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Abstract In a series of works, Geiss, Leclerc, and Schröer defined the cluster algebra
structure on the coordinate ring C[N(w)] of the unipotent subgroup, associated with a
Weyl group element w. And they proved that cluster monomials are contained in Lusz-
tig’s dual semicanonical basis S ∗. We give a setup for the quantization of their results
and propose a conjecture that relates the quantum cluster algebras in Berenstein and
Zelevinsky’s work to the dual canonical basis Bup. In particular, we prove that the quan-
tum analogue Oq [N(w)] of C[N(w)] has the induced basis from Bup, which contains
quantumflagminors and satisfies a factorization propertywith respect to the “q-center”
of Oq[N(w)]. This generalizes Caldero’s results from finite type to an arbitrary symme-
trizable Kac–Moody Lie algebra.
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1. Introduction

1.1. The canonical basis B and the dual canonical basis Bup

Let g be a symmetrizable Kac–Moody Lie algebra, let Uq(g) be its associated
quantized enveloping algebra, and let U−

q (g) be its negative part. In [40], Lusztig
constructed the canonical basis B of U−

q (g) by a geometric method when g is
symmetric. In [27], Kashiwara constructed the (lower) global basis Glow(B(∞))
by a purely algebraic method. Grojnowski and Lusztig [25] showed that the two
bases coincide when g is symmetric. We call the basis the canonical basis. There
are two remarkable properties of the canonical basis: one is the positivity of

Kyoto Journal of Mathematics, Vol. 52, No. 2 (2012), 277–331
DOI 10.1215/21562261-1550976, © 2012 by Kyoto University
Received October 8, 2010. Revised August 19, 2011. Accepted August 22, 2011.
2010 Mathematics Subject Classification: Primary 17B37; Secondary 20G42, 16T20, 13F60.
Author’s work supported by Kyoto University Global Centers of Excellence Program “Fostering top

leaders in mathematics.”

http://dx.doi.org/10.1215/21562261-1550976
http://www.ams.org/msc/


278 Yoshiyuki Kimura

structure constants of multiplication and comultiplication, and another is Kashi-
wara’s crystal structure B(∞), which is a combinatorial machinery useful for
applications to representation theory, such as tensor product decomposition.

Since U−
q (g) has a natural pairing which makes it into a (twisted) self-dual

bialgebra, we consider the dual basis Bup of the canonical basis in U−
q (g). We

call it the dual canonical basis.

1.2. Cluster algebras
Cluster algebras were introduced by Fomin and Zelevinsky [16] and intensively
studied also with Berenstein (see [17], [2], [18]) with an aim of providing a con-
crete and combinatorial setting for the study of Lusztig’s (dual) canonical basis
and total positivity. Quantum cluster algebras were also introduced by Berenstein
and Zelevinsky [4] and Fock and Goncharov [13]–[15] independently. The defini-
tion of (quantum) cluster algebras was motivated by Berenstein and Zelevinsky’s
earlier work [3] where combinatorial and multiplicative structures of the dual
canonical basis were studied for g = sln (2 ≤ n ≤ 4). Let us quote from [16]:

We conjecture that the above examples can be extensively generalized: for any
simply-connected connected semisimple group G, the coordinate rings C[G] and

C[G/N ], as well as coordinate rings of many other interesting varieties related to
G, have a natural structure of a cluster algebra. This structure should serve as an

algebraic framework for the study of “dual canonical basis” in these coordinate
rings and their q-deformations. In particular, we conjecture that all monomials

in the variables of any given cluster (the cluster monomials) belong to this dual
canonical basis.

In [2], it was shown that the coordinate ring of the double Bruhat cell contains a
cluster algebra as a subalgebra, which is conjecturally equal to the whole algebra.

A cluster algebra A is a subalgebra of rational function field Q(x1, x2, . . . , xr)
of r indeterminates which is equipped with a distinguished set of generators
(cluster variables) which is grouped into overlapping subsets (clusters) consisting
of precisely r elements. Each subset is defined inductively by a sequence of certain
combinatorial operations (seed mutations) from the initial seed. The monomials
in the variables of a given single cluster are called cluster monomials. However, it
is not known whether cluster algebras have a basis, related to the dual canonical
basis, which includes all cluster monomials in general.

1.3. Cluster algebra and the dual semicanonical basis
In a series of works [19]–[24], Geiss, Leclerc, and Schröer introduced a cluster
algebra structure on the coordinate ring C[N(w)] of the unipotent subgroup
associated with a Weyl group element w. Furthermore, they show that the dual
semicanonical basis S ∗ is compatible with the inclusion C[N(w)] ⊂ U(n)∗

gr and
contains all cluster monomials. Here the dual semicanonical basis is the dual
basis of the semicanonical basis of U(n), introduced by Lusztig [41], [44], and
compatible means that S ∗ ∩ C[N(w)] forms a C-basis of C[N(w)].
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It is known that canonical and semicanonical bases share similar combinato-
rial properties (crystal structure), but they are different. (Examples can be found
in [34].∗)

1.4. Cluster algebra and the dual canonical basis
Our main result is to give a first step towards a quantum analogue of Geiss,
Leclerc, and Schröer’s results.

(1) The dual canonical basis is compatible with the quantum unipotent sub-
group Oq[N(w)] which is a quantum analogue of C[N(w)]; that is, Bup(w) :=
Bup ∩ Oq[N(w)] forms a Q(q)-basis of Oq[N(w)] (see Theorem 4.25).

(2) Quantum flag minors are mutually q-commuting, and their monomials
are contained in the dual canonical basis up to some q-shifts. Here quantum flag
minors are defined as certain matrix coefficients with respect to extremal vectors
in integrable highest weight modules (see Theorem 6.26).

(3) The “q-center” of Oq[N(w)] is generated by some of the quantum flag
minors. Moreover, any dual canonical basis element in Bup(w) can be factored
into the product of an element in the “q-center” of Oq[N(w)] and an “interval-
free” element (see Theorem 6.27).

When g is of finite type, Caldero [7]–[9] proved the above results in a series of
works (see also [6, 6.3]). (Oq[N(w)] is denoted by Uq(nw) in [8].) We generalize
them to an arbitrary symmetrizable Kac–Moody Lie algebra. Key tools are the
Poincaré–Birkhoff–Witt basis of Oq[N(w)] and the crystal structures. They are
already used by Caldero, but the author cannot follow the proofs of several claims.
We use the quantum closed unipotent cell (see Theorem 5.13) as a new tool and
give self-contained proofs in this paper.

1.5. Quantization conjectures and their consequences
The above properties (1), (2), and (3) can be thought of as initial steps toward
construction of structures of a quantum cluster algebra. The corresponding prop-
erties of the “classical limit” C[N(w)] were shown in [22] if the dual canonical
basis is replaced by the dual semicanoncial basis. We conjecture that the remain-
ing structures of a quantum cluster algebra exist on Oq[N(w)] as in [22]. Let
Oq[N(w)]A be the integral form defined by the dual canonical basis Bup(w)
where A = Q[q±1].

CONJECTURE 1.1 (QUANTIZATION CONJECTURE)

(1) We take a reduced expression w̃ = (i1, . . . , i�) of the Weyl group ele-
ment w; then we have an isomorphism of A-algebras

Φq
w̃ : A q(Γw̃,Λw̃) ⊗Z[q±] Q[q±] � Oq[N(w)]A,

∗In [34], S is the specialization of the dual canonical basis, while Σ is the dual semicanonical

basis thanks to [23].
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which sends the initial seed to the quantum flag minors {Δq
si1 ··· sik

�ik
,�ik

}1≤k≤�

(see Definition 6.1), where Γw̃ is the frozen quiver in [2] and [22] and Λw̃ is the
compatible pair in [4, Section 10.3].

(2) Under this isomorphism, the quantum cluster monomials of A q(Γw̃,Λw̃)
are contained in the dual canonical basis Bup(w) up to some q-shifts.

By Geiss, Leclerc, and Schröer’s result, we have an isomorphism of C-algebras

Φw̃ : A (Γw̃) ⊗Z C � C[N(w)],

which sends the initial seed to the specialized quantum flag minors
{Δsi1 ··· sik

�ik
,�ik

}1≤k≤�, where Γw̃ is the frozen quiver as above. Let A → C

be the algebra homomorphism defined by q 	→ 1. If we specialize Conjecture 1.1
to q = 1, we obtain the following “weak” conjecture.

CONJECTURE 1.2 (WEAK QUANTIZATION CONJECTURE)

Under the isomorphism Φw̃, the cluster monomials of C[N(w)] are contained in
the specialized dual canonical basis Bup(w) at q = 1.

Some parts of Conjecture 1.1 were shown for the A2, A3, A4-cases with w = w0

in [3] and [19, Section 12] and for A
(1)
1 with w = c2 in [34].

The definition of the quantum cluster algebra A q(Γw̃,Λw̃) will not be
explained. So we explain the meaning of this conjecture as properties of the
dual canonical basis without referring to the axiom of a quantum cluster algebra
(see [4]).

An element x ∈ Bup \ {1} is called prime if it does not have a nontrivial factor-
ization x = qNx1x2 with x1, x2 ∈ Bup and N ∈ Z. A subset x = {x1, . . . , xl} ⊂ Bup

is called strongly compatible if for all m1, . . . ,ml ∈ Z≥0, the monomial
xm1

1 · · · xml

l ∈ qZBup, that is, xm1
1 · · · xml

l is contained in the dual canonical basis
Bup up to some q-shifts. In particular, x is contained in a compatible fam-
ily; then it satisfies xm ∈ qZBup for all m ≥ 1. A strongly compatible subset
x = {x1, . . . , xl} is called maximal in Bup(w) if whenever y ∈ Bup(w) satis-
fies yxi ∈ qZBup(w) for any xi, then there exist m1, . . . ,ml and N such that
y = qNxm1

1 · · · xml

l .
Our quantization conjecture means that there are lots of maximal strongly

compatible subsets of Bup(w), which are constructed recursively from
{Δq

si1 ··· sik
�ik

,�ik
}1≤k≤�. For example, for finite-type g with w = c2 for a (bipar-

tite) Coxeter element c, it is expected that the dual canonical basis Bup(w) is
covered by the (finite) union of the maximal compatible families. But the union
is not the whole Bup(w); either w is longer than c2 or g is not of finite type.

Our quantization conjecture implies several conjectures on (quantum) cluster
algebras. Let us spell out a few.

If g is symmetric, we have the positivity of structure constants with respect
to the dual canonical basis by the construction of [40]. This implies the positivity
conjecture for the cluster algebras A (Γw̃) (resp., the quantum cluster algebras
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A q(Γw̃,Λw̃)), stating that cluster monomials are Laurent polynomials with pos-
itive coefficients in cluster variables (resp., q and cluster variables) of any seed.
This conjecture is known in the following several cases:

• bipartite cluster algebras at arbitrary seed (see [48]) using monoidal cate-
gorification (see [26]),

• acyclic cluster algebras at the initial seed (see [50], [48, Appendix]),
• cluster algebras coming from triangulated surfaces at arbitrary seed (see

[46]),
• T -system cluster algebras of type A at special seeds (see [12]).

In fact, these results apply only to cluster algebras, not quantum ones except for
those in [50]. The fourth result applies only to special cluster variables. Thus we
have much stronger positivity conjecturally.

The quantization conjecture also provides us a monoidal categorification
of C[N(w)] in the sense of Hernandez and Leclerc [26]. It roughly says that
there is a monoidal abelian category N(w) whose complexified Grothendieck
ring K0(N(w)) ⊗Z C has the cluster algebra structure of C[N(w)], so that the
cluster monomials are classes of simple objects. If the weak quantization conjec-
ture is true (and g is symmetric), the category N(w) is given as the category
of finite-dimensional modules of the (equivariant) Ext-algebras of the simple
(equivariant) perverse sheaves belonging to Bup(w). Thanks to [54], N(w) is
also considered as the extension-closed subcategory of the module category of
the Khovanov–Lauda–Rouquier algebra (see [31], [32], [52]) consisting of finite-
dimensional modules whose composition factors are contained in Bup(w).

When g is symmetric, Geiss, Leclerc, and Schröer conjecture that certain
dual semicanonical basis elements are specializations of the corresponding dual
canonical basis elements. This is called the open orbit conjecture. This class of
the dual semicanonical basis element contains all the cluster monomials. (Con-
jecturally it consists exactly of the cluster monomials; see [5, Conjecture II 5.3].)
The open orbit conjecture for the cluster monomials is equivalent to the weak
quantization conjecture.

This paper is organized as follows. In Section 2, we give a review of the quan-
tized enveloping algebra and its canonical basis. In Section 3, we give a review
of the dual canonical basis Bup and its multiplicative properties. In Section 4,
we define the quantum unipotent subgroup and prove its compatibility with the
dual canonical basis in Theorem 4.25. In Section 5, we define the quantum closed
unipotent cell and study its relationship with the quantum unipotent subgroup
in Theorem 5.13. In Section 6, we give quantum flag minors and prove their
multiplicative properties in Theorems 6.26 and 6.27.

2. Preliminaries: Quantized enveloping algebras and the canonical bases

We briefly recall the definition of the quantized enveloping algebra and its canon-
ical basis in this section.
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2.1. Definition of Uq(g)
2.1.1
A root datum consists of

(1) h: a finite-dimensional Q-vector space,
(2) a finite index set I ,
(3) P ⊂ h∗: a lattice (weight lattice),
(4) P ∨ = HomZ(P,Z) with natural pairing 〈 , 〉 : P ∨ ⊗ P → Z,
(5) αi ∈ P for i ∈ I (simple roots),
(6) hi ∈ P ∨ for i ∈ I (simple coroots),
(7) (·, ·) a Q-valued symmetric bilinear form on h∗

satisfying the following conditions:

(a) 〈hi, λ〉 = 2(αi, λ)/(αi, αi) for i ∈ I and λ ∈ P ;
(b) aij = 〈hi, αj 〉 = 2(αi, αj)/(αi, αi) gives a symmetrizable generalized Car-

tan matrix; that is, 〈hi, αi〉 = 2, and 〈hi, αj 〉 ∈ Z≤0 and 〈hi, αj 〉 = 0 ⇔ 〈hj , αi〉 = 0
for i �= j;

(c) (αi, αi) ∈ 2Z>0; that is, di := (αi, αi)/2 ∈ Z>0;
(d) {αi}i∈I are linearly independent.

We call (I,h, ( , )) a Cartan datum. Let Q =
⊕

i∈I Zαi ⊂ P be the root lattice.
Let Q± = ±

∑
i∈I Z≥0αi. For ξ =

∑
i∈I ξiαi ∈ Q, we define tr(ξ) =

∑
i∈I ξi. And

we assume that there exists �i ∈ P such that 〈hi,�j 〉 = δi,j for any i, j ∈ I .
We call �i the fundamental weight corresponding to i ∈ I . We say that λ ∈ P is
dominant if 〈hi, λ〉 ≥ 0 for all i ∈ I and denote by P+ the set of dominant integral
weights. We denote P :=

⊕
i∈I Z�i and P+ := P ∩ P+ =

⊕
i∈I Z≥0�i.

2.1.2
Let (I,h, ( , )) be a Cartan datum. Let g be the symmetrizable Kac–Moody
Lie algebra corresponding to the generalized Cartan matrix A = (aij) with the
Cartan subalgebra h; that is, g is the Lie algebra generated by {h;h ∈ h}, ei, and
fi (i ∈ I) with the following relations:

(i) [h,h′] = 0 for h,h′ ∈ h,
(ii) [h, ei] = 〈h,αi〉ei, [h, fi] = −〈h,αi〉fi,
(iii) [ei, fj ] = δijhi, and
(iv) (adei)1− 〈hi,αj 〉ej = (adfi)1− 〈hi,αj 〉fj = 0 for i �= j.

We denote the Lie subalgebra generated by {fi}i∈I by n.

2.1.3
Suppose that a root datum is given. We introduce an indeterminate q. For i ∈ I ,
we set qi = q(αi,αi)/2. For ξ =

∑
i∈I ξiαi ∈ Q, we set qξ :=

∏
i∈I(qi)ξi = q(ξ,ρ),

where ρ is the sum of all fundamental weights. We define Q-subalgebras A0,
A ∞, and A of Q(q) by

A0 :=
{
f ∈ Q(q);f is regular at q = 0

}
,
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A ∞ :=
{
f ∈ Q(q);f is regular at q = ∞

}
,

A := Q[q±1].

