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Abstract A basic problem in the classification theory of compact complex manifolds is
to give simple characterizations of complex tori. It is well known that a compact Kähler
manifoldX homotopy equivalent to a complex torus is biholomorphic to a complex torus.

The question whether a compact complex manifold X diffeomorphic to a complex
torus is biholomorphic to a complex torus has a negative answer due to a construction
by Blanchard and Sommese.

Their examples, however, have negative Kodaira dimension; thus it makes sense to
askwhether a compact complexmanifoldX with trivial canonical bundlewhich is homo-
topy equivalent to a complex torus is biholomorphic to a complex torus.

In this article we show that the answer is positive for complex threefolds satisfying
some additional condition, such as the existence of a nonconstant meromorphic func-
tion.

1. Introduction

The Enriques-Kodaira classification of compact complex surfaces implies in par-
ticular that a compact complex surface homotopy equivalent to a complex torus
of dimension 2 is biholomorphic to a complex torus of dimension 2. The corre-
sponding result in dimension 1 was already known in the nineteenth century.

Surprisingly, the analogous result in dimension 3 is no longer true, as shown
by Sommese, using results of Blanchard (see [So, p. 213], (E) written after [Bl1];
see also [Ca2, Section 5], [Ca3, Section 7]).

Indeed, there are countably many families of complex manifolds even diffeo-
morphic to a complex torus of dimension 3 which are not biholomorphic to a
complex torus.

These are constructed as follows. Let L be a line bundle on a curve C,
generated by global sections (if C is an elliptic curve, it suffices that the degree
of L be at least 2). Let s1, s2 ∈ H0(C,L) be two sections without common zeros,
so that s := (s1, s2) is a nowhere-vanishing section of the rank two vector bundle
L ⊕ L. Identifying the fiber C

2 with the quaternions, one finds that s, is, js, ks

yield four sections ∈ H0(C,L ⊕ L) giving an R-basis over each point (hence the
total space of L ⊕ L is diffeomorphic to a product C × R

4).
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Defining X as the quotient of the total space of L ⊕ L by the free abelian sub-
group Z

4 generated by the four sections, X is then diffeomorphic to a torus, yet
its canonical bundle KX has the property KX = p∗(−2L) (see [Ca3, Remark 7.3]);
in particular, h0(X, −KX) = h0(C,2L) which, in the case where C is an elliptic
curve, equals 2deg(L) ≥ 4. Hence X is not a complex torus for which KX is a
trivial divisor.

It is now natural to ask which kind of additional conditions are sufficient to
characterize complex tori as complex manifolds. The simplest among such con-
ditions, under a weak Kähler assumption (Theorem 2.3) requires us to have the
same integral cohomology algebra. However, if one drops the Kähler condition,
the problem becomes much more difficult, and, so far, not much is known (see,
however, some characterizations in [Ca1] and in [Ca3], especially [Ca3, Proposi-
tion 2.9]).

The examples of Blanchard and Sommese lead Catanese ([Ca3, p. 269]) to
ask the following question:

Are there compact complex manifolds X with trivial canonical bundle KX which
are diffeomorphic but not biholomorphic to a complex torus?

In response to this question, we prove the following theorem as a corollary
of more general results (see Theorems 2.3, 3.1, 3.2, 4.1, 5.1).

THEOREM 1.1

Let X be a compact complex threefold subject to the following conditions.

(1) X is homotopy equivalent to a complex torus of dimension 3.
(2) X has a dominant meromorphic map to a compact complex analytic

space Y of smaller dimension, that is, with 0 < dimY < 3.
(3) X has a trivial canonical divisor, that is, OX(KX) ∼= OX .

Then X is biholomorphic to a complex torus.

We should remark that condition (2) is of course not a necessary condition for X

to be a complex torus. However, the only known examples of threefolds which
are homeomorphic but not biholomorphic to a complex torus are Blanchard and
Sommese’s examples, and they are all fibered over elliptic curves, as one can see
from the construction described above. So they satisfy conditions (1) and (2)
(but not (3)).

As a special case of Theorem 1.1, we obtain the following.

COROLLARY 1.2

Let X be a compact complex threefold such that

(i) X is homotopy equivalent to a complex torus of dimension 3;
(ii) X has a nontrivial map α : X → T to a positive dimensional complex

torus T ;
(iii) OX(KX) ∼= OX .
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Then X is biholomorphic to a complex torus (of dimension 3).

This is a direct consequence of Theorem 1.1 using [Ue1, Lemma 10.1, Theo-
rem 10.3] in the case dima(X) = 3.

COROLLARY 1.3

Let X be a compact complex threefold such that

(1) X is homotopy equivalent to a complex torus of dimension 3;
(2) either a(X) > 0, that is, X has a nonconstant meromorphic function, or

the Albanese torus Alb(X) is nontrivial;
(3) OX(KX) ∼= OX .

Then X is biholomorphic to a complex torus.

The remaining case where X has no nonconstant meromorphic function and also
no meromorphic map to a surface without meromorphic functions seems difficult.

If, however, the tangent or the cotangent bundle have some sections, the
situation becomes amenable.

THEOREM 1.4

Let X be a smooth compact complex threefold with OX(KX) ∼= OX , which is
homotopy equivalent to a torus. If h0(TX) ≥ 3 or if h0(Ω1

X) ≥ 3, then X is
biholomorphic to a torus.

2. Preliminaries

We start with some notation. Let X be an irreducible compact complex space.
Then a(X) denotes the algebraic dimension of X (see [Ue1, Definition 3.2]),
the maximal number of algebraically independent meromorphic functions. If
a(X) = dimX , then X is called a Moishezon manifold.

We also recall that for a compact complex manifold X , the Albanese torus
of X is the complex torus defined by

Alb(X) = H0(X,dOX)∨/Λ,

where Λ is the minimal closed complex Lie group containing Im(H1(X,Z) →
H0(X,dOX)∨).

We then have the Albanese morphism albX : X → Alb(X) (see [Ue1, pp. 101–
104]), assigning to each point x the class of the linear functional

∫ x

x0
on H0(X,

dOX), obtained by integrating on a path from x0 to x.

PROPOSITION 2.1

Let f : X −→ Y be a surjective morphism with connected fibers from a compact
(connected) complex manifold X with π1(X) � Z

k to a complex manifold Y . Let
F be a general fiber of f . Then there exists an exact sequence of groups
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0 −→ A −→ π1(X) � Z
k f∗−→ π1(Y ) −→ 0,

where A contains Im(π1(F ) → π1(X)) as a finite-index subgroup. In particular,
π1(Y ) is a finitely generated abelian group of rank ≤ k, and there is an inequality
of Betti numbers

b1(F ) + b1(Y ) ≥ k = b1(X).

