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Abstract LetR be a commutative Noetherian one-dimensional domain containingQ.

In this paperweprove that if anR-algebraA is such thatA[n] ∼=R R[n+2], for somen≥ 1,

then A ∼=R R[2]. In terms of affine fibrations this means that every stably trivial

A2-fibration overR is actually trivial.On the other hand, it is known that this result does

not hold in general if R has dimension at least two or if R does not contain Q.

1. Introduction

Throughout, all rings are assumed to be commutative with unity. Given a ring

R and a positive integer m we denote by R[m] the polynomial R-algebra in m

variables (by convention we let R[0] =R). By a coordinate system of R[m] we mean

a list x= x1, . . . , xm of m polynomials which generates R[m] as an R-algebra.

Let us recall the following fundamental problem of affine algebraic geometry,

known as the Zariski cancellation problem (see, e.g., [23], [21]).

PROBLEM 1 (CANCELLATION PROBLEM)

Let K be a field, and let (m,n) be a pair of positive integers. Given a K-algebra

A such that A[n] ∼=K K [m+n], does it follow that A∼=K K [m]?

We will say that the cancellation property holds for (m,n) if the above problem

has a positive answer for every field K.

The fact that the cancellation property holds for (1, n) follows essentially

from the results of Abhyankar, Heinzer, and Eakin [1]. More generally, it follows

from the results of Hamann [17] that the (1, n)-cancellation property still holds if

instead of fields one considers Noetherian rings containing Q. On the other hand,

from the results of Miyanishi and Sugie [24], Fujita [16], and Kambayashi [19]

it follows that the cancellation property holds for (2, n) in the case of fields of

charateristic zero. The case of algebraically closed fields of positive characteristic

was proved by Russell in [25]. It was also proved by Derksen, van den Essen, and

van Rossum [8] that the (2, n)-cancellation property holds true when fields are
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replaced by Dedekind domains containing Q. For m≥ 3, the problem is to our

knowledge still open, but a candidate counterexample in positive characteristic

was given by Asanuma in [2].

The main result of this paper is that the (2, n)-cancellation property holds

over anarbitraryNoetherianone-dimensionaldomainR containingQ.The assump-

tions that R is one-dimensional and contains Q cannot be dropped. Indeed, a

classical example of Hochster [18] shows that this result does not hold in general

if R has dimension at least two. Another classical example of Asanuma [2, Theo-

rem 5.1] shows that the result does not hold in general if R is a one-dimensional

domain which does not contain Q.

The paper is organized as follows. In Section 2 we recall the results of affine

fibrations theory to be used in this paper. Section 3 is devoted to the proof of

the main result of this paper. As a consequence of the main result we show that

if A is an A2-fibration over R =K [2], where K is a field of characteristic zero,

then A/pA∼=R/pR (R/pR)[2] for every prime polynomial p ∈R. This answers in

particular a question raised by Vénéreau (see [27] and [15, Problem 13]) con-

cerning the polynomial v1 = y + x[xz + y(yu + z2)] in C[x, y, z, u], a candidate

counterexample to several open problems in affine algebraic geometry.

2. Affine fibrations

In this section we recall the results of affine fibrations theory to be used in this

paper. Given a ring R and p ∈ SpecR, the residue field Rp/pRp is denoted by

K(p). Given an R-module M we let SymR(M) be the symmetric algebra of M .

For an R-algebra A we let ΩA/R (resp., DerR(A)) be the A-module of Kähler

differentials of A over R (resp., R-derivations of A).

DEFINITION 2.1

Given m≥ 0, an R-algebra A is said to be an Am-fibration over R if it satisfies

the following properties.

i. A is finitely generated as an R-algebra.

ii. A is flat as an R-module.

iii. For every p ∈ SpecR we have K(p)⊗R A∼=K(p) K(p)[m].

From the property (iii) one easily deduces that the morphism SpecA−→ SpecR,

induced by the homomorphism R −→ A, is surjective. This property together

with the flatness assumption implies that A is faithfully flat over R. In particular,

the homomorphism R−→A is injective, and hence we can view R as a subring

of A.

An Am-fibration A over R is said to be trivial if A∼=R R[m]. The fibration is

said to be stably trivial if A[n] ∼=R R[m+n] for some n≥ 0.

The following fundamental result due to Asanuma concerns the stable struc-

ture of Am-fibrations (see [2, Theorem 3.4]).
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THEOREM 2.2

Let R be a Noetherian ring, and let A be an Am-fibration over R. Then ΩA/R

is a finitely generated projective A-module of rank m. Moreover, A is up to iso-

morphism an R-subalgebra of R[n] for some n such that

A[n] ∼= SymR[n](R[n] ⊗A ΩA/R)

as R-algebras.