2.1.4
The quantized enveloping algebra Uq(g) associated with a root datum is the Q(q)-
algebra generated by ei, fi (i ∈ I), qh (h ∈ P ∨) with the following relations:

(i) q0 = 1, qhqh′
= qh+h′

,
(ii) qheiq

−h = q〈h,αi 〉ei, q
hfiq

−h = q− 〈h,αi 〉fi,
(iii) eifj − fjej = δij(ti − t−1

i )/(qi − q−1
i ),

(iv)
∑1−aij

k=0 (−1)ke
(k)
i eje

(1−aij −k)
i =

∑1−aij

k=0 (−1)kf
(k)
i fjf

(1−aij −k)
i = 0

(q-Serre relations),

where ti = q((αi,αi)/2)hi , [n]i = (qn
i − q−n

i )/(qi − q−1
i ), [n]i! = [n]i[n − 1]i · · · [1]i for

n > 0, and [0]! = 1, e
(k)
i = ek

i /[k]i!, f
(k)
i = fk

i /[k]i! for i ∈ I and k ∈ Z≥0.

2.1.5
Let U+

q (g) (resp., U−
q (g)) be the Q(q)-subalgebra of Uq(g) generated by ei (resp.,

fi) for i ∈ I . Then we have the triangular decomposition

Uq(g) � U−
q (g) ⊗Q(q) Q(q)[P ∨] ⊗Q(q) U+

q (g),

where Q(q)[P ∨] is the group algebra over Q(q), that is,
⊕

h∈P ∨ Q(q)qh.

2.1.6
For ξ ∈ Q, we define its root space Uq(g)ξ by

Uq(g)ξ =
{
x ∈ Uq(g) | qhxq−h = q〈h,ξ〉x for all h ∈ P ∨}

.

Then we have the root space decomposition

U±
q (g) =

⊕
ξ∈Q±

Uq(g)ξ.

An element x ∈ Uq(g) is homogeneous if x ∈ Uq(g)ξ for some ξ ∈ Q, and we set
wt(x) = ξ.

2.1.7
Let U−

q (g)A be the A-subalgebra of U−
q (g) generated by f

(k)
i for i ∈ I and k ∈

Z≥0. Let (U−
q (g)A)ξ := U−

q (g)A ∩ U−
q (g)ξ . We have

U−
q (g)A =

⊕
ξ∈Q−

(U−
q (g)A)ξ.

2.1.8
We define a Q(q)-algebra anti-involution ∗ : Uq(g) → Uq(g) by

(2.1) ∗(ei) = ei, ∗(fi) = fi, ∗(qh) = q−h.

We call this the ∗-involution.
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We define a Q-algebra automorphism : Uq(g) → Uq(g) by

(2.2) ei = ei, fi = fi, q = q−1, qh = q−h.

We call this the bar involution.
We remark that these two involutions preserve U+

q (g) and U−
q (g), and we

have ◦ ∗ = ∗ ◦ .

2.1.9
In this article, we choose the coproduct on Uq(g) following (see [27]):

Δ(qh) = qh ⊗ qh,(2.3a)

Δ(ei) = ei ⊗ t−1
i + 1 ⊗ ei,(2.3b)

Δ(fi) = fi ⊗ 1 + ti ⊗ fi.(2.3c)

2.1.10
We introduce Lusztig’s Q(q)-valued symmetric nondegenerate bilinear form ( , )L

on U−
q (g). We first define a Q(q)-algebra structure on U−

q (g) ⊗ U−
q (g) by

(x1 ⊗ y1)(x2 ⊗ y2) = q−(wt(x2),wt(y1))x1x2 ⊗ y1y2,

where xi, yi (i = 1,2) are homogeneous elements.
Let r : U−

q (g) → U−
q (g) ⊗ U−

q (g) be a Q(q)-algebra homomorphism defined
by

r(fi) = fi ⊗ 1 + 1 ⊗ fi (i ∈ I).

We call this the twisted coproduct.
By [45, Section 1.2.5], the algebra U−

q (g) has a unique nondegenerate Q(q)-
valued symmetric bilinear form ( , )L : U−

q (g) × U−
q (g) → Q(q) which satisfies

(1,1)L = 1,(2.4a)

(fi, fj)L =
δi,j

1 − q2
i

,(2.4b)

(x, yy′)L = (r(x), y ⊗ y′)L,(2.4c)

(xx′, y)L = (x ⊗ x′, r(y))L,(2.4d)

where the form on U−
q (g) ⊗ U−

q (g) is defined by (x1 ⊗ y1, x2 ⊗ y2)L = (x1, x2)L(y1,

y2)L.

2.1.11
The relation between the coproduct Δ and the twisted coproduct r is given as
follows.
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LEMMA 2.5

For homogeneous x ∈ U−
q (g)ξ, we have

(2.6) Δ(x) =
∑

x(1)t− wt(x(2)) ⊗ x(2),

where r(x) =
∑

x(1) ⊗ x(2), tξ = qν(ξ), and ν(ξ) =
∑

i
(αi,αi)

2 ξihi for ξ =∑
ξiαi ∈ Q.

2.1.12
For i ∈ I , we define the unique Q(q)-linear map ir : U−

q → U−
q (resp., ri : U−

q →
U−

q ) given by ir(1) = 0, ir(fj) = δi,j (resp., ri(1) = 0, ri(fj) = δi,j) for all i, j ∈ I ,
and

ir(xy) = ir(x)y + q−(wtx,αi)x ir(y),(2.7a)

ri(xy) = q−(wty,αi)ri(x)y + xri(y)(2.7b)

for homogeneous x, y ∈ U−
q . From the definition, we have

(fix, y)L =
1

1 − q2
i

(x, iry)L,(2.8a)

(xfi, y)L =
1

1 − q2
i

(x, riy)L.(2.8b)

2.2. Canonical basis of U−
q (g)

In this subsection, we give a brief review of the theory of the canonical basis
following Kashiwara [27], [30]. Note that Kashiwara called it the lower global
basis.

2.2.1
LEMMA 2.9 ([27, LEMMA 3.4.1], [49])

For x ∈ U−
q (g) and any i ∈ I, we have

[ei, x] =
ri(x)ti − t−1

i ir(x)
qi − q−1

i

.

2.2.2
Kashiwara [27, Section 3.4] has proved that there is a unique nondegenerate
symmetric bilinear form (·, ·)K on U−

q (g) such that

(fix, y)K =
(
x, ir(y)

)
K

,(2.10a)

(1,1)K = 1.(2.10b)

LEMMA 2.11 ([27, LEMMA 3.4.7], [45, LEMMA 1.2.15])

For x ∈ U−
q (g) with ir(x) = 0 for all i ∈ I and wt(x) �= 0, then we have x = 0.
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2.2.3
We have the following relation between Kashiwara’s bilinear form ( , )K and
Lusztig’s one ( , )L.

LEMMA 2.12 ([36, SECTION 2.2])

For homogeneous x, y ∈ U−
q (g)ξ with ξ = −

∑
niαi ∈ Q−, we have

(x, y)K =
∏
i∈I

(1 − q2
i )ni(x, y)L.

This can be proved by an induction on wt(x) by using Lemma 2.11, (2.10a), and
(2.8a).

LEMMA 2.13 ([45, LEMMA 1.2.8(B)])

For any homogeneous x, y ∈ U−
q (g), we have

(x, y)K =
(

∗(x), ∗(y)
)
K

.

2.2.4
The reduced q-analogue Bq(g) of a symmetrizable Kac–Moody Lie algebra g

is the Q(q)-algebra generated by ir and fi with the q-Boson relations irfj =
q−(αi,αj)fj ir + δi,j for i, j ∈ I and the q-Serre relations for ir and fi for i ∈ I .
Then U−

q (g) becomes a Bq(g)-module by Lemma 2.9.
By the q-Boson relation, any element x ∈ U−

q (g) can be uniquely written

as x =
∑

n≥0 f
(n)
i xn with ir(xn) = 0 for any n ≥ 0. So we define Kashiwara’s

modified root operators f̃i and ẽi by

ẽix =
∑
n≥1

f
(n−1)
i xn,

f̃ix =
∑
n≥0

f
(n+1)
i xn.

By using these operators, Kashiwara introduced the crystal basis (L (∞),B(∞))
of U−

q (g).

THEOREM 2.14 ([27, THEOREM 4])

Let

L (∞) :=
∑

l≥0,i1,i2,...,il ∈I

A0f̃i1 · · · f̃il
1 ⊂ U−

q (g),

B(∞) :=
{
f̃i1 · · · f̃il

1mod qL (∞); l ≥ 0, i1, i2, . . . , il ∈ I
}

⊂ L (∞)/qL (∞).

Then we have the following:

(1) L (∞) is a free A0-module with Q(q) ⊗A0 L (∞) = U−
q (g);

(2) ẽiL (∞) ⊂ L (∞) and f̃iL (∞) ⊂ L (∞);
(3) B(∞) is a Q-basis of L (∞)/qL (∞);
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(4) f̃i : B(∞) → B(∞) and ẽi : B(∞) → B(∞) ∪ {0};
(5) for b ∈ B(∞) with ẽi(b) �= 0, we have f̃iẽib = b.

We call (L (∞),B(∞)) the (lower) crystal basis of U−
q (g) and call L (∞) the

(lower) crystal lattice. We denote 1mod qL (∞) ∈ B(∞) by u∞ hereafter. For
b ∈ B(∞), we set εi(b) := max{n ∈ Z≥0; ẽn

i b �= 0} < ∞ and ẽmax
i (b) := ẽ

εi(b)
i b ∈

B(∞).

2.2.5
We have the following compatibility of the ∗-involution with the crystal lattice
L (∞).

THEOREM 2.15 ([27, PROPOSITION 5.2.4], [29, THEOREM 2.1.1])

We have

∗
(
L (∞)

)
= L (∞),(2.16a)

∗
(
B(∞)

)
= B(∞).(2.16b)

For i ∈ I and b ∈ B(∞), we set

f̃ ∗
i (b) := (∗ ◦ f̃i ◦ ∗)(b),(2.17a)

ẽ ∗
i (b) := (∗ ◦ ẽi ◦ ∗)(b).(2.17b)

For b ∈ B(∞), we set ε∗
i (b) := max{n ∈ Z≥0; ẽ ∗n

i b �= 0} < ∞ and ẽ ∗ max
i (b) :=

ẽ
∗ε∗

i (b)
i b ∈ B(∞). We have ε∗

i (b) = εi(∗b).

2.2.6
We recall some results on the relationship between the crystal lattice L (∞) and
Kashiwara’s form (·, ·)K .

PROPOSITION 2.18 ([27, PROPOSITION 5.1.2])

We have (
L (∞),L (∞)

)
K

⊂ A0.

Therefore, the Q-valued inner product on L (∞)/qL (∞) given by (·, ·)K |q=0 is
well defined, which we denote by (·, ·)0. Then we have the following properties:

(1) (ẽiu,u′)0 = (u, f̃iu
′)0 for u,u′ ∈ L (∞)/qL (∞),

(2) B(∞) ⊂ L (∞)/qL (∞) is an orthonormal basis with respect to (·, ·)0.

Moreover, we have

(2.19) L (∞) =
{
x ∈ U−

q (g);
(
x,L (∞)

)
K

⊂ A0

}
;

that is, the crystal lattice L (∞) is a self-dual lattice with respect to (·, ·)K .



288 Yoshiyuki Kimura

2.2.7
Let : Q(q) → Q(q) be the Q-algebra involution sending q to q−1. Let V be a
vector space over Q(q), let L0 be an A0-submodule of V , let L∞ be an A ∞-
submodule of V , and let VA be an A-submodule of V . We set E := L0 ∩ L∞ ∩ VA.

DEFINITION 2.20

We say that a triple (L0,L∞, VA) is balanced if each L0,L∞, and VA generates V

as Q(q)-vector space and if one of the following equivalent conditions is satisfied:

(1) E → L0/qL0 is an isomorphism;
(2) E → L∞/q−1L∞ is an isomorphism;
(3) (L0 ∩ VA) ⊕ (q−1L∞ ∩ VA) → VA is an isomorphism;
(4) A0 ⊗Q E → L0, A ∞ ⊗Q E → L∞, A ⊗Q E → VA, and Q(q) ⊗Q E → V

are isomorphisms.

THEOREM 2.21 ([27, THEOREM 6])

The triple (L (∞),L (∞),U−
q (g)A) is balanced.

Let Glow : L (∞)/qL (∞) → E := L (∞) ∩ L (∞) ∩ U−
q (g)A be the inverse of

E
∼−→ L (∞)/qL (∞). Then {Glow(b); b ∈ B(∞)} forms an A-basis of U−

q (g)A.
This basis is called the canonical basis of U−

q (g). Using this characterization, we
obtain the following compatibility of the canonical basis and the ∗-involution.

PROPOSITION 2.22

We have

∗Glow(b) = Glow(∗b).

2.2.8
For integrable highest weight modules, we can define the (lower) crystal basis
and the canonical basis of them as for U−

q (g) (see [27, Theorems 2, 6] for more
details). Let M be an integrable Uq(g)-module, and let M =

⊕
λ∈P Mλ be its

weight decomposition. By the theory of integrable representations of Uq(sl2), we
have

M =
⊕

0≤n≤ 〈hi,λ〉
f

(n)
i

(
Ker(ei) ∩ Mλ

)
.

For u ∈ Ker(ei) ∩ Mλ and 0 ≤ n ≤ 〈hi, λ〉, we define Kashiwara’s modified opera-
tors or (lower) crystal operators ẽ low

i and f̃ low
i by

ẽ low
i (f (n)

i u) = f
(n−1)
i u,

f̃ low
i (f (n)

i u) = f
(n+1)
i u.

Here we understand f
(−1)
i u and f

(〈hi,λ〉+1)
i u as zero. Note that we denote the

operators f̃i and ẽi in [27, 2.2] by f̃ low
i and ẽ low

i following [28, Section 3.1].
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Let λ ∈ P+ and V (λ) be the integrable highest weight Uq(g)-module gener-
ated by a highest weight vector uλ of weight λ. Let L low(λ) be the A0-submodule
spanned by f̃ low

i1
· · · f̃ low

ir
uλ. Let Blow(λ) be the subset of L low(λ)/qL low(λ) con-

sisting of the nonzero vectors of the form f̃ low
i1

· · · f̃ low
ir

uλ, that is

L low(λ) :=
∑

A0f̃
low

i1 · · · f̃ low
ir

uλ ⊂ V (λ),

Blow(λ) := {f̃ low
i1 · · · f̃ low

ir
uλ mod qL low(λ)} \ {0} ⊂ L low(λ)/qL low(λ).

THEOREM 2.23 ([27, THEOREM 2])

(1) L low(λ) is a free A0-submodule with Q(q) ⊗A0 L low(λ) � V (λ) and
L low(λ) =

⊕
μ∈P L low(λ)μ where L low(λ)μ = L low(λ) ∩ V (λ)μ.

(2) ẽ low
i L low(λ) ⊂ L low(λ) and f̃ low

i L low(λ) ⊂ L low(λ).
(3) Blow(λ) is a Q-basis of L low(λ)/qL low(λ) and Blow(λ) =⊔

μ∈P Blow(λ)μ where Blow(λ)μ = Blow(λ) ∩ L low(λ)μ/qL low(λ)μ.
(4) For i ∈ I, we have ẽiB(λ) ⊂ B(λ) ∪ {0} and f̃iB(λ) ⊂ B(λ) ∪ {0}.
(5) For b, b′ ∈ Blow(λ), b′ = f̃ low

i b is equivalent to b = ẽ low
i b′.

We call (L low(λ),Blow(λ)) the lower crystal basis of V (λ) and call L low(λ) the
lower crystal lattice.

Let be the bar involution defined by xuλ = xuλ for x ∈ Uq(g). Set V (λ)A :=
U−

q (g)Auλ.

THEOREM 2.24 ([27, THEOREM 6])

The triple (L low(λ),L low(λ), V (λ)A) is balanced.

Let Glow
λ be the inverse of L low(λ) ∩ L low(λ) ∩ V (λ)A

∼−→ L low(λ)/qL low(λ).
We call Glow

λ (Blow(λ)) the canonical basis of V (λ).

2.2.9
We have a compatibility of the (lower) crystal basis of U−

q (g) and the integrable
modules V (λ). Let πλ : U−

q (g) → V (λ) be the U−
q (g)-module homomorphism

defined by x 	→ xuλ.