Proof
The following proof is very close to those of [No, Lemma 1.5] and [CKO, Lemma 3].

Let F be a general fiber of f , and let U ⊂ Y be the maximal Zariski open sub-
set such that f is smooth over U . Consider the following commutative diagram
of exact sequences:

1 −−−−→ G −−−−→ π1(f −1(U))
(fU )∗−−−−→ π1(U) −−−−→ 1⏐⏐�

⏐⏐�bF

⏐⏐�b

⏐⏐�c

⏐⏐�
1 −−−−→ Kerf∗ −−−−→ π1(X) � Z

k f∗−−−−→ π1(Y ) −−−−→ 1

Here G = Im
(
π1(F ) → π1(f −1(U))

)
. Since b is surjective, the snake lemma yields

the exact sequence

Ker b → Ker c → Coker bF → 0.

Thus

Ker c/(fU )∗(Ker b) � Coker bF = Kerf∗/ Im bF .

Since Kerf∗ ⊂ Z
k, it follows that

Ker c/(fU )∗(Ker b) � Coker bF

is a finitely generated abelian group. On the other hand, each [γ] ∈ Ker c is
represented by the product of conjugates of elements represented by a closed
circle γ contained in D ∩ (Y \ U) with a base point x, where D � Δ is a small
disk on Y transversal to Y \ U in a point s0.

However, since π1(Y ) is abelian, we see that Ker c is generated by such
elements.

For each such element take a small disk D̃ � Δ in X such that f(D̃) = D,
and let d be the degree of the finite branched cover D̃ → D.

The preimage of γ in D̃ is a closed circle γ̃ such that f(γ̃) = dγ. Thus
Ker c/(fU )∗(Ker b) is a torsion group. Hence Coker bF is a finite abelian group.
The last statement is clear from the fact that π1(X), π1(Y ), and A are all
abelian. �

From [Ca3, Proposition 2.9] (see also [Ca1, Corollary C], [Ca2, Proposition 4.8]),
we cite the following.

THEOREM 2.2

Let X be a compact complex manifold of dimension n such that
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(1) the cohomology ring H∗(X,Z) is isomorphic to the cohomology ring of
the n-dimensional complex torus;

(2) H0(X,dOX) = n; that is, there are exactly n linearly independent d-
closed holomorphic 1-forms.

Then X is biholomorphic to a complex torus.

If X is bimeromorphically equivalent to a Kähler manifold, our main problem is
easily answered.

THEOREM 2.3

Let X be a compact complex manifold such that

(1) the cohomology ring H∗(X,Z) is isomorphic to the cohomology ring of
the n-dimensional complex torus (for instance, X is homotopy equivalent to a
complex torus of dimension n);

(2) X is in the Fujiki class C; that is, X is bimeromorphic to a compact
Kähler manifold.

Then X is biholomorphic to a complex torus of dimension n.

Proof
We apply Theorem 2.2 to our X . The first condition in Theorem 2.2 holds
by assumption. In particular, b1(X) = 2n. As X is in class C, every holo-
morphic form is d-closed and the Hodge decomposition holds for X (see [Ue1,
Corollaries 9.3, 9.5]; see also [Fj, Corollary 1.7]). Thus the second condition in
Theorem 2.2 also holds, and an application of Theorem 2.2 implies the result. �

A special case of Theorem 2.3 is the following.

COROLLARY 2.4

A Moishezon manifold X homotopy equivalent to a complex torus of dimension
n is biholomorphic to an abelian variety.

Recall that a compact complex manifold is said to be a Moishezon manifold if
the algebraic dimension is maximal: a(X) = dimX.

3. Complex torus bundles over a complex torus

In this section we prove two general results on submersions of special manifolds
(Theorems 3.1, 3.2). These results are used in our proof of our main theorem
(Theorem 1.1). The crucial point in both results is that we do not assume the
total space X to be Kähler.
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THEOREM 3.1

Let f : X → Y be a holomorphic submersion with connected fibers between com-
pact (connected) complex manifolds and assume the following:

(1) X has complex dimension n + m and OX(KX) ∼= OX ;
(2) Y has complex dimension m and also OY (KY ) ∼= OY ;
(3) every fiber Xy (y ∈ Y) is Kähler;
(4) the monodromy action of π1(Y ) on Hn(Xy,Z) is trivial.

Then all the fibers Xy are biholomorphic, and f is a holomorphic fiber bundle.

Proof
By (4), Rnf∗ZX is not only locally constant but also globally constant on Y .
Thus, for the ZY dual local system, we have

(Rnf∗ZX)∗ � Hn(Xb,Z)f × Y.

Here b ∈ Y is any base point, and Hn(Xb,Z)f denotes the free part of
Hn(Xb,Z). The same abbreviation is applied for other points y ∈ Y . Let

γ1,b, . . . , γk,b

be a basis of Hn(Xb,Z)f , and let

γ̃1, . . . , γ̃k

be the corresponding flat basis of (Rnf∗ZX)∗ over Y .
Then the elements γ̃i,y (1 ≤ i ≤ k) form a free basis of Hn(Xy,Z)f for each

y ∈ Y .
Now, following Fujita [Fu1, pp. 780–781], we construct a family of holo-

morphic n-forms on the fibers, say {ϕy }y∈Y , which varies holomorphically with
respect to y ∈ Y .

Since

ωX/Y = O(KX) ⊗ f ∗ O(KY )∨ � OX ,

we obtain

f∗(ωX/Y ) ∼= OY .

We are done by the exact sequence

0 → f ∗(Ω1
Y ) → Ω1

X → Ω1
X|Y → 0

and since, by definition,

ωX/Y := det(Ω1
X|Y ) = Λn(Ω1

X|Y ).

Hence a global generator of f∗(ωX/Y ) ∼= OY gives the desired family of holo-
morphic n-forms on the fibers, yielding a nowhere-vanishing form on each fiber.

Note that ϕy is d-closed, being a top holomorphic form.
Now we consider the nonprojectivized, global period map:

p̃Y : Y → C
k, y �→

(∫
γ̃i,y

ϕy

)k

i=1
.
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This map is holomorphic by a fundamental result of Griffiths [Gr]. Indeed, to be
able to apply [Gr, Theorem 1.1], we need that the fibers Xy be Kähler, but we
do not need that the total space X be Kähler.

On the other hand, since Y is compact, the global holomorphic functions on
Y are constant. Thus all functions

y �→
∫

γ̃i,y

ϕy

are constant on Y . Hence the usual period map pY : Y → P
k−1, which is just

the projectivization of the target domain C
k of p̃Y , is also constant as well.