As a direct consequence of Theorem 2.2, if an Am-fibration A over a Noetherian

ring R is such that ΩA/R is a free A-module, then A is stably trivial. Another

consequence of Theorem 2.2 (see [2, Corollary 3.5]) is that if A is an Am-fibration

over a regular ring R, then there exists n ≥ 0 and a rank m finitely generated

projective R-module M such that A[n] ∼=R SymR(M)[n]. In particular, if R is

a polynomial ring over a field, then by the Quillen–Suslin theorem A is stably

trivial.

2.1. A criterion for an A1-fibration to be trivial
In this subsection we give a criterion for an A1-fibration, over an arbitrary Noe-

therian domain containing Q, to be trivial. For this, we need to recall the following

cancellation result due to Hamann [17].

THEOREM 2.3

Let R be a Noetherian ring containing Q. Then for every R-algebra A such that

A[n] ∼=R R[n+1], for some n≥ 1, we have A∼=R R[1].

Combining Theorems 2.2 and 2.3 yields the following result (see [5, Theorem 3.4]).

THEOREM 2.4

Let R be a Noetherian ring containing Q, and let A be an A1-fibration over R.

Then A is trivial over R if and only if ΩA/R is a free A-module.

Recall that an R-derivation ξ ∈DerR(A) is said to be fixed point free if its image

generates the unit ideal of A.

Let A be an Am-fibration over R. By Theorem 2.2 the A-module ΩA/R is

finitely generated and projective. From the well-known fact that finitely gen-

erated projective modules are reflexive it follows that the freeness of ΩA/R is

equivalent to the freeness of its dual DerR(A). As a consequence, we have the

following result.

COROLLARY 2.5

Let R be a Noetherian domain containing Q, and let A be an A1-fibration over R.

Then A is trivial over R if and only if there exists ξ ∈ DerR(A) which is fixed

point free.
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Proof

Clearly, if A is trivial over R, say, A = R[v] = R[1], then the R-derivation of

A defined by ξ(v) = 1 is fixed point free. Conversely, let ξ ∈ DerR(A) be fixed

point free, and let ξ1 ∈ DerR(A). Let K be the quotient field of R, and let

S = R \ {0}. Since A is an A1-fibration over R and R is a domain we have

K ⊗R A ∼=K K [1]. Since, moreover, K ⊗R A ∼=K AS we have AS
∼=K K [1], and

hence we can find v ∈A transcendental over R such that AS =K[v]. Thus, if we

let ξ(v) = α and ξ1(v) = β, then α,β ∈A and we have αξ1 = βξ. The assumption

that ξ is fixed point free implies that there exist a1, . . . , ar ∈A and u1, . . . , ur ∈A

such that
∑

uiξ(ai) = 1. This yields α
∑

uiξ1(ai) = β and hence ξ1 = β1ξ, where

β1 =
∑

uiξ1(a1). Thus, DerR(A) =Aξ, and so it is free. Since on the other hand

ΩA/R is reflexive and its dual DerR(A) is free the A-module ΩA/R is free as well.

By Theorem 2.4, A is trivial over R. �

We will also need the well-known fact that every A1-fibration over a principal

ideal domain (PID) is trivial. In fact, much more general results can be found in

the literature (see, e.g., [20], [9], [6], [10]), but they will not be needed for our

purpose.

2.2. Some results on A2-fibrations
A well known result due to Sathaye [26, Theorem 1] asserts that every A2-

fibration over a discrete valuation ring containing Q is trivial. This result together

with the results of Bass, Connell, and Wright [4] implies that every A2-fibration

over a PID containing Q is trivial (see [5, Corollary 4.8]). For an arbitrary

Noetherian one-dimensional domain containing Q, Asanuma and Bhatwadekar

proved in [3, Theorem 3.8] the following generalization of this result.

THEOREM 2.6

Let R be a Noetherian one-dimensional domain containing Q, and let A be an

A2-fibration over R. Then there exists u ∈A transcendental over R such that A

is an A1-fibration over R[u].

If in addition to the assumptions of Theorem 2.6 the ring R is seminormal, then

A∼=R SymR(M)[1], where M is a finitely generated projective R-module of rank

one (see [3, Corollary 3.9]).
Based on the fact that the cancellation property holds for (2, n) in charac-

teristic zero, Freudenburg proved in [14, Corollary 2.2] the following result.