THEOREM 2.25 ([27, THEOREM 5])

We have the following properties:

(1) πλL (∞) = L (λ); hence πλ induces a surjection homomorphism
πλ : L (∞)/qL (∞) → L low(λ)/qL low(λ);

(2) πλ induces a bijection {b ∈ B(∞);πλ(b) �= 0} � Blow(λ);
(3) f̃ low

i ◦ πλ(b) = πλ ◦ f̃i(b) if πλ(b) �= 0;
(4) ẽ low

i ◦ πλ(b) = πλ ◦ ẽi(b) if ẽi ◦ πλ(b) �= 0.

We denote the inverse of the bijection πλ by jλ.
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2.2.10
We also have a compatibility of the canonical basis of U−

q (g) and the integrable
modules V (λ) via πλ.

THEOREM 2.26 ([27, SECTION 7.3 LEMMA 7.3.2])

For λ ∈ P+ and b ∈ B(∞) with πλ(b) �= 0, we have

Glow(b)uλ = Glow
λ

(
πλ(b)

)
.

2.2.11
For the canonical basis, we have the following expansion of left and right multi-
plication with respect to f

(m)
i .

THEOREM 2.27 ([29, SECTION 3.1 (3.1.2)])

For b ∈ B(∞), we have

f
(m)
i Glow(b) =

[
εi(b) + m

m

]
Glow(f̃m

i b)

(2.28a)
+

∑
εi(b′)>εi(b)+m

f
(m)
bb′;i(q)G

low(b′),

Glow(b)f (m)
i =

[
ε∗
i (b) + m

m

]
Glow(f̃ ∗m

i b)

(2.28b)
+

∑
ε∗

i (b′)>ε∗
i (b)+m

f
∗(m)
bb′;i (q)Glow(b′),

where f
(m)
bb′;i(q) = f

(m)
bb′;i(q), f

∗(m)
bb′;i (q) = f

∗(m)
bb′;i (q) ∈ A.

As a corollary of the above theorem, we have the following compatibilities of the
right and left ideals fn

i U−
q (g) and U−

q (g)fn
i with the canonical basis.

THEOREM 2.29 ([27, THEOREM 7])

For i ∈ I and n ≥ 1, we have

fn
i U−

q (g) ∩ U−
q (g)A =

⊕
b∈B(∞),εi(b)≥n

AGlow(b),

U−
q (g)fn

i ∩ U−
q (g)A =

⊕
b∈B(∞),ε∗

i (b)≥n

AGlow(b).

2.3. Abstract crystal
The notion of a (abstract) crystal was introduced in [29] by abstracting the
crystal basis of U−

q (g) and of irreducible highest weight representations which
are constructed in [27]. We recall it briefly. For more detail, see [30].
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2.3.1
DEFINITION 2.30

A crystal B associated with a root datum is a set B endowed with maps
wt : B → P, εi, ϕi : B → Z � { −∞}, ẽi, f̃i : B → B � {0} (i ∈ I) satisfying the
following conditions:

(a) ϕi(b) = εi(b) + 〈hi,wt(b)〉,
(b) wt(ẽib) = wt(b) + αi, εi(ẽib) = εi(b) − 1, ϕi(ẽib) = ϕi(b) + 1, if ẽib ∈ B,
(c) wt(f̃ib) = wt(b) − αi, εi(f̃ib) = εi(b) + 1, ϕi(f̃ib) = ϕi(b) − 1, if f̃ib ∈ B,
(d) b′ = f̃ib ⇔ b = ẽib

′ for b, b′ ∈ B,
(e) if ϕi(b) = −∞ for b ∈ B, then ẽib = f̃ib = 0.

Let wti(b) = 〈hi,wt(b)〉.

A crystal B is called upper normal (resp., lower normal) if, for all b ∈ B, εi(b) ∈ Z

and εi(b) = max{k ≥ 0; ẽk
i b ∈ B} (resp., ϕi(b) = max{k ≥ 0; f̃k

i b ∈ B}). In such a
case, we set ẽmax

i b := ẽ
εi(b)
i b (resp., f̃max

i b := f̃
εi(b)
i b). If a crystal is upper normal

and lower normal, it is called seminormal.

DEFINITION 2.31

For a given two crystals B1,B2 and for h ∈ Z≥1, a map ψ : B1 � {0} → B2 � {0}
is called a morphism of amplitude h of crystals from B1 to B2 if it satisfies the
following properties for b ∈ B1 and i ∈ I :

(a) ψ(0) = 0,
(b) wt(ψ(b)) = hwt(b), εi(ψ(b)) = hεi(b), ϕi(ψ(b)) = hϕi(b) if ψ(b) ∈ B2,
(c) ẽh

i ψ(b) = ψ(ẽib) if ψ(b) ∈ B2, ẽib ∈ B1,
(d) f̃h

i ψ(b) = ψ(f̃ib) if ψ(b) ∈ B2, f̃ib ∈ B1.

When h = 1, it is simply called a morphism of crystals. A morphism ψ : B1 → B2

is strict if ψ commutes with ẽi, f̃i for all i ∈ I without any restriction. A strict
morphism ψ : B1 → B2 is called a strict embedding if ψ is an injective map from
B1 � {0} to B2 � {0}.

DEFINITION 2.32

The tensor product B1 ⊗ B2 of crystals B1 and B2 is defined to be the set
B1 × B2 with maps given by

wt(b1 ⊗ b2) = wt(b1) + wt(b2),(2.33a)

εi(b1 ⊗ b2) = max
(
εi(b1), εi(b2) − wti(b1)

)
,(2.33b)

ϕi(b1 ⊗ b2) = max
(
ϕi(b2), ϕi(b1) + wti(b2)

)
,(2.33c)

ẽi(b1 ⊗ b2) =

{
ẽib1 ⊗ b2 if ϕi(b1) ≥ εi(b2),

b1 ⊗ ẽib2 otherwise,
(2.33d)
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f̃i(b1 ⊗ b2) =

{
f̃ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ib2 otherwise.
(2.33e)

Here (b1, b2) is denoted by b1 ⊗ b2 and 0 ⊗ b2, b1 ⊗ 0 are identified with zero.

Iterating (2.33d) and (2.33e), we obtain the followings:

ẽn
i (b1 ⊗ b2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẽn
i b1 ⊗ b2 if ϕi(b1) ≥ εi(b2),

ẽ
n−εi(b2)+ϕi(b2)
i b1

⊗ẽ
εi(b2)−ϕi(b1)
i b2 if εi(b2) ≥ ϕi(b1) ≥ εi(b2) − n,

b1 ⊗ ẽn
i b2 if εi(b2) − n ≥ ϕi(b1),

(2.34a)

f̃n
i (b1 ⊗ b2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f̃n

i b1 ⊗ b2 if ϕi(b1) ≥ εi(b2) + n,

f̃
ϕi(b1)−εi(b2)
i b1

⊗f̃
n−ϕi(b1)+εi(b2)
i b2 if εi(b2) + n ≥ ϕi(b1) ≥ εi(b2),

b1 ⊗ f̃n
i b2 if εi(b2) ≥ ϕi(b1).

(2.34b)

2.3.2
The (lower) crystal basis B(∞) of U−

q (g) is an example of an abstract crystal
which is upper normal but not lower normal. The lower crystal basis Blow(λ) of
V (λ) for λ ∈ P+ is an example of seminormal crystal. We may also write B(λ)
instead of Blow(λ), when it is considered as an abstract crystal.

EXAMPLE 2.35

For i ∈ I , let Bi = {bi(n);n ∈ Z}. We can endow it with a structure of the abstract
crystal by wt(bi(n)) = nαi, εi(bi(n)) = −n, ϕi(bi(n)) = n, εj(bi(n)) = ϕj(bi(n)) =
−∞, for j �= i, and

f̃jbi(n) =

{
bi(n − 1) if j = i,

0 if j �= i,

ẽjbi(n) =

{
bi(n + 1) if j = i,

0 if j �= i.

2.3.3
For the crystal B(∞), we have the following strict embedding.

THEOREM 2.36 ([29, THEOREM 2.2.1])

(1) For each i ∈ I, there exists a strict embedding Ψi : B(∞) → B(∞) ⊗ Bi

which satisfies Ψi(u∞) = u∞ ⊗ bi(0).
(2) If Ψi(b) = b′ ⊗ f̃n

i bi(0), we have

Ψi(ẽ ∗
i b) =

{
b′ ⊗ f̃n−1

i bi(0) if n ≥ 1,

0 if n = 0,
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Ψi(f̃ ∗
i b) = b′ ⊗ f̃n+1

i bi(0).

(3) We have ImΨi = {b′ ⊗ f̃n
i bi(0); ε∗

i (b
′) = 0, n ≥ 0}.

In particular, we have

Ψi(b) = ẽ
∗ε∗

i (b)
i b ⊗ f̃

ε∗
i (b)

i bi(0),(2.37)

εi(b) = max
(
εi(ẽ ∗ max

i b), −ϕi(b)
)
.(2.38)

2.3.4
For m ≥ 1, we have the following crystal morphism of amplitude m which is
called inflation of order m in [30, Definition 8.1.4].

PROPOSITION 2.39 ([30, PROPOSITION 8.1.3], [47, PROPOSITION 3.2])

(1) For m ∈ Z≥1, there exists a unique crystal morphism Sm : B(∞) →
B(∞) of amplitude m satisfying

wt(Smb) = mwt(b), εi(Smb) = mεi(b), ϕi(Smb) = mϕi(b),

Sm(ẽib) = ẽm
i Sm(b), Sm(f̃ib) = f̃m

i Sm(b),

Sm(u∞) = u∞.

(2) Let b ∈ B(∞). Then we have (∗ ◦ Sm)(b) = (Sm ◦ ∗)(b). In particular, for
any b ∈ B(∞), we have

ε∗
i (Smb) = mε∗

i (b), ϕ∗
i (Smb) = mϕ∗

i (b),

Sm(ẽ ∗
i b) = ẽ ∗m

i Sm(b), Sm(f̃ ∗
i b) = f̃ ∗m

i Sm(b).

3. The dual canonical basis

3.1
In this subsection, we recall the definition of the dual canonical basis and its
characterization in terms of the dual bar involution σ with a balanced triple. We
define Bup ⊂ U−

q (g) as the dual basis of B under the Kashiwara’s bilinear form
( , )K . We define the dual bar involution σ : U−

q (g) → U−
q (g) so that(

σ(x), y
)
K

= (x, y)K

holds for all y (see [4, 10.2]). This is well defined since (·, ·)K is nondegenerate.
By its definition, we have σ(x) = x for x ∈ Bup, and this is a Q-linear involutive
automorphism of U−

q (g) which satisfies σ(fx) = fσ(x) for all f ∈ Q(q) and x ∈
U−

q (g).

3.1.1
For ξ =

∑
ξiαi ∈ Q, we define
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(3.1) N(ξ) :=
1
2

(
(ξ, ξ) +

∑
ξi(αi, αi)

)
=

1
2
(
(ξ, ξ) + 2(ξ, ρ)

)
.

We have N(−αi) = 0 for all i ∈ I and N(ξ + η) = N(ξ) + N(η) + (ξ, η) for all
ξ, η ∈ Q.

PROPOSITION 3.2

We assume that x, y ∈ U−
q (g) are homogeneous.

(1) If r(x) =
∑

x(1) ⊗ x(2), we have

r(x) =
∑

q−(wtx(1),wtx(2))x(2) ⊗ x(1).

(2) We set {x, y}K := (x, y)K ; then we have

{x, y}K = qN(wtx)(x, ∗y)K .

(3) We have

σ(x) = qN(wtx)(∗ ◦ )(x).

Proof
For the convenience of the reader, we give a proof.

(1) We follow the argument in [45, Lemma 1.2.10]. For generators of U−
q (g),

we have r(fi) = fi ⊗ 1 + 1 ⊗ fi = r(fi). We prove the assertion by the induc-
tion on wt, so we assume that (1) holds for homogeneous x′, x′ ′ and show that
it holds also for x = x′x′ ′. First we write r(x′) =

∑
x′

(1) ⊗ x′
(2) and r(x′ ′) =∑

x′ ′
(1) ⊗ x′ ′

(2). By assumption, we have r(x′) =
∑

q−(wtx′
(1),wtx′

(2))x′
(2) ⊗ x′

(1) and

r(x′ ′) =
∑

q−(wtx′ ′
(1),wtx′ ′

(2))x′ ′
(2) ⊗ x′ ′

(1). We have r(x′x′ ′) = r(x′)r(x′ ′) =∑
q−(wtx′

(2),wtx′ ′
(1))x′

1x
′ ′
1 ⊗ x′

2x
′ ′
2 and

r(x′)r(x′ ′) =
∑

q−(wtx′ ′
(1),wtx′ ′

(2))−(wtx′
(1),wtx′

(2))−(wtx′
(1),wtx′ ′

(2))x′
(2)x

′ ′
(2) ⊗ x′

(1)x
′ ′
(1).

Then the assertion follows.
(2) We follow the argument in [45, Lemma 1.2.11(2)]. For the generators, we

have {fi, fi}K = (fi, fi)K = qN(wtfi)(fi, fi)K .
We prove the assertion by induction on tr(wtx) = tr(wty). We prove that

(2) holds for y = y′y′ ′ and for any x assuming it holds for y′, y′ ′. First we write
r(x) =

∑
x(1) ⊗ x(2) with x(1) and x(2) homogeneous. We have

(x, y)K

=
(
r(x), y′ ⊗ y′ ′

)
K

=
∑

q−(wtx(1),wtx(2))(x(2) ⊗ x(1), y′ ⊗ y′ ′)K

=
∑

q−(wtx(1),wtx(2))(x(2), y′)K(x(1), y′ ′)K

=
∑

q−(wtx(1),wtx(2))−N(wtx(1))−N(wtx(2))(x(2), ∗y′)K(x(1), ∗y′ ′)K

=
∑

q−N(wtx)(x(2), ∗y′)K(x(1), ∗y′ ′)K ,
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where we have used the induction hypothesis in the fourth equality. On the other
hand, we have

q−N(wtx)(x, ∗y)K

= q−N(wtx)
(
r(x), ∗y′ ′ ⊗ ∗y′

)
K

= q−N(wtx)
∑

(x(1) ⊗ x(2), ∗y′ ′ ⊗ ∗y′)K .

Hence we obtain the assertion.
(3) We have (σ(x), y)K = (x, y)K = qN(wt(x))(x, ∗y)K = qN(wt(x))((∗ ◦ )(x),

y)K , where we used Lemma 2.13. Since this holds for any y, the assertion follows.
�

3.1.2
By its construction, we have a characterization of the dual canonical basis Bup

in terms of the dual bar involution σ and the crystal lattice L (∞) of U−
q (g). We

note that L (∞) is a self-dual A0 lattice, see (2.19), and hence we do not need
to introduce the dual lattice of L (∞).

PROPOSITION 3.3

We set

U−
q (g)up

A :=
{
x ∈ U−

q (g);
(
x,U−

q (g)A
)
K

⊂ A
}
.

Then (L (∞), σ(L (∞)),U−
q (g)up

A ) is a balanced triple for the dual canonical
basis Bup.

Here we have the following isomorphism of Q-vector spaces:

L (∞) ∩ σ
(
L (∞)

)
∩ U−

q (g)up
A

∼−→ L (∞)/qL (∞).

We denote its inverse by Gup. Then we have Bup = Gup(B(∞)).

3.1.3
The above proposition gives a characterization of the dual canonical basis ele-
ments.

COROLLARY 3.4 ([37, PROPOSITION 16])

A homogeneous x ∈ U−
q (g)up

A ∩ L (∞) ∩ σ(L (∞)) is an element of the dual canon-
ical basis if and only if there exists b ∈ B(∞) such that

σ(x) = x,

x ≡ b mod qL (∞).

3.1.4
We have the following compatibility of the dual canonical basis and the ∗-
involution from Proposition 2.22.
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LEMMA 3.5

For b ∈ B(∞), we have

Gup(∗b) = ∗Gup(b).

3.2. Compatible subset
In this subsection, we introduce the concept of compatible subsets of B(∞).
Roughly speaking, they are closed under the multiplication up to q-shifts, con-
sidered as subsets of the dual canonical basis Bup.

3.2.1
By Proposition 3.2(3), we obtain the following.

PROPOSITION 3.6

For homogeneous x1, x2 ∈ U−
q (g), we have

(3.7) σ(x1x2) = q(wtx1,wtx2)σ(x2)σ(x1).