As all the fibers Xy (y ∈ Y ) are compact Kähler manifolds with trivial canon-
ical class, the local Torelli theorem holds for them; that is, the period map from
the Kuranishi space to the period domain is injective (see, e.g., [GHJ, Theo-
rem 16.9, p. 109]; the proof given there is written only for Calabi-Yau threefolds,
but the proof in the general case is exactly the same).

Since pY is constant and Y is connected, it follows that all the fibers Xy

are biholomorphic. Hence f is locally analytically trivial by the fundamental
result of Grauert and Fischer (or by Kuranishi’s theorem). This concludes the
proof. �

THEOREM 3.2

Let f : X → Y be a holomorphic submersion with connected fibers between com-
pact (connected) complex manifolds, and assume that

(1) X is homotopy equivalent to a complex torus of dimension n + m;
(2) Y is a complex torus of dimension m;
(3) some fiber Xy is biholomorphic to a complex torus.

Then f : X → Y is a principal holomorphic torus bundle, and X is biholomorphic
to a complex torus.

Proof
By [Ca3, Theorem 2.1], every fiber Xy is isomorphic to a complex torus of dimen-
sion n. Let F = Xy be one of the fibers of f . Since π2(Y ) = 0, we have the
following exact sequence:

0 → π1(F ) � Z
2m → π1(X) → π1(Y ) � Z

2n → 0.

Since π1(X) � Z
2(n+m) by (1), this sequence splits and π1(Y ) acts on π1(F )

as the identity. Then, by the proof of Theorem 3.1, f is a holomorphic fiber
bundle. In particular, the Kodaira-Spencer map

TY,y → H1(Xy, TXy )

of f is zero at every point y ∈ Y . Then, by [Ca3, Proposition 3.2] and its proof,
f is a principal fiber bundle with structure group F , that is, a fiber bundle whose
transition functions are given by translations by local holomorphic sections of F

over Y . We want to show that they can actually be chosen to be locally constant.
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To verify this, we follow [BHPV, p. 196]. Set Γ = H1(F,Z) � Z2n.
Consider the following commutative diagram of exact sequences of abelian

sheaves on Y :
0 −−−−→ Γ = ΓY −−−−→ C

n
Y −−−−→ FY −−−−→ 0⏐⏐� =

⏐⏐�
⏐⏐�

⏐⏐�
⏐⏐�

0 −−−−→ Γ = ΓY −−−−→ On
Y −−−−→ FY −−−−→ 0

Here FY is the abelian sheaf of locally constant sections with values in FY ,
and FY is the abelian sheaf of holomorphic sections with values in F .

Taking the corresponding cohomology sequences yields the diagram

H1(Y,Cn)
γ−−−−→ H1(Y,FY ) −−−−→ H2(Y,Γ)

β1

⏐⏐� β2

⏐⏐� =

⏐⏐�
H1(Y, On

Y ) α−−−−→ H1(Y, FY ) c−−−−→ H2(Y,Γ)

Let η ∈ H1(Y, FY ) be the class representing the principal holomorphic bundle
structure of f : X → Y . Set ε = c(η). Note that f is topologically trivial since
the exact sequence of the fundamental group splits trivially. Thus ε = 0, and
therefore η = α(η1) for some η1 ∈ H1(Y, On

Y ). Since Y is Kähler, the map β1 is
the one induced by the natural projection under the Hodge decomposition

H1(Y,C) = H1(OY ) ⊕ H0(Ω1
Y ).

In particular, β1 is surjective. Thus η1 = β1(η2) for some η2 ∈ H1(Y,Cn). Hence

η = αβ1(η2) = β2γ(η2) = β2(η3),

where η3 = γ(η2) ∈ H1(Y,FY ). This means that the transition functions defining
the principal bundle structure f : X → Y can be chosen to be locally constant.

Let Y =
⋃

i∈I Ui be a sufficiently small open covering of Y with trivializations

ϕi : XUi � F × Ui

such that the transition functions ϕ−1
i ◦ ϕj are all constant on Ui ∩ Uj . Let τY

be a standard Kähler form on Y , and let τF be a standard Kähler form on F .
Set τi = τY |Ui. Then τ̃i := ϕ∗

i (τi ∧ τF ) gives a Kähler form on XUi . As
ϕ−1

i ◦ ϕj is a translation by some constant element of F over Ui ∩ Uj , it follows
that τ̃i = τ̃j on XUi ∩ XUj . Hence {τ̃i}i∈I defines a global Kähler form on X . In
particular, X is Kähler, and therefore X is biholomorphic to a complex torus by
Theorem 2.3. �

4. A characterization of complex tori: The case fibered by curves

The goal of this section is the following.

THEOREM 4.1

Let X be a compact complex manifold subject to the following conditions:

(1) X is homotopy equivalent to a complex torus of dimension m + 1;
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(2) there is a dominant meromorphic map f : X���Y to a compact complex
manifold Y with dimY = m;

(3) either m ≤ 2 or Y is in the Fujiki class C with κ(Y ) ≥ 0;
(4) OX(KX) ∼= OX .

Then X is biholomorphic to a complex torus of dimension m + 1.

In the rest of this section, we prove Theorem 4.1 and always assume the situation
of Theorem 4.1. Take a resolution of indeterminacies ν : X̃ −→ X of f , yielding
a surjective morphism

f̃ : X̃ −→ Y.

By considering the Stein factorization, we may assume that f̃ has connected
fibers; loosely speaking, f has connected fibers. In the case where Y is in the
Fujiki class C, we may replace Y by a suitable bimeromorphic model and therefore
may assume Y to be Kähler. Finally, F always denotes a smooth fiber of f̃ .

LEMMA 4.2

(1) If κ(Y ) ≥ 0, all smooth fibers of f̃ are isomorphic to a single elliptic
curve, say E, and κ(Y ) = 0.

(2) If, moreover, Y is in the Fujiki class C, then Y is bimeromorphic to a
complex torus of dimension m. More precisely, the Albanese map a : Y → AlbY

is a bimeromorphic surjective morphism.

Proof
(1) Since KX̃ is effective, the fiber F has genus g(F ) ≥ 1. Then by [Ue2, The-
orem 2.1], F must actually be an elliptic curve. Moreover, by [Ue2, Theorem
2.2],

0 = κ(X) = κ(X̃) ≥ max
(
κ(Y ),var(f̃)

)
≥ 0,

where var(f̃) denotes the variation of f̃ . Thus κ(Y ) = 0 and var(f) = 0, and the
first assertion is proven.