THEOREM 2.7

Let R be a ring containing Q, and let A be an R-algebra such that A[n] ∼=R R[n+2]

for some n≥ 1. Then A is an A2-fibration over R.

REMARK 2.8

In [14, Theorem 3.1], Freudenburg proved a result for A2-fibrations over poly-

nomial rings similar to Corollary 2.5. Given a field K of characteristic zero, the
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result in question states that an A2-fibration A over R =K [n] is trivial if and

only if there exists a locally nilpotent R-derivation ξ of A with a slice. Then in

[14, Question 2], the author asks whether the condition that ξ has a slice can be

weakened to the condition that ξ is fixed point free. In a recent paper [11], we

proved that this question has an affirmative answer in the more general setting

where R is a factorial regular ring containing Q.

3. The (2, n)-cancellation problem over Noetherian one-dimensional domains
containing Q

Let R be a ring containing Q, and let A be an R-algebra. It is proved in

[8] that if R is a Dedekind domain and A[n] ∼=R R[n+2], for some n ≥ 1, then

A ∼=R R[2] (see also [12, Theorem 4.5]). In this section, we show that the same

result holds true over an arbitrary Noetherian one-dimensional domain R con-

taining Q.

THEOREM 3.1

Let R be a Noetherian one-dimensional domain containing Q. Then for every

R-algebra A such that A[n] ∼=R R[n+2], for some n≥ 1, we have A∼=R R[2].

Proof

Let x= x1, . . . , xn be a list of indeterminates over A, and let y = y1, . . . , yn+2 be

a list of algebraically independent elements of A[x] over R such that A[x] =R[y].

From Theorem 2.7 we deduce that A is an A2-fibration over R. Then by

Theorem 2.6 there exists u ∈ A such that A is an A1-fibration over R[u]. To

prove that A is trivial over R[u] it suffices by Corollary 2.5 to find a fixed point

free R[u]-derivation of A.

Let us consider the R[u,x]-derivation of A[x] =R[y] defined for every f ∈R[y]

by

ξ(f) = detJacy(u,x, f).

Let us first prove that ξ(A) ⊆ A. Let K be the quotient field of R, and let

S = R \ {0}. Since A is an A1-fibration over R[u] the localization AS is an A1-

fibration over R[u]S =K[u]. Since, moreover, K[u] is a PID, AS is trivial over

K[u], and so there exists v ∈ A such that AS = K[u][v] = K[u][1]. This gives

A[x]S =K[u,x, v] =K[y], and hence u,x, v is a coordinate system of K[y]. From

this fact it follows that ξ(v) ∈K \ {0}. On the other hand, since v ∈A we have

ξ(v) ∈A[x], and so ξ(v) ∈A[x]∩ (K \ {0}) =R \ {0} by the faithful flatness of A

over R. Now, if a ∈A we can write a= p(u, v) in AS =K[u, v], and applying ξ to

a we get ξ(a) = ∂vp(u, v)ξ(v) ∈AS ∩A[x] =A. Thus, if we let ξ0 be the restriction

of ξ to A, then ξ0 ∈DerR[u](A) and ξ is nothing but the extension of ξ0 to A[x]

obtained by letting ξ(xi) = 0. It follows that ξ(A[x]) and ξ0(A) generate the same

ideal of A[x], and since A[x] is faithfully flat over A, the derivation ξ0 is fixed

point free if and only if ξ is fixed point free.
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Assume towards contradiction that ξ is not fixed point free. Let m be a

maximal ideal of A[x] that contains ξ(A[x]), and let m0 = R ∩ m. Since ξ(v) ∈
ξ(A[x]) ⊂ m and ξ(v) ∈ R \ {0} we have m0 
= (0), and hence m0 is a maximal

ideal since R is assumed to be a one-dimensional domain.

Notice that the inclusion homomorphisms R ↪→R[u] ↪→A ↪→A[x] are faith-

fully flat. In particular, we have the following commutative diagram, where the

πi’s and π stand for the canonical projections:

R ⊂ � R[u] ⊂ � A ⊂ � A[x]

R/m0

π1

�
⊂ � R[u]/m0R[u]

π2

�
⊂ � A/m0A

π3

�
⊂ � A[x]/m0A[x]

π

�

Let ξ be the derivation of A[x]/m0A[x] induced by ξ. Then we have ξ ◦ π =

π ◦ ξ. On the other hand, we have

A[x]/m0A[x] =R[y]/m0R[y]∼=R/m0
(R/m0)

[n+2],

and π(y) = π(y1), . . . , π(yn+2) is a coordinate system of A[x]/m0A[x] over R/m0.