Then we obtain the following property.

COROLLARY 3.8

Let b1, b2 ∈ B(∞), and consider the following expansion:

Gup(b1)Gup(b2) =
∑

wt(b)=wt(b1)+wt(b2)

db
b1,b2(q)G

up(b).

Then we have db
b1,b2

(q−1) = q(wt b1,wt b2)db
b2,b1

(q). In particular, if we have
Gup(b1)Gup(b2) ∈ qZBup, then we have

Gup(b1)Gup(b2) = q−N −(wt b1,wt b2)Gup(b2)Gup(b1).

Here we define b1 � b2 ∈ B(∞) for such a pair b1, b2 ∈ B(∞); that is, Gup(b1) ×
Gup(b2) = qNGup(b1 � b2) for some N ∈ Z,

Proof
The first statement is clear from (3.7). Suppose that Gup(b1) ×
Gup(b2) = qNGup(b1 � b2) for b1 � b2 ∈ B(∞) and N ∈ Z; that is, suppose that
db

b1,b2
(q) = qNδb,b1�b2 for b1 � b2 ∈ B(∞). Then we have

db
b2,b1(q) = q−(wt b1,wt b2)db

b1,b2(q
−1) = q−(wt b1,wt b2)q−Nδb,b1�b2 .

This implies that if Gup(b1) and Gup(b2) satisfy db
b1,b2

(q) = qNδb,b1�b2 for some
b1 � b2 ∈ B(∞), then Gup(b1) and Gup(b2) q-commute. �

Motivated by this corollary, we introduce the following definition.

DEFINITION 3.9

(1) We denote x � y for x, y ∈ U−
q (g) if there exists N ∈ Z such that x = qNy.
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(2) For b1, b2 ∈ B(∞), we call b1 and b2 multiplicative or compatible if there
exists a unique b1 � b2 ∈ B(∞) such that

Gup(b1 � b2) � Gup(b1)Gup(b2).

By Corollary 3.8 this condition is independent of the order on b1 and b2. We
write b1 ⊥ b2 when this holds.

(3) Elements b1, . . . , bl ∈ B(∞) are called compatible if the following holds:

Gup(b1) · · · Gup(bl) � Gup(b1 � · · · � bl)

for a unique b1 � · · · � bl ∈ B(∞). This condition is also independent of the
ordering on b1, . . . , bl.

(4) An element b ∈ B(∞) is called real if Gup(b)Gup(b) � Gup(b[2]) for a
unique b[2] ∈ B(∞), that is b ⊥ b.

(5) An element b ∈ B(∞) is called strongly real if Gup(b)m � Gup(b[m]) for
a unique b[m] ∈ B(∞) for any m; that is, b, . . . , b︸ ︷︷ ︸

m times

is compatible for any m.

(6) Elements b1, . . . , bl are called strongly compatible if for any m1, . . . ,ml ∈
Z≥0, the product Gup(b1)m1 · · · Gup(bl)ml � Gup(b[m1]

1 � · · · � b
[ml]
l ) for a unique

b
[m1]
1 � · · · � b

[ml]
l ∈ B(∞).

REMARK 3.10

For b1, b2 ∈ B(∞), we say that a pair (b1, b2) is quasi-commutative if we have
Gup(b1)Gup(b2) � Gup(b2)Gup(b1) following [3] and [51]. In [3, Introduction],
Berenstein and Zelevinsky conjectured that the quasi-commutativity and com-
patibility are equivalent. The above corollary proves Reineke’s result that the
compatibility for b1 and b2 implies the quasi-commutativity and also generalizes
Reineke’s result from when g is symmetric to arbitrary symmetrizable g.

REMARK 3.11

The relation b1 ⊥ b2 is not an equivalence relation, as there exist b which do
not satisfy b ⊥ b. In particular, such elements are counterexamples for Berenstein
and Zelevinsky’s conjecture in [3]. In [35], Leclerc said that b is real if b ⊥ b and
imaginary otherwise. He constructed examples of imaginary elements in [35].
Other examples closely related to this paper are given in [34, Corollary 4.4].

REMARK 3.12

Even if b1 ⊥ b2, we cannot determine N in db
b1,b2

= qNδb,b1�b2 in terms of weight
of b1, b2. In Section 4, we have its formula in terms of the Lusztig data of b and
b′ associated with a reduced expression w̃.

COROLLARY 3.13

(1) If b1 ⊥ b2, then ∗b1 ⊥ ∗ b2.
(2) If b is real, then ∗b is also real.
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3.2.2
Let ir

(m) := ir
m/[m]! and ri

(m) := ri
m/[m]!. These operators are adjoint to the

left and right multiplications of f
(m)
i by (2.10a). From Theorem 2.27, we get the

following expansions for the actions of ir
(m) and ri

(m).

THEOREM 3.14

For b ∈ B(∞), we have

ir
(m)Gup(b) =

[
εi(b)
m

]
Gup(ẽm

i b) +
∑

εi(b′)<εi(b)−m

E
(m)
bb′;i(q)G

up(b′),(3.15a)

ri
(m)Gup(b) =

[
ε∗
i (b)
m

]
Gup(ẽ ∗m

i b) +
∑

ε∗
i (b′)<ε∗

i (b)−m

E
∗(m)
bb′;i (q)Gup(b′),(3.15b)

where E
(m)
bb′;i(q) = E

(m)
bb′;i(q),E

∗(m)
bb′;i (q) = E

∗(m)
bb′;i (q) ∈ A.

As a special case, we have the following result.

COROLLARY 3.16 ([28, LEMMA 5.1.1.])

Let b ∈ B(∞) with εi(b) = c (resp., ε∗
i (b) = c). Then we have ir

(c)Gup(b) =
Gup(ẽmax

i b) (resp., ri
(c)Gup(b) = Gup(ẽ ∗ max

i b)).

By the above corollary and (2.7a), we obtain the following result.

COROLLARY 3.17 ([51, LEMMA 2.1])

For b1, b2 ∈ B(∞) with

Gup(b1)Gup(b2) =
∑

db
b1,b2(q)G

up(b),

we have εi(b) ≤ εi(b1) + εi(b2) for all i ∈ I if db
b1,b2

(q) �= 0. An equality holds at
least one b.

If fact, we can prove db
b1,b2

(q) = 0 if εi(b) > εi(b1) + εi(b2) by the descending
induction on εi(b). In particular, the positivity of db

b1,b2
, assumed in [51], is not

used in the proof. The second assertion follows from

ir
(εi(b1)+εi(b2))

(
Gup(b1)Gup(b2)

)
= qNGup(ẽmax

i b1)Gup(ẽmax
i b2)(3.18)

=
∑

εi(b1)+εi(b2)=εi(b)

qNdb
b1,b2(q)G

up(ẽmax
i b)

for some N ∈ Z.
As a corollary of Corollaries 3.16 and 3.17, we obtain the following properties.
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COROLLARY 3.19

(1) If b1 ⊥ b2, then ẽmax
i b1 ⊥ ẽmax

i b2 for all i ∈ I. In fact, we have εi(b1 �
b2) = εi(b1)+εi(b2) and ẽmax

i (b1)� ẽmax
i (b2) = ẽmax

i (b1 �b2). A similar statement
holds for ẽ ∗ max

i .
(2) If b is (resp., strongly) real, ẽmax

i (b) is (resp., strongly) real for all i ∈ I.
In fact, we have εi(b[m]) = mεi(b) and (ẽmax

i b)[m] = ẽmax
i (b[m]) for m = 2 (resp.,

any m). Similar statements hold for ẽ ∗ max
i .

LEMMA 3.20

If b is (resp., strongly) real, we have b[2] = S2(b) (resp., b[m] = Sm(b)).

Proof
For any b with | tr(wt(b))| > 0, there exists i ∈ I such that εi(b) > 0. Therefore
we can connect b to u∞ by a path consisting of (strongly) real elements by
successive applications of ẽmax

i ’s. From the formula in Corollary 3.19(2), we get
the assertion. �

3.3. Compatibilities of the dual canonical basis
In this subsection, we study the dual canonical basis of integrable highest weight
modules and its compatibilities with tensor products.

3.3.1
We recall the definition of the dual canonical basis of the integrable highest
weight module V (λ) following [28, Section 4.2]. Kashiwara calls it the upper global
basis. Let M be an integrable Uq(g)-module with a weight decomposition M =⊕

λ∈P Mλ. For u ∈ Ker(ei) ∩ Mλ and 0 ≤ n ≤ 〈hi, λ〉, we define other modified
root operators called the upper crystal operators:

ẽup
i (f (n)

i u) =
[〈hi, λ〉 − n + 1]i

[n]i
f

(n−1)
i u,

f̃up
i (f (n)

i u) =
[n + 1]i

[〈hi, λ〉 − n]i
f

(n+1)
i u.

We have a Q(q)-linear antiautomorphism ϕ on Uq(g) defined by

ϕ(ei) = fi, ϕ(fi) = ei, ϕ(qh) = qh.(3.21)

For λ ∈ P+, we have a unique symmetric nondegenerate bilinear form ( , )λ :
V (λ) ⊗ V (λ) → Q(q) which satisfies(

ϕ(x)u, v
)
λ

= (u,xv)λ for u, v ∈ V (λ) and x ∈ Uq(g),(3.22a)

(uλ, uλ)λ = 1.(3.22b)

Then we have

(ẽup
i u, v)λ = (u, f̃ low

i v)λ,(3.23a)

(f̃up
i u, v)λ = (u, ẽ low

i v)λ.(3.23b)
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Using (·, ·)λ, we define the dual bar involution σλ by

(σλu, v)λ := (u, v)λ.

This is well defined since (·, ·)λ is a nondegenerate bilinear form. We set

V (λ)up
A :=

{
u ∈ V (λ);

(
u,V (λ)A

)
λ

⊂ A
}
,(3.24a)

L up(λ) :=
{
u ∈ V (λ);

(
u,L low(λ)

)
λ

⊂ A0

}
.(3.24b)

Then we have σλ(L up(λ)) = {u ∈ V (λ); (u,L low(λ))λ ⊂ A ∞ }. Kashiwara deno-
tes σλ(L up(λ)) by L

up
(λ). The triple

(
L up(λ), σλ(L up(λ)), V (λ)up

A
)

is bal-
anced by [28, Lemma 2.2.3].

PROPOSITION 3.25

Let Bup(λ) be the dual basis of Blow(λ) with respect to the induced pairing
(·, ·)λ : L up(λ)/qL up(λ) × L low(λ)/qL low(λ) → Q; then the pair (L up(λ),
Bup(λ)) is an upper crystal basis; that is,

(1) L up(λ) is a free A0-module with Q(q) ⊗A0 L up(λ) � V (λ);
(2) f̃up

i L up(λ) ⊂ L up(λ) and ẽup
i L up(λ) ⊂ L up(λ);

(3) Bup(λ) ⊂ L up(λ)/qL up(λ) is a Q-basis;
(4) ẽup

i Bup(λ) ⊂ Bup(λ) � {0} and f̃up
i Bup(λ) ⊂ Bup(λ) � {0};

(5) for b, b′ ∈ Bup(λ), b = f̃up
i b′ is equivalent to ẽup

i b = b′.

Let Gup
λ be the inverse of V (λ)up

A ∩ L up(λ) ∩ σλ(L up(λ)) ∼−→ L up(λ)/qL up(λ).
The set Gup

λ (Bup(λ)) is called the dual canonical basis of V (λ). By its construc-
tion, the dual canonical basis is the dual basis of the canonical basis with respect
to ( , )λ. We also have

(3.26) L up(λ)μ = q(λ,λ)/2−(μ,μ)/2L low(λ)μ for μ ∈ P

(see [28, (4.2.9)]). By (3.26), we obtain an isomorphism L up(λ)/qL up(λ) �
L low(λ)/qL low(λ). Through this identification, we have a bijection Bup(λ) �
Blow(λ), and this bijection is an isomorphism of abstract crystals associated with
the upper and lower crystal bases. Hence we can identify Bup(λ) with Blow(λ)
and denote both by B(λ) hereafter. If μ ∈ Wλ, this identification is given by the
identity as (λ,λ) = (μ,μ). We can also prove that the canonical basis elements
and the dual canonical basis elements coincide in this case.

REMARK 3.27

For U−
q (g), we consider the Q(q)-linear antiautomorphism a of the reduced q-

analogue Bq(g) defined by

a(ir) = fi, a(fi) = ir.(3.28)

Since the (lower) crystal lattice is self-dual with respect to Kashiwara’s bilinear
form (·, ·)K , we do not need to consider the dual lattice of L (∞).
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3.3.2
Using the pairing ( , )λ, we consider a Q(q)-linear embedding jλ : V (λ) → U−

q (g)
which is defined in the following commutative diagram:

V (λ)

jλ

∼
V (λ)∗

π∗
λ

U−
q (g)

∼
U−

q (g)∗

where the horizontal isomorphisms are induced by the nondegenerate inner prod-
ucts on V (λ) and U−

q (g), and the right vertical homomorphism is the transpose
of the U−

q (g)-module homomorphism πλ : U−
q (g) → V (λ) given by x 	→ xuλ for

x ∈ U−
q (g). Then for b ∈ B(λ), we have jλGup

λ (b) = Gup(jλ(b)), where jλ in the
right-hand side was defined just after Theorem 2.25. Thanks to this equality,
there is no fear of confusion even though we use the same symbol jλ for different
maps.

3.3.3
We use the following result in [37, Section 7.3.2]. For λ,λ1, λ2, . . . , λr ∈ P+ with
λ =

∑
j λj , let Φ(λ1, . . . , λr) : V (λ) → V (λ1) ⊗ · · · ⊗ V (λr) be the unique Uq(g)-

module homomorphism with Φ(λ1, . . . , λr)(uλ) = uλ1 ⊗ · · · ⊗ uλr . Then we have
the corresponding embeddings

Φ(λ1, . . . , λr) : B(λ) ↪→ B(λ1) ⊗ · · · ⊗ B(λr),

Φ(λ1, . . . , λr)
(
L low(λ)

)
⊂ L low(λ1) ⊗A0 · · · ⊗A0 L low(λr)

(see [27, Section 4.2]). Hence we obtain

Φ(λ1, . . . , λr)
(
Glow

λ (b)
)

≡ Glow
λ1

(b1) ⊗ · · · ⊗ Glow
λr

(br)

× mod q
(
L low(λ1) ⊗ · · · ⊗ L low(λr)

)
for Φ(λ1, . . . , λr)(b) = b1 ⊗ · · · ⊗ br for some bj ∈ Blow(λj).

Let qλ1,...,λr : V (λ1) ⊗ · · · ⊗ V (λr) → V (λ) be the homomorphism defined by
the commutative diagram

V (λ1) ⊗ · · · ⊗ V (λr)

qλ1,...,λr

∼
V (λ1)∗ ⊗ · · · ⊗ V (λr)∗

Φ(λ1,...,λr)∗

V (λ)
∼

V (λ)∗

where the upper horizontal isomorphism is induced by the nondegenerate inner
product (·, ·)λ1,...,λr := (·, ·)λ1 · · · (·, ·)λr on V (λ1) ⊗ · · · ⊗ V (λr), the lower horizon-
tal isomorphism is induced by the nondegenerate inner product (·, ·)λ on V (λ),
and the right vertical homomorphism is the transpose of Φ(λ1, . . . , λr).
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PROPOSITION 3.29

Let λ,λ1, . . . , λr ∈ P+ with λ =
∑

1≤j≤r λj , and let bj ∈ B(λj) (1 ≤ j ≤ r).
Assume that there exists b1 � · · · � br ∈ B(λ) with Φ(λ1, λ2, . . . , λr)(b1 � · · · � br) =
b1 ⊗ · · · ⊗ br ∈ B(λ1) ⊗ · · · ⊗ B(λr). Then we have the following equality:

qλ1,...,λr

(
Gup

λ1
(b1) ⊗ · · · ⊗ Gup

λr
(br)

)
≡ Gup

λ (b1 � b2 � · · · � br)mod qL up(λ).

We give the proof for completeness.