(2) For the second assertion, assume now that Y is Kähler. Note that
π1(X̃) � Z

2(m+1) since X is homotopy equivalent to a complex torus of dimension
m + 1. Thus, applying Proposition 2.1,

π1(Y ) � Z
n

(up to torsion) for some integer n such that 2m ≤ n ≤ 2(m + 1). Since Y is a
Kähler manifold, Hodge decomposition gives either n = 2m or n = 2(m + 1) and
h1(OY ) = m or h1(OY ) = m + 1. Since κ(Y ) = 0, a fundamental result due to
Kawamata ([Ka, Theorem 24 and its corollary]) yields

h1(OY ) = m (= dimY ),

and also the fact that the Albanese morphism a : Y −→ AlbY is bimeromorphic.
This completes the proof. �
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LEMMA 4.3

Assume that m ≤ 2. Then X is either a complex torus or the following two
statements hold (recall that we assume f to have connected fibers).

(1) All smooth fibers are isomorphic to a fixed elliptic curve, say E.
(2) Y is bimeromorphic to a complex torus of dimension 2. More precisely,

the Albanese map a : Y → AlbY is a bimeromorphic surjective morphism.

Proof
When m = 1, we have dimX = 2. Then by classification, X is a complex torus
since KX = OX and b1(X) = 4. So from now we assume that m = 2. We may
also assume that Y is a minimal surface.

Suppose first that κ(Y ) ≥ 0; hence κ(Y ) = 0 by Lemma 4.2(1), and F is
a fixed elliptic curve. If Y would not be a complex torus, then b1(Y ) ≤ 3 by
classification. Then, however,

b1(F ) + b1(Y ) ≤ 5 < 6 = b1(X) = b1(X̃),

a contradiction to Proposition 2.1.
It remains to consider the case where κ(Y ) = −∞. If in addition Y is Kähler,

then Y is projective (rational or birationally ruled) by classification. We also have
b1(Y ) ≤ 2 by the fact that π1(Y ) is abelian (see Proposition 2.1). Then b1(F ) ≥
4 for the general fiber F of f̃ : X̃ → Y , again by Proposition 2.1. Therefore
g(F ) ≥ 2, where g(F ) is the genus of the curve F . Then we have a relative
pluricanonical map X̂���Z of X̃ over Y (see [Ue1, Theorem 12.1 and its proof]).
As Y is projective, Z is a projective threefold by the construction given there.
Hence

a(X) = a(X̃) = a(Z) = 3,

and we conclude that X is biholomorphic to a complex torus by Theorem 2.3 or
by Corollary 2.4, and we are done.

If κ(Y ) = −∞ and Y is not Kähler, then Y is a minimal surface of class
VII. In particular, Y is not covered by rational curves and b1(Y ) = 1. Now,
observe that f is almost holomorphic in the sense that f is proper holomorphic
over some Zariski dense open subset of Y . Indeed, otherwise, the exceptional
locus of the resolution of indeterminacies X̃ → X dominates Y , so that Y would
be dominated by a uniruled surface contradicting the assumption that Y is of
class VII. Now f being almost holomorphic, the general fiber F of f̃ is an elliptic
curve by adjunction. Thus

b1(F ) + b1(Y ) = 3 < 6 = b1(X) = b1(X̃),

a contradiction to Proposition 2.1. This completes the proof. �

The upshot of the preceding two lemmata is that we may assume Y to be a
torus. In particular, the meromorphic map f : X���Y (from our original X) is
holomorphic, and all smooth fibers are isomorphic to a fixed elliptic curve E.



Volume preserving complex structures on real tori 763

LEMMA 4.4

(1) The map f is smooth in codimension 1; that is, the set of critical values
of f is of codimension ≥ 2 on Y .

(2) The map f is equidimensional, or equivalently, f is a flat morphism.

Proof
(1.a) Let us first consider the case where Y is projective. Then we take a general
complete intersection curve C on Y , that is, a complete intersection of m − 1
general hyperplanes of Y . So by Bertini’s theorem, C is a smooth curve and
XC = f −1(C) is a smooth surface. Let fC : XC −→ C be the induced morphism;
then it suffices to show that fC is a smooth morphism. By the adjunction formula,
by KX = OX and KY = OY , we obtain

KXC
= f ∗

C(KC),

that is, KXC/C = OXC
. Then the canonical bundle formula for an elliptic surface

(see, e.g., [BHPV, Theorem 12.3, p. 213]) gives the smoothness of fC .
(1.b) It remains to consider the case where dimY = 2 with Y not projective.

If a(Y ) = 0, then Y has no complete curve and f is smooth in codimension 1.
If a(Y ) = 1, then the algebraic reduction a : Y → C of Y is a smooth elliptic
fibration over an elliptic curve C and all curves on Y are fibers of a. Thus the 1-
dimensional part of the critical values form a normal crossing divisor, and we can
apply the canonical bundle formula (see [Ue2, Theorem 2.4], [Fu2, Theorem 2.15])
to our elliptic threefold f : X → Y . As a result, if the set of critical values is not
of codimension ≥ 2, then there are fibers Ci (1 ≤ i ≤ k) of a and positive integers
ni and M such that we have a bijection

|MKX | ↔
∣∣∣f ∗

(
MKY +

k∑
i=1

niCi

)∣∣∣.
This, however, is absurd because the left-hand side is an empty set by KX = OX ,
but the right-hand side is a nonempty set since KY = OY and ni > 0.

This completes the proof of (1).
(2) To begin, notice that equidimensionality and flatness are equivalent, X

and Y being smooth. We denote the union of all irreducible components of
dimension ≥ 2 in the fibers of f by N0. Assuming N0 �= ∅, we derive a contradic-
tion. To do that, let

N = f −1f(N0).

First of all, N must be of pure codimension 1 in X . In fact, otherwise we
take a general small m-dimensional disk Δ centered at a general point P of a 1-
dimensional component of N . Then Δ dominates Y at f(P ) and f |Δ : Δ → Y is
a generically finite surjective morphism around f(P ) branched in codimension ≥
2 on Δ. However, this is impossible by the purity of the branch loci. Thus N is
a divisor.

Choose an irreducible component B of N .
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By Hironaka’s flattening theorem ([Hi1, main result]), there is a successive
sequence of blowups μ : Ŷ → Y such that the induced morphism

f1 : X1 := X ×Y Ŷ → Ŷ

is a flat morphism. Let

E′
i (1 ≤ i ≤ k)

be the exceptional divisors of μ : Ŷ → Y . Since flatness is preserved under base
change, we may assume that

∑k
i=1 E′

i is a normal crossing divisor, possibly per-
forming further blowups of Ŷ . Consider the normalization X2 → X1 of X1, and
perform a resolution of singularities (see [Hi2, main result]) of X2, say, X3 → X2,
and then, finally, take a resolution of indeterminacies (see [Hi2]) of X���X3, say,
π : X̂ → X . Let f̂ : X̂ → Ŷ be the induced morphism.