Since, moreover, ξ = detJacy(u,x,−) the derivation ξ is nothing but the Jacobian

derivation detJacπ(y)(π(u), π(x),−).

Now we show that π(u), π(x) can be extended to a coordinate system of

A[x]/m0A[x] over R/m0. Since A is an A1-fibration over R[u], it follows that

A/m0A is an A1-fibration over R[u]/m0R[u] ∼=R/m0
(R/m0)

[1]. The fact that

R/m0 is a field then implies that A/m0A is trivial over R[u]/m0R[u], and so

we can find w ∈ A such that π3(w) generates A/m0A as an (R[u]/m0R[u])-

algebra. As a consequence, π3(u), π3(w) generate A/m0A∼=R/m0
(R/m0)

[2] as an

R/m0-algebra. On the other hand, we have A[x]/m0A[x] ∼=A/m0A (A/m0A)
[n],

and the system π(x) generates A[x]/m0A[x] over A/m0A. It then follows that

π(u), π(w), π(x) is a generating, and hence a coordinate, system of A[x]/m0A[x]

over R/m0. This shows that ξ(π(w)) = π(ξ(w)) is a unit in A[x]/m0A[x], and

hence there exist α ∈A[x] and f ∈m0A[x] such that αξ(w) = 1+f . Since αξ(w) ∈
m and f ∈m0A[x]⊆m we get 1 ∈m, which contradicts the fact that m is a proper

ideal of A[x]. �

REMARK 3.2

If in addition to the assumptions of Theorem 3.1 the ring R is seminormal we

can supply a much shorter proof. Indeed, by Theorem 2.7, A is an A2-fibration

over R. On the other hand, from a corollary of Theorem 2.6, see [3, Corollary 3.9],

we have A ∼=R SymR(M)[1] for some finitely generated projective R-module M

of rank one. This gives SymR(M)[n+1] ∼=R R[n+2] and then SymR(M)∼=R R[1] by

Theorem 2.3. Since A∼=R SymR(M)[1] we finally get A∼=R R[2].

REMARK 3.3

From Theorem 2.7 it follows that Theorem 3.1 is equivalent to saying that every
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stably trivial A2-fibration over a Noetherian one-dimensional domain containing

Q is trivial.

As a direct consequence of Theorem 3.1 we have the following result.

COROLLARY 3.4

Let R be a Noetherian domain containing Q, and let A be a stably trivial A2-

fibration over R. Then for every prime ideal p of R such that R/p is one-

dimensional we have

A/pA∼=R/p (R/p)[2].

Proof

Since A is a stably trivial A2-fibration over R, it follows that A/pA is a stably

trivial A2-fibration over R/p. The claimed result then follows from Theorem 3.1

since R/p is assumed to be one-dimensional. �

Given a field K of characteristic zero, it is still an open problem whether every

A2-fibration over the polynomial ring K [2] is trivial. The following result gives a

property of such fibrations.

COROLLARY 3.5

Let K be a field of characteristic zero, and let A be an A2-fibration over R=K [2].

Then for every prime polynomial p of R we have

A/pA∼=R/pR (R/pR)[2].

Proof

As noticed in the paragraph after Theorem 2.2, it follows from [2, Corollary 3.5]

and the Quillen–Suslin Theorem that every Am-fibration over a polynomial ring

over a field is stably trivial. Thus, A is a stably trivial A2-fibration over K [2],

and the claimed result follows from Corollary 3.4. �

The above corollary answers in particular a question raised by Vénéreau (see [15,

Problem 13]) concerning the polynomial v1 = y+x[xz+ y(yu+ z2)], a candidate

counterexample to several open problems in affine algebraic geometry. More gen-

eral methods to construct Vénéreau-type polynomials can be found in [7] and

[22].

Let R=C[x, v1] =C[2], and let A=C[x, y, z, u] =C[4]. It is proved in [27] that

A is an A2-fibration over R. But to our knowledge it is still an open question

whether A is trivial over R. Clearly, if for some prime polynomial p ∈ R the

fibration A/pA is not trivial over R/pR, then A is not a trivial fibration over R.

Vénéreau’s question [15, Problem 13] was then whether this is the case for some

prime polynomial p ∈R. He also proposed p= x2 − v31 as an example for which

no answer was known. In [13] van den Essen, Maubach and Vénéreau obtained
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that A/(x2 − v31)A is trivial over R/(x2 − v31)R as a consequence of their main

result. But in fact, Corollary 3.5 shows that this holds for every prime polynomial

p ∈C[x, v1].
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