Proof
We have qλ1,...,λr (L

up(λ1) ⊗A0 · · · ⊗A0 L up(λr)) ⊂ L up(λ); in particular, we
have qλ1,...,λr (G

up
λ1

(b1) ⊗ · · · ⊗ Gup
λr

(br)) ∈ L up(λ).
Hence to show the statement, it suffices to compute the following inner prod-

uct: (
qλ1,...,λr(G

up
λ1

(b1) ⊗ · · · ⊗ Gup
λr

(br)),Glow
λ (b)

)
λ

|q=0

for b ∈ B(λ). By its definition of qλ1,...,λr , this is equal to (b1 ⊗ · · · ⊗ br,Φ(λ1, . . . ,

λr)(b))λ1,...,λr |q=0. Since the tensor product of the dual canonical basis is
the dual of the tensor product of the canonical basis, this is equal to
δb1⊗··· ⊗br,Φ(λ1,...,λr)(b) = δb1b2··· br,b. Hence we have obtained the assertion. �

3.3.4
To compute a product of dual canonical basis elements of integrable highest
weight modules, we need the following modification of the coproduct as in [37,
Lemma 32].

LEMMA 3.30

For λ,μ ∈ P+, let rλ,μ : U−
q (g) → U−

q (g) ⊗ U−
q (g) be the Q(q)-linear map defined

by

rλ,μGlow(b) =
∑
b1,b2

db
b1,b2(q)q

−(wt(b2),λ)Glow(b1) ⊗ Glow(b2)

for Glow(b) ∈ U−
q (g) with r(Glow(b)) =

∑
b1,b2

db
b1,b2

(q)Glow(b1) ⊗ Glow(b2). Then
we have the commutative diagram of Q(q)-vector spaces

U−
q (g)

πλ+μ

rλ,μ

V (λ + μ)

Φ(λ,μ)

U−
q (g) ⊗ U−

q (g)
πλ ⊗πμ

V (λ) ⊗ V (μ)

Using the above modification, we obtain the following formula.
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PROPOSITION 3.31

For b1 ∈ B(λ) and b2 ∈ B(μ), we have

q(wt b2−μ,λ)Gup
(
jλ(b1)

)
Gup

(
jμ(b2)

)
= jλ+μqλ,μ

(
Gup

λ (b1) ⊗ Gup
μ (b2)

)
.

3.3.5
Combining Proposition 3.31 with Proposition 3.29, we obtain the following propo-
sition.

PROPOSITION 3.32

Let λ,λ1, . . . , λr ∈ P+ with λ =
∑

1≤j≤r λj and bj ∈ B(λj) (1 ≤ j ≤ r). Assume
that there exists b1 � · · · � br ∈ B(λ) with Φ(λ1, λ2, . . . , λr)(b1 � · · · � br) = b1 ⊗ · · · ⊗
br ∈ B(λ1) ⊗ · · · ⊗ B(λr). Then there exists a unique m ∈ Z such that

qmGup
(
jλ1(b1)

)
· · · Gup

(
jλr(br)

)
≡ Gup

(
jλ(b1 � · · · � br)

)
mod qL (∞).

4. Quantum unipotent subgroup and the dual canonical basis

4.1. The Lie algebra n(w)
4.1.1
Let w ∈ W be an element of the Weyl group associated with g, and let � : W →
Z≥0 be the length function. Let Δ+(w) := Δ+ ∩ wΔ− = {α ∈ Δ+ | w−1α < 0} ⊂
Δ+. We have the following description of Δ+(w) as follows (see [33,
Lemma 1.3.14]).

For a Weyl group element w, let w̃ = (i1, i2, . . . , i�) ∈ R(w) be a reduced
expression of w, where R(w) is the set of reduced expressions of w. For each
1 ≤ k ≤ � = �(w), we set

βk := si1si2 · · · sik−1(αik
).

Then Δ+(w) has cardinality exactly equal to � = �(w), and we have

Δ+(w) = {βk }1≤k≤�.

Let

n(w) :=
⊕

α∈Δ+(w)

g−α.

Let N(w) be the corresponding (pro)unipotent (pro)group in [33, Chapter VI].
Then N(w) is a unipotent algebraic group of dimension �(w), and its Lie alge-
bra is n(w). We can identify the restricted dual U(n(w))∗

gr of U(n(w)) with the
coordinate ring of N(w); that is, U(n(w))∗

gr � C[N(w)] (see [22, Section 5.2] for
more details).

4.2. Braid group symmetry on Uq(g)
We define (quantum) root vectors, using Lusztig’s braid group symmetry {Ti}
on Uq(g) (see [45, Chapter 32] for more details).
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4.2.1
Following [45, Section 37.1.3], we define the Q(q)-algebra automorphisms T ′

i,ε :
Uq(g) → Uq(g) for i ∈ I and ε ∈ { ±1} by

T ′
i,ε(q

h) = qsi(h),(4.1a)

T ′
i,ε(ei) = −tεifi,(4.1b)

T ′
i,ε(fi) = −eit

−ε
i ,(4.1c)

T ′
i,ε(ej) =

∑
r+s=− 〈hi,αj 〉

(−1)rqεr
i e

(r)
i eje

(s)
i for j �= i,(4.1d)

T ′
i,ε(fj) =

∑
r+s=− 〈hi,αj 〉

(−1)rq−εr
i f

(s)
i fjf

(r)
i for j �= i.(4.1e)

For i ∈ I and ε ∈ { ±1}, we also define the Q(q)-algebra automorphisms
T ′ ′

i,ε : Uq(g) → Uq(g) by

T ′ ′
i,−ε(q

h) = qsi(h),(4.2a)

T ′ ′
i,−ε(ei) = −fit

−ε
i ,(4.2b)

T ′ ′
i,−ε(fi) = −tεiei,(4.2c)

T ′ ′
i,−ε(ej) =

∑
r+s=− 〈hi,αj 〉

(−1)rqεr
i e

(s)
i eje

(r)
i for j �= i,(4.2d)

T ′ ′
i,−ε(fj) =

∑
r+s=− 〈hi,αj 〉

(−1)rq−εr
i f

(r)
i fjf

(s)
i for j �= i.(4.2e)

We have

(4.3) T ′
i,εT

′ ′
i,−ε = T ′ ′

i,−εT
′
i,ε = id.

In the following, we write Ti = T ′ ′
i,1 and T −1

i = T ′
i,−1 as in [53, Proposition 1.3.1].

4.2.2
We define braid group action on integrable modules following [45, Chapter 5] and
[53]. We use a q-analogue of exponential expq(x) defined by

expq(x) :=
∑
n≥0

qn(n−1)/2

[n]q!
xn.

We have

(4.4) expq(x) expq−1(−x) = 1.

For i ∈ I , we define Si (see [53, (1.2.2), (1.2.13)]) by

Si = expq−1
i

(q−1
i eit

−1
i ) expq−1

i
(−fi) expq−1

i
(qieiti)q

hi(hi+1)/2
i(4.5a)

= expq−1
i

(−q−1
i fiti) expq−1

i
(ei) expq−1

i
(−qifit

−1
i )qhi(hi+1)/2

i .(4.5b)
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The operator q
hi(hi+1)/2
i acts on the weight space of weight λ by the multiplica-

tion of q
〈hi,λ〉(〈hi,λ〉+1)/2
i . Since the action of ei and fi are locally nilpotent, Si

defines an endomorphism of integrable modules. It is known that the action of
{Si}i∈I satisfies the braid group relations for the Weyl group W .

The braid group symmetry {Ti}i∈I defined above is described as

(4.6) Ti(x) = SixS−1
i ,

where the elements are considered in the endomorphism ring of integrable mod-
ules (see [53, 1.3] for more details).

4.2.3
We have the following relationship between Ti, T

−1
i and the ∗-involution.

PROPOSITION 4.7 ([45, SECTION 37.2.4])

We have

∗ ◦ Ti ◦ ∗ = T −1
i .(4.8)

4.3. Quantum nilpotent subalgebra U−
q (w, ε)

4.3.1
We define root vectors associated with w̃ = (i1, . . . , i�) ∈ R(w) for w ∈ W (see [45,
Propositions 40.1.3, 41.1.4] for more detail). For w ∈ W and w̃ ∈ R(w), we define
βk as above. We define the root vectors Fε(βk) associated with βk ∈ Δ(w) and
ε ∈ {±1} by

Fε(βk) := T ε
i1 · · · T ε

ik−1
(fik

).

It is known that Fε(βk) ∈ U−
q (g). We note that Fε(βk) does depend on the choice

of w̃ ∈ R(w). We define their divided powers by

Fε(cβk) := T ε
i1 · · · T ε

ik−1
(f (c)

ik
)

for c ≥ 1. It is known that Fε(cβk) ∈ U−
q (g)A.

4.3.2
THEOREM 4.9 ([45, PROPOSITIONS 40.2.1, 41.1.3])

(1) For w ∈ W , w̃ ∈ R(w), ε ∈ { ±1}, and c ∈ Z�
≥0, we set

Fε(c, w̃) :=

{
Fε(c1β1) · · · Fε(c�β�) if ε = +1,

Fε(c�β�) · · · Fε(c1β1) if ε = −1.

Then {Fε(c, w̃)}c∈Z�
≥0

forms a basis of a subspace defined to be U−
q (w, ε) of U−

q (g)
which does not depend on w̃.

(2) We have Fε(c, w̃) ∈ U−
q (g)A for all c ∈ Z�

≥0.
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4.3.3
We recall commutation relations for root vectors and their divided powers
{Fε(ckβk)}1≤k≤�,ck ≥1, known as the Levendorskii–Soibelman formula (see [39],
[1], [49] for more details).

In this subsection, we give statements for the ε = +1 case. We can obtain the
corresponding results for the ε = −1 case, applying the ∗-involution (4.8). So we
denote Fε(cβ), Fε(c, w̃) by F (cβ), F (c, w̃) by omitting ε.

Let w ∈ W , w̃ = (i1, i2, . . . , i�) ∈ R(w), and fix a total order on Δ+(w) given
by

β1 < β2 < · · · < β�.

THEOREM 4.10 ([49, PROPOSITION 3.6], [39, SECTION 5.5.2, PROPOSITION])

For j < k, let us write

F (ckβk)F (cjβj) − q−(cjβj ,ckβk)F (cjβj)F (ckβk) =
∑

fc′ F (c′, w̃)

with fc′ ∈ Q(q). If fc′ �= 0, then c′
j < cj and c′

k < ck with
∑

j≤m≤k c′
mβm = cjβj +

ckβk.

4.3.4
The following proposition is a consequence of Theorem 4.10. (cf. [38, Section 2.4.2,
Proposition, Theorem (b)] and [11, Proposition 2.2].)

PROPOSITION 4.11

Let w̃ = (i1, i2, . . . , i�) be a reduced expression for w ∈ W and ε ∈ {±1}. Then the
subspace U−

q (w, ε) is the Q(q)-subalgebra generated by {Fε(βk)}1≤k≤�.

We call it the quantum nilpotent subalgebra associated with w ∈ W .

4.3.5
We define a lexicographic order ≤ on Z�

≥0 associated with w̃ ∈ R(w) by

c = (c1, c2, . . . , c�) < c′ = (c′
1, c

′
2, . . . , c

′
�)

⇐⇒ there exists 1 ≤ p ≤ � such that c1 = c′
1, . . . , cp−1 = c′

p−1, cp < c′
p.

The following theorem is obtained as a consequence of the Levendorskii–Soibel-
mann formula.

THEOREM 4.12

Let w ∈ W , and let w̃ ∈ R(w) be a reduced expression. For c ∈ Z�
≥0, we consider

the following Q(q)-subspace F w̃
≤cU

−
q (w):

F w̃
≤cU

−
q (w) :=

⊕
c′ ≤c

Q(q)F (c′, w̃).

Then
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(1) {F w̃
≤cU

−
q (w)}c∈Z�

≥0
forms an increasing filtration on U−

q (w);

(2) the associated graded algebra grw̃U−
q (w) is generated by {grw̃(F (βk))|

1 ≤ k ≤ �}, with relations

grw̃
(
F (βk)

)
grw̃

(
F (βj)

)
= q−(βj ,βk)grw̃

(
F (βj)

)
grw̃

(
F (βk)

)
(j < k).

Here the associated graded algebra grw̃U−
q (w) :=

⊕
c∈Z�

≥0
grw̃

c U−
q (w) is defined by

grw̃
c U−

q (w) := F w̃
≤cU

−
q (w)/

∑
c′<c

Q(q)F (c′, w̃),

and we set grw̃F (c, w̃) := F (c, w̃)mod
∑

c′<c Q(q)F (c′, w̃) for c ∈ Z�
≥0.

We call this the De Concini–Kac filtration.

4.4. PBW basis and the canonical basis
In this subsection, we recall compatibilities between Lusztig’s braid symmetry
{Ti}i∈I and the canonical basis (for more details, see [45, Chapter 38], [43], [53]).

4.4.1
We have the following orthogonal decomposition with respect to Kashiwara’s
form ( , )K and its compatibility with the canonical basis.

LEMMA 4.13 ([45, PROPOSITION 38.1.6, LEMMA 38.1.5])

(1) For i ∈ I, we have

U−
q [i] :=

{
x ∈ U−

q ; ir(x) = 0
}

=
{
x ∈ U−

q ;T −1
i (x) ∈ U−

q

}
,

∗U−
q [i] :=

{
x ∈ U−

q ; ri(x) = 0
}

=
{
x ∈ U−

q ;Ti(x) ∈ U−
q

}
.

(2) For i ∈ I, we have the following orthogonal decompositions with respect
to ( , )K :

U−
q = U−

q [i] ⊕ fiU−
q = ∗U−

q [i] ⊕ U−
q fi.

From Lemma 4.13 and Theorem 2.29, we obtain the following result.

PROPOSITION 4.14

For n ≥ 0 and i ∈ I, the subspaces
⊕n

k=0 fk
i U−

q [i] and
⊕n

k=0
∗U−

q [i]fk
i , which are

orthogonal decompositions with respect to ( , )K , are compatible with the dual
canonical basis; that is, we have

n⊕
k=0

fk
i U−

q [i] =
⊕

b∈B(∞),εi(b)≤n

Q(q)Gup(b),

n⊕
k=0

∗U−
q [i]fk

i =
⊕

b∈B(∞),ε∗
i (b)≤n

Q(q)Gup(b).
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4.4.2
The following result is due to Saito.

PROPOSITION 4.15 ([53, PROPOSITION 3.4.7, COROLLARY 3.4.8])

(1) Let x ∈ L (∞) ∩ T −1
i U−

q (g) with b = xmod qL (∞) ∈ B(∞). We note
that ri(x) = 0 and ε∗

i (b) = 0. We have

Ti(x) ∈ L (∞),(4.16)

Ti(x) ≡ f̃
∗ϕi(b)
i ẽ

εi(b)
i x mod qL (∞) ∈ B(∞).(4.17)

(2) Let Λi : {b ∈ B(∞); ε∗
i (b) = 0} → {b ∈ B(∞); εi(b) = 0} be the map defi-

ned by Λi(b) = f̃
∗ϕi(b)
i ẽ

εi(b)
i b. Then Λi is bijective and its inverse is given by

Λ−1
i (b) = f̃

ϕ∗
i (b)

i ẽ
∗ε∗

i (b)
i b.

By Proposition 4.15, we can show the following result by using the induction on
the length of w.

THEOREM 4.18 ([53, THEOREM 4.1.2], [43, PROPOSITION 8.2])

For w ∈ W , w̃ = (i1, i2, . . . , i�) ∈ R(w), and ε ∈ {±1},

(1) we have Fε(c, w̃) ∈ L (∞) and

bε(c, w̃) := Fε(c, w̃)mod qL (∞) ∈ B(∞);

(2) the map Z�
≥0 → B(∞) which is defined by c 	→ bε(c, w̃) is injective. We

denote the image by B(w, ε), and this does not depend on the choice of w̃ ∈ R(w).

For fixed w̃ ∈ R(w), we denote the inverse of c 	→ bε(c, w̃) by Lε,w̃ : B(w, ε) →
Z�

≥0. This map is called the Lusztig data of b associated with w̃.

4.4.3
Let iπ : U−

q → U−
q [i] (resp., πi : U−

q → ∗U−
q [i]) be the orthogonal projection

whose kernel is fiU−
q (g) (resp., U−

q (g)fi) in Lemma 4.13. The following result is
due to Lusztig.

THEOREM 4.19 ([43, THEOREM 1.2])

For b ∈ B(∞) with ε∗
i (b) = 0, we have

Ti

(
πiGlow(b)

)
= iπ

(
Glow(Λi(b))

)
.

4.4.4
As a corollary of the above description, we have the following properties of the
inflation Sm and the ∗-involution.