Let Ej (1 ≤ j ≤ 
) be the exceptional divisors of π : X̂ → X , and let B̂ be
the proper transform of B on X̂ . Since B is of codimension 1 on X , necessarily
B̂ �= Ej for any j. On the other hand, the fact that we have flattened f means
that f̂(B̂) is one of the E′

i, say, E′
1.

We apply the canonical bundle formula for f̂ in [Ue2, Theorem 2.4] (or [Fu2,
Theorem 2.15]). Note that

KX̂ =
�∑

j=1

ajEj

with every aj > 0 since KX = OX . For the same reason,

KŶ =
k∑

i=1

biE
′
i

with every bi > 0. As f is smooth in codimension 1, the discriminant divisor of
f̂ is supported in

⋃k
i=1 E′

k. Thus for a large multiple M > 0, we obtain

M

�∑
j=1

ajEj = MKX̂ = f̂ ∗
(
MKŶ +

k∑
i=1

ciE
′
i

)
+ D1 − D2

= f̂ ∗
( k∑

i=1

(bi + ci)E′
i

)
+ D1 − D2,

where D1 is an effective divisor such that no multiple of D1 moves, D2 is an
effective divisor such that f̂(D2) is of codimension ≥ 2, and each ci is a nonneg-
ative integer. Notice that bi + ci > 0 for all i. Moreover, by [Ue2, Theorem 2.4]
(especially statement (6) there), every element of |MKX | is uniquely written, as
a divisor, in the form of the sum of an element of

∣∣∣f̂ ∗
( k∑

i=1

(bi + ci)E′
i

)∣∣∣ = f̂ ∗
∣∣∣

k∑
i=1

(bi + ci)E′
i

∣∣∣ =
{
f̂ ∗

( k∑
i=1

(bi + ci)E′
i

)}
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and the divisor D1 − D2. Thus we have the following equality as a divisor :

M

�∑
j=1

ajEj + D2 = f̂ ∗
( k∑

i=1

(bi + ci)E′
i

)
+ D1.

In this equality of divisors, the prime divisor B̂ appears in the right-hand side
because f̂(B̂) = E′

1. But it does not appear in the left-hand side, since—as
already observed—B̂ is not π-exceptional, nor is f̂(B̂) of codimension ≥ 2 in Ŷ .
This contradiction concludes the equidimensionality of f and the flatness of f as
well. �

LEMMA 4.5

The map f : X → Y is smooth.

Proof
Let y ∈ Y be any point of Y , and suppose that the fiber Xy is singular. If Xy has
a nonreduced component C, necessarily of dimension 1 by Lemma 4.4, we choose
an m-dimensional general disk Δ centered at a general nonreduced point P ∈ C.
Then f |Δ : Δ → Y is a generically finite surjective morphism around f(P ) whose
branch locus in Δ is of codimension ≥ 2 (since f is smooth in codimension 1), a
contradiction to the purity of branch loci.

Hence Xy is reduced. Now, take a local section D at a general point of
Xy . Once we have chosen D, we can describe the fibration by the Weierstrass
equation locally near y:

y2 = x3 + a(t)x + b(t),

where a(t), b(t) are holomorphic functions around y. Then the critical locus of
the original f around y is given by the equation

4a(t)3 + 27b(t)2 = 0.

In particular, it is of pure codimension 1 on Y unless it is empty. As f is
smooth in codimension 1, it follows that the critical locus is empty; that is, f is
smooth. �

Finally, we can apply Theorem 3.2 to conclude the proof of Theorem 4.1. �

REMARK 4.6

In the case dimX = 3, Lemma 4.5 can be proved without using Weierstrass
models in the following way. We suppose that we already have shown in the
first part of the proof of Lemma 4.5, without using the Weierstrass normal form,
that f can have finitely many singularities, say, x1, . . . , xN . Choose a general
holomorphic 1-form ω on Y . Then f ∗(ω) vanishes exactly at x1, . . . , xN ; hence
c3(Ω1

X) > 0. But c3(X) = χtop(X) = 0 since X is homotopy equivalent to a torus.
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REMARK 4.7

As the referees pointed out to us, it is likely true that if f : X −→ Y is a proper
holomorphic surjective map between complex manifolds with connected fibers
and with trivial relative dualizing sheaf ωX/Y = O(KX/Y ), then f is equidimen-
sional. However, the authors can neither prove nor disprove this in general.

5. A characterization of complex tori: The case fibered over a curve

In this section we prove the following.

THEOREM 5.1

Let X be a compact complex threefold such that

(1) X is homotopy equivalent to a complex torus of dimension 3;
(2) there is a dominant meromorphic map f : X���Y to a smooth compact

curve;
(3) OX(KX) ∼= OX .

Then X is biholomorphic to a complex torus.

Observe that in condition (2), by possibly taking the Stein factorization, we may
assume f to have connected fibers.

We start with the folllowing.

LEMMA 5.2

Let X be a compact complex manifold subject to the assumptions in Theorem 5.1.
Then either X is biholomorphic to a complex torus of dimension 3 or Y is an
elliptic curve, f is a holomorphic map, and the general smooth fiber of f is a
complex torus of dimension 2.

Proof
By Proposition 2.1, π1(Y ) is an abelian group. Hence Y is either an elliptic curve
or P

1.
Consider first the case where Y is an elliptic curve, so that f is holomorphic.

Let F be a general fiber of f . Then KF = OF by the adjunction formula. Since

b1(F ) + b1(Y ) ≥ b1(X) = 6

by Proposition 2.1, it follows from the classification of compact complex surfaces
with κ = 0 (see, e.g., [BHPV, Table 10, p. 244]) that b1(F ) = 4 and F is a complex
torus of dimension 2, so that we are done.

In the case Y = P
1, let f̃ : X̃ → Y be a resolution of indeterminacies of f , and

let F be a general fiber of f̃ . Then F is smooth, and κ(F ) ≥ 0 by the adjunction
formula.

If κ(F ) ≥ 1, then we can take a relative pluricanonical map ϕ : X���Z from
X over Y (see [Ue1, Theorem 12.1] and its proof). As Y is projective and Z is
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projective over Y , it follows that Z is projective. We have also dimZ ≥ 2. Thus
X is biholomorphic to a complex torus by Theorem 4.1.

