

Proof

Note that M and E := ER(k) have infinite projective dimension. Corollary 3.7

implies that E ∈ NT(R). Setting (−)∗ =Hom(−,R) and (−)∨ =Hom(−,E), we

deduce that

M ⊗L
R E ∼=M ⊗L

R RHomR(R,E)∼=RHomR

(
RHomR(M,R),E

)∼=M∗∨.
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Here the second isomorphism follows from [11, A.4.24], and the total reflexivity of

M yields the third isomorphism. Hence, we have TorR>0(M,E) = 0. In particular,

M,E ∈NT(R).

Let L ∈modR, and assume that TorR�0(M⊕E,L) = 0. Then TorR�0(M,L) =

TorR�0(E,L) = 0. It follows from [19, Proposition 2.9] that cxRL ≤ 1 and

cxRM = 1. One also sees that cxR(M ⊗R L) = cxRM + cxRL. The complex-

ity of an R-module can only be 0, 1, or ∞ by [26] (see also [13, 1.1]). Hence,

cxRL= 0; that is, pdRL<∞. Thus, M ⊕E ∈ T(R). �

In fact, closure under direct sums is equivalent to closure under extensions.

PROPOSITION 4.3

Let R be a local ring. The following are equivalent:

(i) NT(R) is closed under extensions.

(ii) NT(R) is closed under direct sums.

Proof

Clearly, (i) implies (ii). Assume that (ii) holds. Let 0→M → U →N → 0 be an

exact sequence with M,N ∈NT(R). Then there is an R-module X with pdRX =

∞ such that TorR�0(M ⊕ N,X) = 0. Hence, TorR�0(U,X) = 0, and thus U ∈
NT(R). �

If R is a nonregular complete intersection, then NT(R) is closed under direct sums

by Proposition 2.7. Hence, we deduce the following result from Proposition 4.3.

COROLLARY 4.4

If NT(R) is closed under direct sums, then NT(R) is a resolving subcategory of

modR. Thus, NT(R) is resolving when R is a nonregular complete intersection.

We state here a conjecture of David A. Jorgensen (personal communication, 2011)

(cf. Remark 4.8 below).

CONJECTURE 4.5

Let R be a local ring. Assume that NT(R) �= fpd(R). If NT(R) is closed under

direct sums, then R is a complete intersection of codimension at least 2.

Next we investigate nontest modules in resolving subcategories. For M ∈modR

we denote by resM the resolving closure of M . The full subcategory of modR

consisting of maximal Cohen–Macaulay modules is denoted by CM(R).

PROPOSITION 4.6

Let R be a Henselian local ring, and let X be a resolving subcategory of modR.

Suppose that there are only finitely many nonisomorphic indecomposable modules
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in X ∩ NT(R). Then Ext�0
R (M,R) = 0 if and only if pdRM <∞ for all M ∈

X ∩NT(R). In particular, G-dimRM = pdRM .

Proof

Take a moduleM ∈ X ∩NT(R) with Ext�0
R (M,R) = 0. Assume that pdRM =∞.

Given X ∈modR, we set NTX(R) = {M ∈modR |TorR�0(M,X) = 0}. It is easy
to see that NTX(R) is a resolving subcategory of modR, and

NT(R) =
⋃

pdX=∞
NTX(R).

There is an R-module X with pdRX =∞ and M ∈ NTX(R). Hence, resM ⊆
NTX(R) ⊆ NT(R), and we have resM ⊆ X ∩ NT(R). By assumption, there are

only finitely many nonisomorphic indecomposable modules in resM (so resM

is contravariantly finite). As Ωdk ∈ T(R), we have Ωdk /∈ resM . Hence, by [32,

Theorem 1.4], R is Cohen–Macaulay and resM = CM(R). This is a contradiction

since Ωdk ∈ CM(R). Consequently, pdRM <∞. �

COROLLARY 4.7

Let R be a Henselian local ring. Assume that there are only finitely many inde-

composable R-modules (up to isomorphism) in CM(R)∩NT(R).

(i) If M ∈ CM(R)∩NT(R), then either M is free or G-dimRM =∞.

(ii) If R is Gorenstein and nonregular, then NT(R) = fpd(R).

Proof

The assertion (i) is immediate from Proposition 4.6: take X = CM(R). As to (ii),

let Z ∈ NT(R). Then ΩdZ ∈ CM(R) ∩ NT(R), where d = dimR. By (i), ΩdZ is

free. �

REMARK 4.8

Recall that NT(R) = fpd(R) if R is a hypersurface (Corollary 2.8(i)). In view

of this fact, it is worth noting that a Henselian Gorenstein ring satisfying the

hypotheses of Corollary 4.7 is not necessarily a hypersurface: Let k be a field,

and let R= k[x, y, z]/(x2 − y2, x2 − z2, xy,xz, yz). Then R is an Artinian (hence,

Henselian) Gorenstein local ring that is not a hypersurface. By [19, Theo-

rem 3.1(2)] we see that NT(R) = fpd(R) and that R is the unique indecomposable

module in CM(R)∩NT(R).

It is not known whether there exist modules M over arbitrary local rings R

such that pdM =∞ and TorR�0(M,M) = 0. Our next result determines certain

conditions, in terms of the category NT(R), for the existence of such modules.

PROPOSITION 4.9

Let R be a local ring. Assume that NT(R) �= fpd(R), and assume that NT(R) =
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resM for some M ∈ modR. Then there is X ∈ NT(R) with pdRX = ∞ and

TorR�0(X,X) = 0.

Proof

If pdRM <∞, then resM ⊆ fpd(R); hence, NT(R) = fpd(R). This contradiction

shows pdRM =∞. Since M ∈ NT(R), we have M ∈ NTX(R) for some module

X with pdRX = ∞. As pdRM = ∞, we see that X ∈ NT(R). It holds that

NT(R) = resM ⊆ NTX(R), whence NT(R) = NTX(R). Thus, X ∈ NTX(R), so

that TorR�0(X,X) = 0. �

Using the above proposition, we obtain an interesting property of NT(R).

COROLLARY 4.10

Let R be a local complete intersection of codimension at least 2. Then NT(R) �=
resM for all R-modules M .

Proof

It follows from [6, Example 5.7] that there is an R-module N of complexity

1. By Proposition 2.7, N is a nontest module. Therefore, if NT(R) = resM for

some M ∈modR, then Proposition 4.9 implies that there exists X ∈NT(R) with

pdRX =∞ and TorR�0(X,X) = 0. Since R is a complete intersection, such an

R-module X cannot exist by [22, Corollary 1.2]. �

REMARK 4.11

The assumption of Corollary 4.10 on the codimension cannot be weakened.

Indeed, let R be a hypersurface (i.e., codimR ≤ 1). Then NT(R) = fpd(R) by

Corollary 2.8(i). So, if R is reduced of dimension 1, then NT(R) coincides with

the resolving closure of the Auslander transpose of k by [15, Theorem 2.1].
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