COROLLARY 4.20

(1) We have ΛiSm(b) = SmΛi(b) for b ∈ {b ∈ B(∞); ε∗
i (b) = 0}.
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(2) We have Sm : B(w, ε) → B(w, ε) for all m ≥ 1 and Sm(bε(c, w̃)) =
bε(mc, w̃).

(3) We have ∗(B(w, ε)) = B(w, −ε) and ∗bε(c, w̃) = b−ε(c, w̃).

4.5. Inner products of the PBW basis
By Lemma 2.12, we have the following modification of [45, Proposition 38.2.1].

PROPOSITION 4.21

For x, y ∈ U−
q (g)ξ with x, y ∈ U−

q [i] (resp., with x, y ∈ ∗U−
q [i]), we have

(x, y)K = (1 − q2
i )− 〈hi,ξ〉(T −1

i x,T −1
i y)K (resp., (1 − q2

i )− 〈hi,ξ〉(Tix,Tiy)K).

4.5.1
We have the following formula for the inner product of the PBW basis with
respect to Lusztig’s bilinear form ( , )� (for more details, see [45, Proposi-
tion 38.2.3]).

PROPOSITION 4.22

Let w ∈ W and w̃ ∈ R(w) with � = �(w). We have

(
F (c, w̃), F (c′, w̃)

)
L

=
�∏

k=1

δck,c′
k

ck∏
s=1

1
1 − q2s

i

=
�∏

k=1

δck,c′
k
(−1)ck

q
−(ck(ck+1))/2
ik

(qik
− q−1

ik
)ck [ck]!ik

.

4.6. Compatibility with Ti and the dual canonical basis
4.6.1
By using the above results, we obtain the following compatibility between the
dual canonical basis and Lusztig’s braid group symmetry Ti.

THEOREM 4.23

For b ∈ B(∞)ξ with ε∗
i (b) = 0, we have

(1 − q2
i )〈hi,ξ〉TiG

up(b) = Gup(Λib).

Proof
We shall prove that ((1−q2

i )〈hi,ξ〉TiG
up(b),Glow(b′))K = δb′,Λi(b). By Lemma 4.13,

(1 − q2
i )〈hi,ξ〉(TiG

up(b),Glow(b′))K is equal to (1 − q2
i )〈hi,ξ〉(TiG

up(b), iπ ×
Glow(b′))K . By Proposition 4.21, this is equal to (Gup(b), T −1

i
iπGlow(b′))K . Using

Theorem 4.19, we have(
Gup(b), T −1

i
iπGlow(b′)

)
K

=
(
Gup(b), πiGlow(Λ−1

i b′)
)
K

=
(
Gup(b),Glow(Λ−1

i b′)
)
K

= δb,Λ−1
i (b′).

Then we obtain the assertion. �

As a corollary, we obtain the following multiplicative properties.
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COROLLARY 4.24

(1) For b1, b2 ∈ B(∞) with ε∗
i (b1) = ε∗

i (b2) = 0 (resp., εi(b1) = εi(b2) = 0)
and b1 ⊥ b2, we have Λi(b1) ⊥ Λi(b2) (resp., Λ−1

i (b1) ⊥ Λ−1
i (b2)).

(2) If b ∈ B(∞) with ε∗
i (b) = 0 (resp., εi(b) = 0) is (strongly) real, then Λi(b)

(resp., Λ−1
i (b)) is also (strongly) real.

4.7. Compatibility with the dual canonical basis
In this subsection, we prove the compatibility of the dual canonical basis with
the Q(q)-subalgebra U−

q (w, ε). This is a straightforward generalization of [8, Sec-
tion 2.2, Proposition] and [34, Theorem 4.1]. Here we fix w ∈ W and w̃ ∈ R(w).

THEOREM 4.25

For w ∈ W and ε ∈ { ±1}, the triple (U−
q (w, ε) ∩ L (∞),U−

q (w, ε) ∩ σ(L (∞)),
U−

q (w, ε) ∩ U−
q (g)up

A ) is balanced. In particular we have

U−
q (w, ε) ∩ U−

q (g)up
A =

⊕
b∈B(w,ε)

AGup(b).

The proof of this theorem occupies the rest of this subsection. As in [37, Sec-
tion 3.4], [36, Proposition 31, Corollary 41], and [8], we first prove that the dual
root vectors are contained in the dual canonical basis and then prove the unitri-
angular property of upper global basis with respect to the dual PBW basis. The
compatibility with the dual canonical basis is its direct consequence.

Our proof needs an extra step from ones in [37], [36], and [8], as it is not
known that the PBW basis is an A-basis of U−

q (g)A ∩ U−
q (w) unless g is of finite

or affine type.

4.7.1
PROPOSITION 4.26

(1) For i ∈ I and n ≥ 1, let

F up(nαi) :=
f

(n)
i

(f (n)
i , f

(n)
i )K

.

Then we have F up(nαi) ∈ Bup, (F up(αi))n ∈ qZBup, and F up(nαi)F up(mαi) =
q−mn
i F up((m + n)αi)

(2) For n ≥ 1 and 1 ≤ k ≤ �, let

F up(nβk) :=
F (nβk)

(F (nβk), F (nβk))K
.

Then we have F up(nβk) ∈ Bup, F up(βk)n ∈ qZBup, and F up(nβk)F up(mβk) =
q−mn
ik

F up((m + n)βk).
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Proof
Since f

(n)
i are the canonical basis elements and dimU−

q (g)−nαi = 1 for all n ≥ 1,
F up(nαi) are the dual canonical basis elements by its definition. By Proposi-
tion 4.22 and Lemma 2.12, we have

(f (n)
i , f

(n)
i )K = (1 − q2

i )n/
n∏

j=1

(1 − q2j
i ) =

1
[n]i!

q
−(n(n−1))/2
i .

Therefore we have (F up(αi))n = q
−(n(n−1))/2
i F up(nαi) ∈ qZBup. Applying Theo-

rem 4.23, we obtain the result for F up(nβk) for 1 ≤ k ≤ �. �

4.7.2
For the computation of the action of the dual bar involution σ, we need an
integrality property of the Levendorskii–Soibelman formula for the dual root
vectors and their multiples. For w ∈ W , w̃ ∈ R(w), and ε ∈ {±1}, we set

F up
ε (c, w̃) :=

1
(Fε(c, w̃), Fε(c, w̃))K

Fε(c, w̃).

This is the dual basis of {Fε(c, w̃)} with respect to Kashiwara’s bilinear form
(·, ·)K . As before, when we consider only the ε = 1 case, we omit the subscript ε.

THEOREM 4.27 (DUAL LEVENDORSKII–SOIBELMAN FORMULA)

For j < k, we write

F up(ckβk)F up(cjβj) − q−(cjβj ,ckβk)F up(cjβj)F up(ckβk) =
∑

f ∗
c′ F up(c′, w̃).

Then f ∗
c′ ∈ A, and if f ∗

c′ �= 0, then c′
j < cj and c′

k < ck with
∑

j≤m≤k c′
mβm =

cjβj + ckβk.

Proof
Firstly, a weaker statement that f ∗

c′ ∈ Q(q) with the above conditions follows from
Theorem 4.10 and Proposition 4.22. Let us prove that f ∗

c′ ∈ A. Since the twisted
coproduct r preserves the A-form U−

q (g)A, the dual integral form U−
q (g)up

A is
an A-subalgebra of U−

q (g). Therefore the left-hand side belongs to U−
q (g)up

A by
Proposition 4.26. Taking the inner product with F (c′, w̃), we find f ∗

c′ ∈ A thanks
to Theorem 4.9. �

We define an A-form U−
q (w, ε)up

A of U−
q (w, ε) by the A-span of {F up

ε (c, w̃);c ∈
Z�

≥0}. By Theorem 4.27, it is an A-subalgebra and generated by {F up
ε (βk)}1≤k≤�.

4.7.3
We compute the action of the dual bar involution σ on the dual PBW basis. The
following is a straightforward generalization of [8, Section 2.1, Corollary(i)] and
follows from (3.7) and Theorem 4.27.
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PROPOSITION 4.28

We have

σ
(
F up(c, w̃)

)
= F up(c, w̃) +

∑
c′<c

f ∗
c,c′ (q)F up(c′, w̃),

where f ∗
c,c′ (q) ∈ A.

4.7.4
THEOREM 4.29

(1) Let w ∈ W and w̃ ∈ R(w). Then there exists a unique A-basis {Bup(c, w̃);
c ∈ Z�

≥0} of U−
q (w, ε)up

A with the following properties:

σ
(
Bup(c, w̃)

)
= Bup(c, w̃),(4.30a)

F up(c, w̃) = Bup(c, w̃) +
∑
c′<c

ϕc,c′ Bup(c′, w̃), ϕc,c′ ∈ qZ[q].(4.30b)

(2) We have Bup(c, w̃) = Gup(b(c, w̃)).

Proof
The proof of (1) is the same as one for the existence of Kazhdan–Lusztig poly-
nomials. The only claim we need is Proposition 4.28.

For (2), since we have gc(q) := (F (c, w̃), F (c, w̃))K ∈ A0 and gc(0) = 1, we
obtain

Bup(c, w̃) ≡ F up(c, w̃) ≡ b(c, w̃) mod qL (∞).

Therefore (2) follows from (1) and Corollary 3.4. �

As a corollary, we have U−
q (w, ε)up

A = U−
q (w, ε) ∩ U−

q (g)up
A since {Gup(b)}b∈B(∞)

is an A-basis of U−
q (g)up

A . Together with this result, Theorem 4.29 implies The-
orem 4.25.

4.8
In this subsection, we study basic commutation relations among the dual canoni-
cal basis elements of U−

q (w, ε = 1). The following is a generalization of [51, Propo-
sition 4.2], and follows from the characterization of the dual canonical basis in
terms of the dual PBW basis. For c,c′ ∈ Z�

≥0, we set

cw̃(c,c′) :=
∑
k′<k

ckc′
k′ (βk, βk′ ) − 1

2

∑
k

ckc′
k(βk, βk).

PROPOSITION 4.31

We have

Gup
(
b(c, w̃)

)
Gup

(
b(c′, w̃)

)
= q−cw̃(c,c′)Gup

(
b(c + c′, w̃)

)
+

∑
dd
c,c′ (q)Gup

(
b(d, w̃)

)
,

where d < c + c′ and dd
c,c′ (q) ∈ A.
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COROLLARY 4.32

If b(c, w̃) ⊥ b(c′, w̃), we have

Gup
(
b(c, w̃)

)
Gup

(
b(c, w̃)

)
� Gup

(
b(c + c′, w̃)

)
,

that is, b(c, w̃) � b(c′, w̃) = b(c + c′, w̃).

4.8.1
Using Proposition 4.31, we have the following expression of the exponent in
q of the q-commuting dual canonical basis elements in B(w, ε = 1) as in [37,
Proposition 18].

PROPOSITION 4.33

Let

(4.34) Nw̃(c,c′) := cw̃(c,c′) − cw̃(c′,c).

If Gup(b(c, w̃))Gup(b(c′, w̃)) = qNGup(b(c′, w̃))Gup(b(c, w̃)), then we have N =
−Nw̃(c,c′).

4.9
In this subsection, we study the specialization of U−

q (w, ε) at q = 1. Throughout
this subsection we consider C as an A-algebra by the homomorphism A → C

defined by q 	→ 1.

4.9.1
We have the following property of the specialization of U−

q at q = 1.

THEOREM 4.35 ([45, SECTION 33.1])

There is an isomorphism of algebras

Φ : U(n) ∼−→ C ⊗A U−
q (g)A

which sends fi to fi.

Let r : U(n) → U(n) ⊗ U(n) be the coproduct defined by r(f) = f ⊗ 1 + 1 ⊗ f for
f ∈ n. Here we note that U(n) is generated by {fi}i∈I as an algebra. Since the
specializatioin of the twisted coproduct satisfies this relation on the generators,
the above is an isomorphism of bialgebras.

4.9.2
Let C[N ] be the restricted dual of the universal enveloping algebra U(n) of the
Lie algebra n; that is,

C[N ] :=
⊕
ξ∈Q

U(n)∗
ξ .
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We take the dual U−
q (g)up

A of U−
q (g)A as before. Since the multiplication of

U−
q (g) preserves U−

q (g)A, the twisted coproduct r preserves the dual integral
form U−

q (g)up
A ; that is, r(U−

q (g)up
A ) ⊂ U−

q (g)up
A ⊗ U−

q (g)up
A .

Let r∗ : C[N ] ⊗ C[N ] → C[N ] be a product so that 〈r∗(ϕ ⊗ ϕ′), x〉 = 〈ϕ ⊗
ϕ′, r(x)〉 holds for any x ∈ U(n), and let μ∗ : C[N ] → C[N ] ⊗ C[N ] be a coproduct
so that 〈μ∗(ϕ), x ⊗ x′ 〉 = 〈ϕ,μ(x ⊗ x′)〉 holds for any x,x′ ∈ U(n), where μ : U(n) ⊗
U(n) → U(n) is the product on U(n). The above isomorphism Φ induces the
following.

PROPOSITION 4.36

There is an isomorphism of bialgebras

Φup : C ⊗A U−
q (g)up

A
∼−→ C[N ];

that is, we have

(Φup ⊗ Φup) ◦ r = μ∗ ◦ Φup,

Φup ◦ μ = r∗ ◦ (Φup ⊗ Φup),

where r and μ in the left-hand sides are specializations of the twisted comultipli-
cation and multiplication in U−

q (g), respectively.

4.9.3
Let

σi := exp(−fi) exp(ei) exp(−fi)

= exp(ei) exp(−fi) exp(ei),

for i ∈ I . Then we have

(σi)−1 = exp(fi) exp(−ei) exp(fi)

= exp(−ei) exp(fi) exp(−ei).

(This (σi)−1 is equal to si used in [22, Section 7.1].) The action of σi is well
defined on integrable g-modules, especially on the adjoint representation of g.
Under the specialization at q = 1, we have σi = Si|q=1.

4.9.4
For w̃ ∈ R(w) and ε ∈ { ±1}, let

fε(βk) := σε
i1 · · · σε

ik−1
(fik

).

Then we have fε(βk) ∈ g−βk
and

n(w) =
⊕

1≤k≤�

Cfε(βk).

By the definition, fε(βk) is the specialization of Fε(βk).
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4.9.5
Let C[N(w)] be the restricted dual of the universal enveloping algebra U(n(w))
associated with n(w). We consider a basis of n(w) given by {fε(βk)}1≤k≤� and
also a basis {fε(βk)}1≤k≤� ∪ {f ′

k } of n which includes {fε(βk)}1≤k≤� as in [22,
4.3]. Here we fix a total order on the basis of n by

fε(β1) < · · · < fε(β�) < f ′
1 < f ′

2 < · · · .

By the Poincaré–Birkhoff–Witt basis theorem, we have a basis of U(n) given by

fε

(
(c,d), w̃

)
:=

{
fε(β1)(c1) · · · fε(β�)(c�)f ′

1
(d1) · · · when ε = 1,

· · · f ′
1
(d1)fε(β�)(c�) · · · fε(β1)(c1) when ε = −1,

and also a basis of U(n(w)) given by

fε(c, w̃) :=

{
fε(β1)(c1) · · · fε(β�)(c�) when ε = 1,

fε(β�)(c�) · · · fε(β1)(c1) when ε = −1,

where x(c) = xc/c! for x ∈ g and c ∈ Z≥0. We have Φ(fε(c, w̃)) = Fε(c, w̃)|q=1.

4.9.6
Let {f ∗

ε (c, w̃)} (resp., {f ∗
ε ((c,d), w̃)}) be the dual basis of {fε(c, w̃)} (resp.,

{fε((c,d), w̃)}). Using these, we obtain a section of C[N ] → C[N(w)] as alge-
bras.

LEMMA 4.37

Let π̃∗
w : C[N(w)] → C[N ] be a C-linear homomorphism defined by

π̃∗
w

(
f ∗

ε (c, w̃)
)

:= f ∗
ε

(
(c,0), w̃

)
.

Then it is an algebra embedding.