If κ(F ) = 0, then b1(F ) ≤ 4 again by classification of compact complex sur-
faces with κ = 0. Then, however,

b1(F ) + b1(Y ) ≤ 4 < 6 = b1(X) = b1(X̃),

contradicting Proposition 2.1.
This completes the proof. �

From now on we may assume that we have a surjective holomorphic map f : X →
Y over an elliptic curve Y with connected fibers.

The next two propositions of a more topological nature are applicable to
many other situations.

PROPOSITION 5.3

Let X (resp., Y ) be a topological space which is homotopy equivalent to a real
torus A of real dimension, N , respectively, homotopy equivalent to a real torus
B of real dimension r. Let f : X → Y be a continuous map which is dominant
in the sense that f ∗ : Hr(Y,Z) → Hr(X,Z) is nonzero. Let u : Ŷ → Y be the
universal covering map, and let X̂ = X ×Y Ŷ be the fiber product. Then X̂ is
homotopy equivalent to a real torus of real dimension N − r; in particular, we
have HN −r(X̂,Z) = Z.

Proof
Notice that we have natural isomorphisms π1(X) � H1(X,Z) and π1(Y ) � H1(Y,

Z) and—by our assumptions—they are isomorphic as abstract groups to ZN and
Z

r, respectively. Let us consider the homomorphism

f∗ : π1(X) � Z
N → π1(Y ) � Z

r,

induced by f . Under the above isomorphisms, this homomorphism is the same
as the homomorphism

f∗ : H1(X,Z) � Z
N → H1(Y,Z) � Z

r.

The dual homomorphism

(f1)∗ : H1(Y,Z) � Z
r → H1(X,Z) � Z

N

is a part of the homomorphism of algebras given by the pullback

f ∗ : H∗(Y,Z) → H∗(X,Z).

Again, since X and Y are homotopy equivalent to real tori of dimensions N and
r, respectively, we know that

r∧
H1(Y,Z) � Hr(Y,Z) � Z,

r∧
H1(X,Z) � Hr(X,Z),

and the natural homomorphism

(fr)∗ : Hr(Y,Z) � Z → Hr(X,Z)



768 Catanese, Oguiso, and Peternell

is simply
∧r(f1)∗. As this is not zero by assumption, it follows that (f1)∗ is

injective. Hence f∗ : π1(X) → π1(Y ) is surjective up to a finite cokernel.
Now f factors through the finite unramified cover Y ′ of Y corresponding to

f∗(π1(X)), whence we may replace Y by Y ′ and assume that f∗ is surjective.
We have then Kerf∗ � Z

N −r, and π1(X) splits as

π1(X) � Z
N � Z

r ⊕ Z
N −r � π1(Y ) ⊕ Kerf∗.

Hence under the universal covering maps uB : Rr → B (corresponding to π1(Y ) �
π1(B)) and uA : R

N → A (corresponding to π1(X) � π1(A)), it follows that X ′

is homotopy equivalent to

R
N/Kerf∗ � R

r × (RN −r/Z
N −r) � R

r × TN −r,

where TN −r is a real torus of dimension N − r. The result is now obvious. �

PROPOSITION 5.4

Let X be a compact complex manifold homotopy equivalent to a complex torus
of dimension n + 1, let Y be an elliptic curve, and let f : X → Y be a surjective
holomorphic map with connected fibers.

Then all analytic sets f −1(y) (y ∈ Y) are irreducible. Moreover, if Z is the
reduction of a singular fiber and Z̃ is a resolution of singularities of Z, then
there is a real torus of real dimension 2n and a surjective differentiable map
ρ : Z̃ → T 2n such that the induced homomorphism

ρ∗ : π1(Z̃) → π1(T 2n)

is surjective.

Proof
As f is proper holomorphic and Y is compact, the critical values of f consist of
finitely many points, say,

B := {b1, b2, . . . , bk }.

Let u : C → Y be the universal cover of Y . We consider the fiber product X̂ =
X ×Y C and let f̂ : X̂ → C be the induced holomorphic map. The set of critical
values of f̂ is B̂ = u−1(B). This is a discrete set of points of C. By an appropriate
choice of the origin in C, we may assume that 0 /∈ B̂. Then u−1(u(0)) forms a
lattice Λ such that Y = C/Λ. We choose generators of Λ, say, v1 and v2. Then
each region

Un,m := {αv1 + βv2 | n ≤ α < n + 1,m ≤ β < m + 1}

(n,m ∈ Z) forms a fundamental domain for Y . We first take the contractible
graph

Γ0 := Rv1 ∪
⋃
k∈Z

(Rv2 + kv1)
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in C. Then connect each nv1 + mv2 ∈ Γ0 to each point bk,n,m, of B̂ ∩ Un,m by a
simple path, say, γk,n.m in Un,m, so that they are mutually disjoint. Then

Γ := Γ0 ∪
⋃

k,n,m

γk,n,m

becomes a contractible tree connecting 0 with the end points, which are the
critical values of f̂ .

We next remove from Γ all the end points bk,n,m and denote the resulting
space by

Γ′ := Γ
∖ ⋃

k,n,m

{bk,n,m}.

Finally, for each of the removed end points bk,n,m we fill in a small ball
Bk,n,m centered at bk,n,m and denote the resulting space by

Γ̃ := Γ ∪
⋃

k,n,m

Bk,n,m = Γ′ ∪
⋃

k,n,m

Bk,n,m.

We put

X̂Γ = f̂ −1(Γ), X̂Γ′ = f̂ −1(Γ′), X̂k,n,m = f̂ −1(Bk,n,m),

X̂Γ̃ = f̂ −1(Γ̃), Fk,n,m = f̂ −1(bk,n,m).

As Γ is tree, one can choose a neighborhood U ⊂ C of Γ such that Γ is a defor-
mation retract of U and U is also a deformation retract of C. Then we obtain a
deformation retract from X̂ to X̂Γ̃ and then to X̂Γ.

Combining this with Proposition 5.3, we obtain

H2n(X̂Γ̃,Z) � H2n(X̂,Z) � Z.

On the other hand, H2n(X̂Γ̃,Z) can be also computed as follows. We notice that
Γ′ is contractible and that the fiber over Γ′ is smooth and homeomorphic to F0.
Here F0 is the fiber over the base point zero. Thus

H∗(X̂Γ̃′ ,Z) � H∗(F0,Z).

As each Fk,n,m is a deformation retract of X̂k,n,m and since all the X̂k,n,m’s are
mutually disjoint (Bk,n,m being sufficiently small), it follows that

H∗
( ⋃

k,n,m

X̂k,n,m,Z
)

�
⊕

k,n,m

H∗(Fk,n,m,Z).

Moreover, since each Bk,n,m ∩ Γ′ is contractible and since the fibers over this
set are homeomorphic to F0, we also have

H∗
(

X̂Γ̃′ ∩
( ⋃

k,n,m

X̂k,n,m

)
,Z

)
�

⊕
k,n,m

H∗(F0,Z).

Thus by the Mayer-Vietoris exact sequence, we obtain

H2n(X̂Γ̃,Z) = H2n

(
X̂Γ̃′ ∪

( ⋃
k,n,m

X̂k,n,m

)
,Z

)
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�
(
H2n(F0,Z) ⊕

⊕
k,n,m

H2n(Fk,n,m,Z)
)/( ⊕

k,n,m

H2n(F0,Z)
)

� H2n(F0,Z) ⊕
⊕

k,n,m

(
H2n(Fk,n,m,Z)/H2n(F0,Z)

)
.

Since H2n(X̂Γ̃,Z) � Z, it follows that

H2n(Fk,n,m,Z) � H2n(F0,Z)

for each singular fiber Fk,n,m. Since H2n(F0,Z) � Z, it follows that

H2n(Fk,n,m,Z) � Z.

This implies the irreducibility of Fk,n,m because Fk,n,m is a compact connected
complex space of pure dimension n (hence of real dimension 2n), so that the
rank of H2n(Fk,n,m,Z) is the cardinality of the set of irreducible components of
Fk,n,m.

Let y ∈ Y , and let Z = (Xy)red be the reduction of the fiber Xy of the
original fibration f . Now we know that Z is irreducible. Moreover, by the proof
of Proposition 2.1, we also know that the image of the natural map

π1(Z) → Ker
(
π1(X) → π1(Y )

)
� Z

2n

has finite cokernel. Thus the image is isomorphic to Z2n as well. Consequently,
we have a surjective homomorphism

π1(Z) → Z
2n.

Since Z
2n is isomorphic to the fundamental group of a real torus of dimension

2n, say, T 2n, the surjective morphism above is induced by a dominant continuous
map

a : π1(Z) → π1(T 2n).

Since π1(T 2n) is commutative, this naturally induces a surjective morphism

a : H1(Y,Z) → H1(T 2n,Z).

Passing to the dual, we obtain an injective morphism

a∗ : H1(T 2n,Z) � Z
2n → H1(Z,Z).

Let ν : Z̃ → Z be a resolution of singularities of the complex space Z (see
[Hi2, main result]). Then the composition of a and ν defines a continuous map ã

such that its action on the first homology is the composition ã∗ of ν∗ : H1(Z̃,Z) →
H1(Z,Z) with a∗ : H1(Z,Z) → H1(T 2n,Z).

Let 〈ϕi〉2n
i=1 be a basis of H1(T 2n,Z), and consider their inverse images ã∗(ϕi)

as being represented by d-closed differential forms. Then the map given by
integration

Z̃ � x �→
(∫ x

x0

ã∗(ϕi)
)2n

i=1



Volume preserving complex structures on real tori 771

gives a differentiable map ρ : Z̃ → T 2n such that the induced morphism ρ∗ : H1(Z̃,

Z) → H1(T 2n,Z) is the homomorphism ã∗.
Since we have isomorphisms

H2n(Z̃,Z) ∼= H2n(Z,Z) ∼= H2n(T 2n,Z),

it follows that ã is dominant and that we have a surjective homomorphism
π1(Z̃) → Z

2n. �

Let us return to the proof of Theorem 5.1 and recall that by Lemma 5.2, we may
assume Y to be an elliptic curve. We need only show that f is smooth; then
Theorem 5.1 follows from Theorem 3.2.

So assume that a fiber Z of f is singular. We already know that Z is irre-
ducible by Proposition 5.3. Denote by m the multiplicity of Z so that Z = mZred.
Since X is smooth, hence Zred is also a Cartier divisor on X . In particular, the
dualizing sheaf ωZred is invertible. More precisely, by the adjunction formula and
by KX = OX , we have

ωZred = OX(Zred) ⊗ OZred

and therefore

ω⊗m
Zred

� OZred .

Since KX = OX , the multiplicity m is nothing but the minimal positive integer
satisfying this isomorphism (see, e.g., [BHPV, Lemma 8.3, p. 111]).

Let Z̃ be the minimal resolution of the normalization Z ′ of Zred. Since Zred

is Gorenstein, the conductor ideal of Z ′ → Zred is of pure dimension 1 (if Zred is
not normal). Moreover, since Z̃ is a minimal resolution, the canonical divisors
of Zred and Z̃ differ by an effective divisor, classically called the subadjunction
divisor. We conclude with the well-known formula

ω⊗m

Z̃
� OZ̃(−D),

where D is an effective divisor, possibly zero (if and only if Zred is normal with
at most rational double points as singularities).

First, suppose D = 0; hence κ(Z̃) = 0. Since π1(Z̃) maps onto π1(T ) � Z
4 by

Proposition 5.3, it follows again from surface classification that Z̃ is a complex
torus of dimension 2. Since a complex torus of dimension 2 has no curve with
negative self-intersection, it has no nontrivial crepant contraction to a normal
surface Z ′. Hence the three surfaces

Z̃,Z ′,Zred

are all isomorphic.
In particular, Zred is also a smooth complex torus (of dimension 2), and

ωZred � OZred . This implies that m = 1 and Z = Zred is smooth.
If D �= 0, then κ(Z̃) = −∞. From the classification of compact complex sur-

faces with κ = −∞ (see, e.g., [BHPV, Table 10, p. 244]), Z̃ is either birationally
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ruled, say, over a curve C, or a surface of class VII. If it is birationally ruled,
then H1(Z̃,Z) is the pullback of H1(C,Z). This, however, implies that

∧4H1(Z̃,Z) = 0,

a contradiction to the proven injectivity of ∧4H1(T,Z) → ∧4H1(Z̃,Z).
If Z̃ is of class VII, then b1(Z̃) = 1. This again contradicts the surjectivity of

π1(Z̃) → π1(T ) � Z
4

in Proposition 5.3.
Hence f : X → Y is smooth. This finishes the proof of Theorem 5.1. �
Theorem 1.1 now follows from Theorems 2.3, 4.1, and 5.1. �

6. Threefolds without meromorphic functions

Instead of assuming the existence of meromorphic functions, we require in this
short concluding section the existence of some holomorphic tangent vectors or
holomorphic 1-forms.