Proof
First, 〈π̃∗

w(f ∗
ε (c1, w̃)) · π̃∗

w(f ∗
ε (c2, w̃)), fε((c′,d′), w̃)〉 is equal to

(4.38)
〈
π̃∗

w

(
f ∗

ε (c1, w̃)
)

⊗ π̃∗
w

(
f ∗

ε (c2, w̃)
)
, r

(
fε((c′,d′), w̃)

)〉
,

where we consider the pairing between C[N ] and U(n). We note that

(4.39) r
(
fε((c′,d′), w̃)

)
=

∑
c′1+c′2=c′,d′

1+d′
2=d′

fε

(
(c′

1,d′
1), w̃

)
⊗ fε

(
(c′

2,d′
2), w̃

)
.

Hence (4.38) is equal to δc1+c2,c′ δ0,d′ .
On the other hand, we consider

(4.40)
〈
π̃∗

w

(
f ∗

ε (c1, w̃) · f ∗
ε (c2, w̃)

)
, fε

(
(c′,d′), w̃

)〉
,

which is the pairing between C[N(w)] and U(n(w)). By (4.39), we have f ∗
ε (c1, w̃) ·

f ∗
ε (c2, w̃) = r∗(f ∗

ε (c1, w̃) ⊗ f ∗
ε (c2, w̃)) = f ∗

ε (c1 + c2, w̃). Then (4.40) is equal to
δc1+c2,c′ δ0,d′ . Then the assertion holds. �
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By [22, Proposition 8.2], this embedding does not depend on the choice of w̃ ∈
R(w) or of the basis of n which completes {fε(βk)}1≤k≤�.

4.9.7
We study the image of C ⊗A U−

q (w, ε)up
A under the isomorphism Φup.

LEMMA 4.41

Let f ∈ g−α with α ∈ Δ+ \ Δ+(w);, we have〈
f,Φup

(
Gup(b)|q=1

)〉
= 0

for b ∈ B(w, ε).

Proof
Suppose that b ∈ B(w, ε) and f ∈ g−α with 〈f,Φup(Gup(b)|q=1)〉 �= 0. Then we
have

α =
∑

1≤k≤�

akβk

for some ak ∈ Z≥0. By the definition of Δ+(w), we have w−1α ∈ Δ+ and w−1 ×
(
∑

1≤k≤� akβk) ∈ Q−. This is a contradiction. Hence we get the assertion. �

4.9.8
We have the following formula of the (twisted) coproduct of the root vectors
F (βk) (see [10, 3.5 Corollary 3]).

PROPOSITION 4.42

We have the following expansion:

r
(
F (βk)

)
−

(
1 ⊗ F (βk) + F (βk) ⊗ 1

)
=

∑
c

xc ⊗ F (c, w̃),

where xc ∈ U−
q (g), and if xc �= 0, then ck′ = 0 for k′ ≥ k.

We have the compatibility of the twisted coproduct r with U−
q (w, ε) (cf. [38,

Section 2.4.2, Theorem(c))]).

PROPOSITION 4.43

We have

r
(
U−

q (w,+1)up
A

)
⊂ U−

q (g)up
A ⊗ U−

q (w,+1)up
A ,

r
(
U−

q (w, −1)up
A

)
⊂ U−

q (w, −1)up
A ⊗ U−

q (g)up
A ,

that is, U−
q (w,+1)up

A (resp., U−
q (w, −1)up

A ) is a left (resp., right) U−
q (g)up

A -como-
dule.
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Proof
Recall that we proved U−

q (w, ε)up
A = U−

q (w, ε) ∩ U−
q (g)up

A during the proof of
Theorem 4.25. Since r preserves the dual A-form U−

q (g)up
A , it suffices to prove a

weaker statement; that is,

r
(
U−

q (w,+1)
)

⊂ U−
q (g) ⊗ U−

q (w,+1),

r
(
U−

q (w, −1)
)

⊂ U−
q (w, −1) ⊗ U−

q (g).

Moreover, if we apply the ∗-involution, we obtain the claim for the ε = −1 case
from the claim for the ε = 1 case. So it is enough to prove the ε = 1 case. This
assertion is a consequence of Propositions 4.11 and 4.42. �

4.9.9
THEOREM 4.44

Under the algebra homomorphism Φup, we have

C ⊗A U−
q (w, ε)up

A � C[N(w)].

In view of this theorem, the quantum nilpotent subalgebra U−
q (w, ε) can be

considered as the “quantum coordinate ring” of the corresponding unipotent
subgroup N(w), so we call it the quantum unipotent subgroup and denote it by
Oq[N(w)].

Proof
We compute the following inner product:〈

Φup
(
F up

ε (c, w̃)|q=1

)
, fε

(
(c′,d′), w̃

)〉
.

First we have〈
Φup

(
F up

ε (c, w̃)|q=1

)
, fε

(
(c′,d′), w̃

)〉
=

{〈
μ∗(

Φup(F up
ε (c, w̃)|q=1), fε((c′,0), w̃) ⊗ fε((0,d′), w̃)

〉
when ε = 1,〈

μ∗(
Φup(F up

ε (c, w̃)|q=1), fε((0,d′), w̃) ⊗ fε((c′,0), w̃)
〉

when ε = −1

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

〈
(Φup ⊗ Φup)

(
r(F up

ε (c, w̃)|q=1)
)
, fε((c′,0), w̃) ⊗ fε((0,d′), w̃)

〉
when ε = 1,〈

(Φup ⊗ Φup)
(
r(F up

ε (c, w̃)|q=1)
)
, fε

(
(0,d′), w̃

)
⊗ fε

(
(c′,0), w̃

)〉
when ε = −1

= 0

if d′ �= 0. This follows from Lemma 4.41 and Proposition 4.43. Hence it suffices
to compute the form 〈

Φup
(
F up

ε (c, w̃)|q=1

)
, fε(c′, w̃)

〉
.

This is equal to 〈F up
ε (c, w̃)|q=1,Φ(fε(c′, w̃))〉 = 〈F up

ε (c, w̃)|q=1, Fε(c′, w̃)|q=1〉 =
δc,c′ . Hence we have Φup(F up

ε (c, w̃)|q=1) = f ∗
ε ((c,0), w̃) and the assertion. �
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5. Quantum closed unipotent cell and the dual canonical basis

5.1. Demazure–Schubert filtration U−
w

We recall the definition of the Demazure–Schubert filtration U−
w associated with

a Weyl group element w ∈ W .

5.1.1
Let i = (i1, . . . , i�) be a sequence in I , and let U−

i be the Q(q)-linear subspace
spanned by the monomials f

(a1)
i1

· · · f (a�)
i�

for all (a1, a2, . . . , al) ∈ Z�
≥0; that is,

U−
i :=

∑
a1,a2,...,a� ∈Z≥0

Q(q)f (a1)
i1

· · · f (a�)
i�

.

By its definition, this is a Q(q)-subcoalgebra of U−
q . We have the following com-

patibility with the canonical basis.

PROPOSITION 5.1 ([42, SECTION 4.2])

The subcoalgebra U−
i is compatible with the canonical basis B; that is, there exists

a subset Bi(∞) of B(∞) such that

U−
i =

⊕
b∈Bi(∞)

Q(q)Glow(b).

REMARK 5.2

If we consider the A-subspace (U−
i )A spanned by the monomials f

(a1)
i1

· · · f (a�)
i�

,
then (U−

i )A is a A-subcoalgebra of U−
q and we have

(U−
i )A =

⊕
b∈Bi(∞)

AGlow(b).

REMARK 5.3

By the construction of U−
i , it is clear that

∗(U−
i ) = U−

iopp ,

∗
(
Bi(∞)

)
= Biopp(∞),

where iopp = (i�, i�−1, . . . , i1) for i = (i1, i2, . . . , i�).

5.1.2
For w ∈ W , we consider U−

w̃ associated with w̃ = (i1, . . . , i�) ∈ R(w). Then it is
known that U−

w̃ does not depend on the choice of the reduced expression w̃ (see
[42, Section 5.3]). Therefore we denote U−

w̃ by U−
w and also Bw̃(∞) by Bw(∞)

by abuse of notation. By construction, we have

∗(U−
w) = U−

w−1 ,(5.4a)

∗
(
Bw(∞)

)
= Bw−1(∞).(5.4b)
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5.1.3
Following [4, Section 9.3], we define the quantum closed unipotent cell Oq[Nw]
associated with w by

Oq[Nw] := U−
q (g)/(U−

w) ⊥ ,

where (U−
w) ⊥ := {x ∈ U−

q (g); (x,U−
w)K = 0}. Let ι∗

w : U−
q (g) → Oq[Nw] be the

natural projection. Since (U−
w) ⊥ is compatible with Bup, that is, (U−

w) ⊥ =⊕
b/∈Bw(∞) Q(q)Gup(b), the natural projection ι∗

w induces an bijection {Gup(b);
b ∈ Bw(∞)} � {ι∗

w(Gup(b)); b ∈ Bw(∞)} and {ι∗
w(Gup(b)); b ∈ Bw(∞)} is a basis

of Oq[Nw]. Moreover, (U−
w) ⊥ is a two-sided ideal since U−

w is a subcoalgebra.
Thus Oq[Nw] has an induced algebra structure.

5.2. Demazure module and its crystal
In this subsection, we recall the definition of the extremal vector uwλ and the
associated Demazure module Vw(λ). In particular, we remind the reader that
Bw(∞) can be considered as a certain limit of the Demazure crystal Bw(λ).

5.2.1
For i ∈ I , we consider the subalgebra Uq(g)i generated by ei, fi, ti. Consider the
(l + 1)-dimensional irreducible representation of Uq(g)i with a highest weight
vector u

(l)
0 , and let u

(l)
k := f

(k)
i u

(l)
0 (1 ≤ k ≤ l). We have

(5.5) Si(u
(l)
k ) = (−1)l−kq

(l−k)(k+1)
i u

(l)
l−k.

In particular, we have

Si(u
(l)
l ) = u

(l)
0 ,(5.6a)

Si(u
(l)
0 ) = (−qi)lu

(l)
l .(5.6b)

5.2.2
We recall basic properties of the Demazure module (see [29, Section 3], [30,
Chapitre 9] for more details). For λ ∈ P+ and w ∈ W , let us denote by uwλ the
canonical basis element of weight wλ. We have the following description (see [29,
Section 3.2], [45, Lemma 39.1.2]):

uwλ = uλ if w = 1,

usiwλ = f
(m)
i uwλ = S−1

i uwλ if m = 〈hi,wλ〉 ≥ 0.

Recall that uwλ is also a dual canonical basis element. For w̃ = (i1, . . . , i�) ∈ R(w),
we have

(5.7) uwλ = S−1
i1

· · · S−1
i�

uλ.

5.2.3
Let λ ∈ P+, and let V (λ) be the integrable highest weight Uq(g)-module with
a highest weight vector uλ of weight λ. Let Vw(λ) := U+

q (g)uwλ. This U+
q (g)-
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module is called the Demazure module associated with w and λ. We have the
following properties of the Demazure module Vw(λ).

PROPOSITION 5.8

Let w ∈ W , and let w̃ = (i1, . . . , il) ∈ R(w) be a reduced expression of w.

(1) We have

Vw(λ) =
∑

a1,...,a� ∈Z≥0

Q(q)f (a1)
i1

· · · f (a�)
i�

uλ.

(2) We define Bw(λ) ⊂ B(λ) by

Bw(λ) :=
{
f̃a1

i1
· · · f̃a�

i�
uλ ∈ B(λ); (a1, . . . , a�) ∈ Z�

≥0 \ {0}
}

(5.9a)

=
{
b ∈ B(λ); ẽmax

i�
· · · ẽmax

i1 b = uλ

}
.(5.9b)

Then we have

Vw(λ) =
⊕

b∈Bw(λ)

Q(q)Glow
λ (b).

(3) For i ∈ I, we have

ẽiBw(λ) ⊂ Bw(λ) � {0}.

We call Bw(λ) the Demazure crystal.

5.2.4
We have a similar description of Bw(∞) as Bw(λ). Thus Bw(∞) can be inter-
preted as certain limit of the Demazure crystals Bw(λ).

PROPOSITION 5.10 ([29, COROLLARY 3.2.2])

Let w ∈ W , and let (i1, . . . , i�) ∈ R(w) be its reduced expression.

(1) We have

Bw(∞) =
{
f̃a1

i1
· · · f̃a�

i�
u∞ ∈ B(∞); (a1, . . . , a�) ∈ Z�

≥0 \ {0}
}

(5.11a)

=
{
b ∈ B(∞); ẽmax

i�
· · · ẽmax

i1 b = u∞
}
.(5.11b)

(2) For i ∈ I, we have

(5.12) ẽiBw(∞) ⊂ Bw(∞) � {0}.

5.3
To study multiplicative properties of U−

q (w, ε), we relate it to the quantum
closed unipotent cell Oq[Nw]. The following is a generalization of [8, Section 3.2,
Lemma], but its proof is different from that in [8], which works only for finite
type. This can be considered as a quantum analogue of [22, Corollary 15.7].
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THEOREM 5.13

For w ∈ W and ε ∈ { ±1}, we have the following embedding of algebras:

U−
q (w, ε) ↪→ Oq[Nw−ε ].

Proof
We consider the composite of the inclusion U−

q (w, ε) ↪→ U−
q (g) and the natural

projection ι∗
w−ε : U−

q (g) → Oq[Nw−ε ]. Since both homomorphisms are algebra
homomorphisms, we obtain an algebra homomorphism

U−
q (w, ε) → Oq[Nw−ε ].

Since U−
q (w, ε) is compatible with Bup and ι∗

w−ε induces an bijection {Gup(b); b ∈
Bw−ε(∞)} � {ι∗

w−ε(Gup(b)); b ∈ Bw−ε(∞)}, it suffices to prove the corresponding
assertion for the crystals; that is, B(w, ε) ↪→ Bw−ε(∞). Since we have ∗(B(w,

ε)) = B(w, −ε) and ∗(Bw(∞)) = Bw−1(∞), it is enough to prove the claim for
the ε = 1 case.

We prove B(w,1) ⊂ Bw−1(∞) by the induction on � = �(w). Let w̃ = (i1, . . . ,
i�) ∈ R(w) be a reduced expression. We prove that

b := F (c, w̃) mod qL (∞) ∈ Bw−1(∞)

for all c ∈ Z�
≥0. For � = 1 case, by the constructions of B(si, ε) and Bsi(∞),

we have B(si, ε) = Bsi(∞) for all i ∈ I and ε ∈ { ±1}. For l ≥ 2, we set w≥2 :=
si2 · · · si�

∈ W , w̃≥2 := (i2, i3, . . . , i�) ∈ R(w≥2), c≥2 := (c2, c3, . . . , c�) ∈ Z�−1
≥0 , and

b≥2 := F (c≥2, w̃≥2) mod qL (∞).

Since F (c, w̃) = f
(c1)
i1

Ti1F (c≥2, w̃≥2) and F (c≥2, w̃≥2) ∈ L (∞) ∩ T −1
i1

U−
q (g), we

have b = f̃ c1
i1

f̃
∗ϕi1 (b≥2)
i1

ẽmax
i1

b≥2 by Proposition 4.15. We have b≥2 ∈ Bw−1
≥2

(∞) by
the induction hypothesis, and hence ẽmax

i1
b≥2 ∈ Bw−1

≥2
(∞) by Lemma 5.10 (2).

We consider the image of b under the Kashiwara embedding Ψi1 : B(∞) →
B(∞) ⊗ Bi1 and show that it is contained in Bw−1

≥2
(∞) ⊗ Bi1 . From the third

displayed equation in the proof of [53, Proposition 3.4.7],∗ we have

Ψi1(f̃
∗ϕi1 (b≥2)
i1

ẽmax
i1 b≥2) = ẽmax

i1 b≥2 ⊗ f̃
ϕi1 (b≥2)
i1

bi1(0).

Since Ψi1 is a strict embedding, we have

Ψi1(f̃i1 f̃
∗ϕi1 (b≥2)
i1

ẽmax
i1 b≥2) = f̃i1

(
ẽmax
i1 b≥2 ⊗ f̃

ϕi1 (b≥2)
i1

bi1(0)
)
.

If ϕi1(ẽ
max
i1

b≥2) ≤ εi1(f̃
ϕi1 (b≥2)
i1

bi1(0)), we have f̃i1(ẽ
max
i1

b≥2 ⊗
f̃

ϕi1 (b≥2)
i1

bi1(0)) = ẽmax
i1

b≥2 ⊗ f̃
ϕi1 (b≥2)+1
i1

bi1(0). This is contained in Bw−1
≥2

(∞) ⊗
Bi1 .