THEOREM 6.1

Let X be a smooth compact complex threefold which is homotopy equivalent to a
torus. If the tangent bundle TX is trivial, then X is biholomorphic to a torus.

Proof
By our assumption, X � G/Γ, where G is a simply connected complex 3-dimen-
sional Lie group and Γ � π1(X) is cocompact. By Lemma 6.2, G � C

3 or G �
SL(2,C) as groups. But SL(2,C) is not contractible; in fact,

b3

(
SL(2,C)

)
= 3

(see, e.g., [Ko]). Hence X � C
3/Z

6, and our claim follows. �

The article [Ko] was communicated to us by I. Radloff. For discussions concerning
the first part of the following lemma, which is of course well known to the experts,
we thank J. Winkelmann and, in particular, A. Huckleberry.

LEMMA 6.2

Let G be a simply connected 3-dimensional complex Lie group. Then

(1) either G � SL(2,C) as Lie group, or G is solvable and G � C
3 as complex

manifold;
(2) if G is solvable and if G contains a lattice Γ (i.e., a discrete subgroup

such that G/Γ has bounded volume) such that Γ is abelian, then G is abelian and
therefore G � C

3 as Lie group.
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Proof
(1) By the Levi-Malcev decomposition, G is either semisimple or solvable by
reasons of dimension. In the semisimple case, G � SL(2,C). If G is solvable, then
G � C

3 (even in any dimension); see, e.g., [Na, Proposition 1.4]).
(2) Since Γ is abelian, so is G by, for example, [Wi, (3.14.6)]. Hence G � C3

as Lie group. �

LEMMA 6.3

Let X be a compact complex manifold with algebraic dimension a(X) = 0. Let V

be a holomorphic rank r bundle on X. Then the evaluation homomorphism

ev : H0(X,V ) ⊗ OX → V

is injective. In particular, all the global sections of V are carried by the trivial
rank h subsheaf H0(X,V ) ⊗ OX .

In particular, h0(X,V ) = h ≤ r, and if h = r and det(V ) ∼= OX , then V is
trivial.

Proof
For each point x ∈ X we have a linear map of C-vector spaces

evx : H0(X,V ) → V (x),

where V (x) := Vx/MxVx is the fiber of the vector bundle over the point x.
We claim that evx is injective for a general point x ∈ X .
Otherwise, let m be the generic rank of evx: then we get a meromorphic

map

k : X ��� Grass
(
h − m,H0(X,V )

)
associating to x the subspace Ker(evx).

By the projectivity of the Grassmann manifold, k must be constant. But a
section vanishing at a general point is identically zero, which proves our assertion
that H0(X,V ) ⊗ OX yields a subsheaf of V .

Moreover, if h = r, the homomorphism ev induces a nonconstant homomor-
phism Λr(ev) : OX → det(V ). Thus if det(V ) is trivial, Λr(ev) is invertible;
hence ev is an isomorphism. �

COROLLARY 6.4

Let X be a compact complex manifold of dimension n with algebraic dimension
a(X) = 0 and with OX(KX) ∼= OX . Then

h0(Ω1
X) ≥ n ⇔ h0(TX) ≥ n ⇔ TX

∼= On
X ⇔ Ω1

X
∼= On

X .

THEOREM 6.5

Let X be a smooth compact complex threefold with OX(KX) ∼= OX , which is
homotopy equivalent to a torus. If h0(X,Ω1

X) ≥ 3 or if h0(X,TX) ≥ 3, then X is
biholomorphic to a torus.
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Proof
By our main theorem (Theorem 1.1), we may assume a(X) = 0, and applying
the previous Corollary 6.4, we get Ω1

X
∼= O3

X . Now we conclude by Theorem 6.1.
�

REMARK 6.6

It already seems difficult to exclude the case h0(Ω1
X) = 2. Taking a basis ω1, ω2,

we are able to exclude the case when both ωi are nonclosed. Since X is not
necessarily Kähler, the existence of a closed holomorphic 1-form does not lead to
a nontrivial Albanese map, which is the obstacle to conclude.

Acknowledgments. Oguiso is grateful to the guest program of the Alexander
von Humboldt Foundation and to the Forschergruppe 790 “Classification of
Deutsch Forschungsgemeinschaft algebraic surfaces and compact complex man-
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(3) 73 (1956), 157–202.

[Ca1] F. Catanese, “Compact complex manifolds bimeromorphic to tori” in

Abelian Varieties (Egloffstein, Germany, 1993), de Gruyter, Berlin, 1995,

55–62.

[Ca2] , “Deformation types of real and complex manifolds” in

Contemporary Trends in Algebraic Geometry and Algebraic Topology

(Tianjin, China, 2000), Nankai Tracts Math. 5, World Sci., River Edge,

N.J., 2002, 195–238.

[Ca3] , Deformation in the large of some complex manifolds, I, Ann. Mat.

Pura Appl. (4) 183 (2004), 261–289.

[CKO] F. Catanese, J. H. Keum, and K. Oguiso, Some remarks on the universal

cover of an open K3 surface, Math. Ann. 325 (2003), 279–286.

[Fj] A. Fujiki, On automorphism groups of compact Kähler manifolds, Invent.

Math. 44 (1978), 225–258.

[Fu1] T. Fujita, On Kähler fiber spaces over curves, J. Math. Soc. Japan 30

(1978), 779–794.

[Fu2] , Zariski decomposition and canonical rings of elliptic threefolds,

J. Math. Soc. Japan 38 (1986), 19–37.



Volume preserving complex structures on real tori 775

[Gr] P. A. Griffiths, Periods of integrals on algebraic manifolds, II: Local study

of the period mapping, Amer. J. Math. 90 (1968), 805–865.

[GHJ] M. Gross, D. Huybrechts, and D. Joyce, Calabi-Yau Manifolds and Related

Geometries (Nordfjordeid, Norway, 2001), Universitext, Springer, Berlin,

2003.

[Hi1] H. Hironaka, Flattening theorem in complex-analytic geometry, Amer.

J. Math. 97 (1975), 503–547.

[Hi2] , Bimeromorphic smoothing of a complex-analytic space, Acta Math.

Vietnam 2 (1977), 103–168.

[Ka] Y. Kawamata, Characterization of abelian varieties, Compositio Math. 43

(1981), 253–276.

[Ko] B. Kostant, The principal three-dimensional subgroup and the Betti

numbers of a complex simple Lie group, Amer. J. Math. 81 (1959),

973–1032.

[Na] I. Nakamura, Complex parallelisable manifolds and their small

deformations, J. Differential Geom. 10 (1975), 85–112.

[No] M. V. Nori, Zariski’s conjecture and related problems, Ann. Sci. École
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