Suppose ϕi1(ẽ
max
i1

b≥2) > εi1(f̃
ϕi1 (b≥2)
i1

bi1(0)) = ϕi1(b≥2). This means that
εi1(b≥2) > 0 and

∗We remark that there is a typo, but it can be fixed by using (2.38).
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f̃i1

(
ẽmax
i1 b≥2 ⊗ f̃

ϕi1 (b≥2)
i1

bi1(0)
)

= ẽmax −1
i1

b≥2 ⊗ f̃
ϕi1 (b≥2)
i1

bi1(0).

This is also in Bw−1
≥2

(∞) ⊗ Bi1 by Lemma 5.10(2).

Hence f̃i1 f̃
∗ϕi1 (b≥2)
i1

ẽmax
i1

b≥2 ∈ Bw−1(∞). By [29, Theorem 3.3.2], we obtain

b = f̃ c1
i1

f̃
∗ϕi1 (b≥2)
i1

ẽmax
i1

b≥2 ∈ Bw−1(∞). �

6. Construction of initial seed: Quantum flag minors

In this section, we give a construction of the quantum initial seed in Conjec-
ture 1.1 which corresponds to the initial seed in [22]. We consider only the ε = −1
case, but the other case follows by applying the ∗-involution.

6.1. Quantum generalized minors
6.1.1
We first define a quantum generalized minor. This is a q-analogue of a (restricted)
generalized minor Dwλ = Dwλ,λ which is defined in [22, 7.1].

DEFINITION 6.1 (QUANTUM GENERALIZED MINOR)

For λ ∈ P+ and w ∈ W , let

Δwλ = Δwλ,λ := jλ(uwλ).

We call it a quantum generalized minor. When λ is a fundamental weight, we call
it a quantum flag minor.

By its definition, it is given by a matrix coefficient as

(Δwλ,λ, x) = (uwλ, xuλ),

for x ∈ U−
q (g).

6.1.2
The following result for extremal vectors is well known.

LEMMA 6.2 ([49, LEMMA 8.6])

For λ,μ ∈ P+ and w ∈ W , we have

Φ(λ,μ)(uw(λ+μ)) = uwλ ⊗ uwμ.

It follows that

qλ,μ(uwλ ⊗ uwμ) = uwλ+wμ.

Therefore we get

q(wμ−μ,λ)ΔwλΔwμ = Δw(λ+μ)

by Proposition 3.31. In particular, Δw,λ is strongly real for all w ∈ W and λ ∈ P+.
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6.1.3
We describe extremal vectors in terms of the PBW basis. This is a straightforward
generalization of [7]. For w ∈ W , we fix a reduced word w̃ = (i1, . . . , i�) ∈ R(w).
For 1 ≤ k ≤ �, we define the following operations as in [22, 9.8],

k− := max(0, {1 ≤ s ≤ k − 1; is = ik }),

kmax := max{1 ≤ s ≤ �; is = ik }.

PROPOSITION 6.3

For 0 ≤ k ≤ �, we define nk by

nk(j) :=

{
1 if ij = ik, j ≤ k,

0 otherwise.

If i = ik (here we understand that i = ik holds for all i if k = 0), we have
Fε=−1(mnk; w̃)um�i = usi1 ···sik

m�i for m ≥ 1.

Proof
We follow the argument in [7, Section 2.1, Lemma]. We prove the assertion by
an induction on k. The assertion is trivial when k = 0. Note that

F−1(mnk, w̃) = T −1
i1

· · · T −1
ik−1

(f (m)
ik

)F−1(mnk− , w̃).

Therefore we have

F−1(mnk, w̃)um� = T −1
i1

· · · T −1
ik−1

(f (m)
ik

)usi1 ···si
k− m�i

by the induction hypothesis. By (4.6), this is equal to

S−1
i1

· · · S−1
ik−1

(f (m)
ik

)Sik−1 · · · Si1S
−1
i1

· · · S−1
ik−

um�i

= S−1
i1

· · · S−1
ik−1

(f (m)
ik

)Sik−1 · · · Sik−+1
um�i .

Since none of ik−+1, . . . , ik−1 is i, this is equal to

S−1
i1

· · · S−1
ik−1

(f (m)
ik

)um�i .

By (5.7), this is nothing but S−1
i1

· · · S−1
ik

um�i . Therefore the assertion also holds
for k. �

By the above proposition, we have πm�ik
(b−1(mnk; w̃)) �= 0 for all 1 ≤ k ≤ � and

m ≥ 1. Hence jm�ik
(usi1 ···sik

m�ik
) = Gup(b−1(mnk, w̃)) for all 1 ≤ k ≤ �. As a

special case, we obtain the following result.

COROLLARY 6.4

Let w ∈ W , w̃ = (i1, . . . , i�) ∈ R(w). For i ∈ I, we set ni to be nkmax with ik = i.
For λ ∈ P+, we set nλ :=

∑
i∈I λini ∈ Z�

≥0. Then we have

(6.5) Δwλ = Gup
(
b−1(nλ, w̃)

)
.
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Proof
By Proposition 6.3, we have

(6.6) Δwm�i = Gup
(
b−1(mni, w̃)

)
for all i ∈ I . Then by (6.6), Lemma 6.2, and Corollary 4.32, we obtain the asser-
tion. �

6.2. Commutativity relations
In this subsection, we prove that quantum generalized minors {Δwλ} q-commute
with Gup(b) for b ∈ Bw(∞) in the quotient Oq[Nw]. It means that Δwλ and
Gup(b) q-commute up to (U−

w) ⊥ . By Theorem 5.13, they literally q-commute
when b ∈ Bw(w, −1). We denote the projection of Gup(b) to Oq[Nw] also by
Gup(b) for brevity.

6.2.1
For the proof of certain q-commutativity relations, we need to use the quasi
R-matrix. We recall its properties.

First we consider another coproduct Δ defined by ( ⊗ ) ◦ Δ ◦ . We have
an analogue of Lemma 2.5:

Δ(qh) = qh ⊗ qh,(6.7a)

Δ(ei) = ei ⊗ ti + 1 ⊗ ei,(6.7b)

Δ(fi) = fi ⊗ 1 + t−1
i ⊗ fi.(6.7c)

We consider the following completion:

U+
q (g) ⊗̂ U−

q (g) =
⊕
ξ∈Q

∏
ξ=ξ′+ξ′ ′

U+
q (g)ξ′ ⊗ U−

q (g)ξ′ ′ .

Note that the counit ε extends to the completion. In [45, Chapter 4], Lusztig has
shown that there exists a unique intertwiner Ξ ∈ U+

q (g) ⊗̂ U−
q (g) such that

(6.8) Ξ ◦ Δ(x) = Δ(x) ◦ Ξ for any x ∈ Uq(g),

ε(Ξ) = 1, and Ξ ◦ Ξ = Ξ ◦ Ξ = 1. We have an analogue of Lemma 2.5:

(6.9) Δ(x) =
∑

q−(wtx(1),wtx(2))x(2)twtx(1) ⊗ x(1),

for any x ∈ U−
q (g) with r(x) =

∑
x(1) ⊗ x(2). In particular, we have

(6.10) Δ(x)(uλ ⊗ uμ) =
∑

q−(wtx(1),wtx(2))x(2)twtx(1)uλ ⊗ x(1)uμ,

for such x ∈ U−
q (g).

6.2.2
PROPOSITION 6.11

For b ∈ Bw(μ) and uwλ ∈ Bw(λ), we have the following q-commutation relation
in Oq[Nw]:

(6.12) jλ(uwλ)Gup
(
jμ(b)

)
� Gup

(
jμ(b)

)
jλ(uwλ).
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Proof
Since we consider only the equality in the quantum closed unipotent cell Oq[Nw],
it is enough to check that inner products with x ∈ U−

w are the same up to some
q-shifts, and the q-shifts do not depend on choice of x. By Proposition 3.31, the
left-hand side in (6.12) is equal to

(6.13)
(
uwλ ⊗ Gup

μ (b),Δ(x)(uλ ⊗ uμ)
)
λ,μ

,

where (·, ·)λ,μ denotes the inner product on V (λ) ⊗ V (μ) defined by (u ⊗ u′, v ⊗
v′)λ,μ := (u, v)λ(u′, v′)μ. We use the quasi R-matrix to rewrite this as

(6.14)
(
uwλ ⊗ Gup

μ (b), (Ξ ◦ Δ(x) ◦ Ξ)(uλ ⊗ uμ)
)
λ,μ

.

Since the action of the quasi R-matrix is trivial on the highest weight vector,
(6.14) is equal to

(6.15)
(
uwλ ⊗ Gup

μ (b), (Ξ ◦ Δ(x))(uλ ⊗ uμ)
)
λ,μ

.

Since the inner product has an adjoint property for ϕ, (6.15) is equal to

(6.16)
(
(ϕ ⊗ ϕ)(Ξ)(uwλ ⊗ Gup

μ (b)), (Δ(x))(uλ ⊗ uμ)
)
λ,μ

.

Note that (Δ(x))(uλ ⊗ uμ) is contained in the tensor product of Demazure mod-
ules Vw(λ) ⊗ Vw(μ) by Section 5.2.3. By the form of quasi R-matrix (6.8) and the
definition of ϕ, the nontrivial part of (ϕ ⊗ ϕ)(Ξ)(uwλ ⊗ Gup

μ (b)) is not contained
in the tensor product Vw(λ) ⊗ Vw(μ); therefore (6.16) is equal to

(6.17)
(
uwλ ⊗ Gup

μ (b), (Δ(x))(uλ ⊗ uμ)
)
λ,μ

.

By (6.9), (6.17) is equal to(
uwλ ⊗ Gup

μ (b),
(
flip ◦Δ(x)

)
(uλ ⊗ uμ)

)
λ,μ

and also to (
jλ(uwλ) ⊗ Gup(jμb),

(
flip ◦r(x)

)
K

up to some q-shifts, where flip(P ⊗ Q) := Q ⊗ P . Therefore we get(
jλ(uwλ)Gup(jμ(b)), x

)
K

�
(
Gup(jμ(b))jλ(uwλ), x

)
K

for any x ∈ U−
w . Here we note that q-shifts depend only on the weights of uwλ

and jμ(b) and are independent of x. Then we obtain the assertion. �

Restricting the above equality, we obtain the following q-commutativity relations
in Oq[N(w)].

COROLLARY 6.18

For c ∈ Z�
≥0, we have

Gup
(
b−1(c, w̃)

)
Δwλ � ΔwλGup

(
b−1(c, w̃)

)
.
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6.3. Factorization of the q-center
In this subsection, we prove the multiplicative property of Bw(∞) with respect
to the quantum minors {Δwλ}λ∈P+ in Oq[Nw]. This is a generalization of [9, 3.1],
[8], and [34, Lemma 4.2]. This result can be considered as a q-analogue of [22,
Lemma 15.8].

6.3.1
Using Corollary 3.17 and (3.18) inductively, we obtain the following lemma.

LEMMA 6.19

Let w ∈ W and w̃ = (i1, . . . , i�) ∈ R(w) as above. We define

εw̃(b) :=
(
εi1(b), εi2(ẽ

max
i b), . . . , εi�

(ẽmax
il−1

· · · ẽmax
i1 b)

)
for b ∈ B(∞). For b1, b2 ∈ B(∞), let us write

Gup(b1)Gup(b2) =
∑

db
b1,b2(q)G

up(b)

with db
b1,b2

(q) ∈ A. If db
b1,b2

(q) �= 0, then εw̃(b) ≤ εw̃(b1) + εw̃(b2), where ≤ is the
lexicographic order on Z�

≥0 as in Section 4.3.5.
Let b ∈ Bw(∞) with εw̃(b) = εw̃(b1) + εw̃(b2) for b1, b2 ∈ Bw(∞). Then we

have db
b1,b2

(q) = qN for some N ∈ Z.

6.3.2
PROPOSITION 6.20

Let w ∈ W and λ,μ ∈ P+. For b ∈ Bw(μ) and uwλ ∈ Bw(λ), there exists b′ ∈
Bw(λ + μ) such that

Φ(λ,μ)(b′) = uwλ ⊗ b,

and we have an equality in Oq[Nw]:

ΔwλGup
(
jμ(b)

)
� Gup

(
jλ+μ(b′)

)
.

Proof
Fix w̃ = (i1, . . . , i�) ∈ R(w); we have

ẽmax
i1 (uwλ ⊗ b) = uw≥2λ ⊗ ẽmax

i1 b

by the tensor-product rule (2.34a) for crystal operators and ϕi1(uwλ) = 0. Using
this recursively, we get

ẽmax
il

· · · ẽmax
i1 (uwλ ⊗ b) = uλ ⊗ uμ.

In particular, there exists b′ ∈ Bw(λ + μ) such that Φ(λ,μ)(b′) = uwλ ⊗ b. By
Propositions 3.31 and 3.29, we have

(6.21) q(wt b−μ,λ)ΔwλGup(jμb) = Gup
(
jλ+μ(b′)

)
+

∑
f b′ ′

b,wλ(q)Gup(b′ ′)

for some f b′ ′

b,wλ(q) ∈ qZ[q]. By the second assertion of Lemma 6.19, we have

f
jλ+μ(b′)
b,wλ (q) = 0 as in [9, Section 1.8, Proposition(i)].
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Applying the dual bar-involution σ, we obtain

q−(wt b−μ,λ)+(wt b−μ,wλ−λ)Gup(jμb)Δwλ
(6.22)

= Gup
(
jλ+μ(b′)

)
+

∑
f b′ ′

b,wλ(q−1)Gup(b′ ′).

By Proposition 6.11, we have Gup(jμb)Δwλ = qmΔwλGup(jμb) for some m ∈ Z

in Oq[Nw]. It is equal to

q−(wt b−μ,λ)+(wt b−μ,wλ−λ)+mΔwλGup(jμb)
(6.23)

= Gup
(
jλ+μ(b′)

)
+

∑
f b′ ′

b,wλ(q−1)Gup(b′ ′).

Therefore we obtain f b′ ′

b,wλ(q) = 0 for all b′ ′ by comparing (6.21) and (6.23). �

Since there exists μ ∈ P+ such that πμ(b) �= 0, we obtain the following theorem.

THEOREM 6.24

Let b ∈ Bw(∞) and λ ∈ P+. There exists b′ ∈ Bw(∞) such that

ΔwλGup(b) � Gup(b′)

in Oq[Nw].

Taking b from B(w, −1), we obtain the following theorem by Corollary 4.32.

THEOREM 6.25

For c ∈ Z�
≥0 and λ ∈ P+, we have

ΔwλGup
(
b−1(c, w̃)

)
� Gup

(
b−1(c + nλ, w̃)

)
.

6.3.3
The following is a generalization of Caldero’s result [9, Lemma 2.1, Theorem 2.2].
It follows from Theorem 6.24 by an induction on the length of w.

THEOREM 6.26

Let w ∈ W , and fix w̃ ∈ R(w). We set

Δw̃,k := Δsi1 ···sik
�ik

for 1 ≤ k ≤ �. Then {Δw̃,k }1≤k≤� forms a strongly compatible subset.

6.3.4
Following [22, Section 15.5], we call c ∈ Z�

≥0 interval-free if c satisfies the following
conditions:

c(i) := min{ck; ik = i} = 0

for all i ∈ I . By definition, ϕc := c−
∑

i∈I c(i)ni ∈ Z�
≥0 is interval free. We have the

following factorization property with respect to the extremal vectors {Δwλ}λ∈P+ .
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THEOREM 6.27

For c ∈ Z�
≥0, we set λ(c) :=

∑
i∈I c(i)�i ∈ P+. Then we have

Gup
(
b−1(c, w̃)

)
� Gup

(
b−1(ϕc, w̃)

)
Δwλ(c).
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http://arxiv.org/abs/math/0703039v4


330 Yoshiyuki Kimura

[34] P. Lampe, A quantum cluster algebra of Kronecker type and the dual canonical

basis, Int. Math. Res. Not. IMRN 2011, no. 13, 2970–3005.

[35] B. Leclerc, Imaginary vectors in the dual canonical basis of Uq(n), Transform.

Groups 8 (2003), 95–104.

[36] , Dual canonical bases, quantum shuffles and q-characters, Math. Z. 246

(2004), 691–732.

[37] B. Leclerc, M. Nazarov, and J.-Y. Thibon, “Induced representations of affine

Hecke algebras and canonical bases of quantum groups” in Studies in Memory

of Issai Schur (Chevaleret/Rehovot, 2000), Progr. Math. 210, Birkhäuser,
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