A sufficient condition for well-posedness for systems with time-dependent coefficients

Marcello D'Abbicco

Abstract We consider linear, smooth, hyperbolic systems with time-dependent coefficients and size N. We give a condition sufficient for the well-posedness of the Cauchy Problem in some Gevrey classes. We present some Levi conditions to improve the Gevrey index of well-posedness for the scalar equation of order N, using the transformation in [DAS] and following the technique introduced in [CT]. By using this result and adding some assumptions on the form of the first-order term, we can improve the well-posedness for systems. A similar condition has been studied in [DAT] for systems with size 3.

1. Introduction

In this article we study the well-posedness of the Cauchy Problem for first-order $(N \times N)$ -systems whose coefficients depend only on the time variable,

(1.1)
$$\begin{cases} L(t, \partial_t, \partial_x) U(t, x) = f(t, x), & (t, x) \in [0, T] \times \mathbb{R}^n, \\ U(0, x) = U_0(x), & x \in \mathbb{R}^n. \end{cases}$$

where

$$LU = \partial_t U - \sum_{j=1}^n A_j(t) \partial_{x_j} - B(t)U, \quad A_j(t) \in M_N(\mathbb{R}), B(t) \in M_N(\mathbb{C});$$

by $M_N(\mathbb{R})$ (resp., $M_N(\mathbb{C})$) we denote the space of the $(N \times N)$ -matrices with entries valued in \mathbb{R} (resp., \mathbb{C}). We assume that

$$A(t,\xi) := |\xi|^{-1} \sum_{j=1}^{n} A_j(t)\xi_j$$

is (weakly) hyperbolic; that is, its eigenvalues are real (not necessarily distinct) for any $\xi \in \mathbb{R}^n \setminus \{0\}$. We remark that A is real valued, whereas B may be complex valued. In the following, we assume that $A \in \mathcal{C}^N$; that is, each entry of A_j belongs to $\mathcal{C}^N([0,T])$, for $j=1,\ldots,n$. We assume also that $B \in \mathcal{C}^{N-1}$.

NOTATION

Let f(t) and g(t) be defined in [0,T]; we write $f \lesssim g$, meaning that there exists a positive constant C such that

$$f(t) \le Cg(t)$$
 for $t \in [0, T]$.

Analogously, if $f(t,\xi)$ and $g(t,\xi)$ are symbols defined in $[0,T] \times \mathbb{R}^n$, we write $f \lesssim g$, meaning that there exists a positive constant C such that

$$f(t,\xi) \le Cg(t,\xi)$$
 for $(t,\xi) \in [0,T] \times \mathbb{R}^n$.

In both cases, we write $f \approx g$, meaning that $f \lesssim g$ and $g \lesssim f$.

NOTATION

We denote with γ^d the Gevrey class with index $d \in (1, \infty)$, that is, the class of functions in $C^{\infty}(\mathbb{R}^n)$ such that for any compact $K \subset \mathbb{R}^n$, there exists C_K such that

$$|\partial_x^{\alpha} f(x)| \le C_K^{|\alpha|+1} (|\alpha|!)^d$$
 for any $x \in K$ and $\alpha \in \mathbb{N}^n$.

NOTATION

We put $I := \{1, ..., N\}$. We denote by I_M the identity matrix of size M. We denote by $||A|| := \max_{i,j} |a_{ij}|$ the norm of a matrix $A = (a_{ij})_{i,j}$.

DEFINITION 1

The Cauchy problem (1.1) is said to be well posed in γ^d with $1 < d < \infty$ if, for any choice of the data $f \in \mathcal{C}([0,T],\gamma^d(\mathbb{R}^n,\mathbb{C}^N))$ and $U_0 \in \gamma^d(\mathbb{R}^n,\mathbb{C}^N)$, it admits a unique solution $U \in \mathcal{C}^1([0,T],\gamma^d(\mathbb{R}^n,\mathbb{C}^N))$.

In this article, we say that (1.1) is strongly well posed in γ^d to mean that it is well posed for any choice of the lower-order term $B(t) \in C^{N-1}([0,T])$.

We refer the interested reader to [CI], [CJS], [CO], [D], [DAK], and [Y] for questions related to the well-posedness of weakly hyperbolic equations and systems.

It is acknowledged (see [B2]) that the Cauchy problem (1.1) for a system is well posed in γ^d for

(1.2)
$$1 < d < d_B \equiv d_B(r) := 1 + \frac{1}{r-1},$$

where r is the maximum multiplicity of the eigenvalues of A. If the multiplicities of the eigenvalues are not constant, then this Gevrey index may be improved. In this note, we consider matrices $A(t,\xi)$ whose eigenvalues have variable multiplicity and such that $A(0,\xi)$ has a unique eigenvalue with multiplicity N; hence, Bronšteĭn's index is

$$d_B(N) = 1 + \frac{1}{N - 1}.$$

By Bronšteĭn's Lemma [B1, Theorem 2] the eigenvalues of $A(t,\xi)$, counted with their multiplicities, namely,

$$\{\lambda_i(t,\xi): i=1,\ldots,N\},\$$

are Lipschitz-continuous functions. In this article, we assume that $\lambda_1, \ldots, \lambda_N$ satisfy the following.

ASSUMPTION 1

For any i, j = 1, ..., N, there exists $\kappa_{ij} \in [1, \infty]$, such that either

(1.3)
$$\begin{aligned} |\lambda_i - \lambda_j| &\approx t^{\kappa_{ij}} & \text{if } \kappa_{ij} \in [1, \infty), \text{ or} \\ |\lambda_i - \lambda_j| &\lesssim t^m & \text{for any } m \in \mathbb{N} & \text{if } \kappa_{ij} = \infty. \end{aligned}$$

We remark that $\kappa_{ij} = \kappa_{ji}$ and that $\kappa_{jj} = \infty$; that is, $\kappa = (\kappa_{ij})_{i,j}$ is a symmetric matrix with ∞ as diagonal entries.

REMARK 1.1

If $\kappa_{ij} < \kappa_{jk}$ for some i, j, k, then $\kappa_{ik} = \kappa_{ij}$; indeed, in such a case, it holds that

$$t^{\kappa_{ij}} \lesssim |\lambda_i - \lambda_j| - |\lambda_j - \lambda_k| \leq |\lambda_i - \lambda_k| \leq |\lambda_i - \lambda_j| + |\lambda_j - \lambda_k| \lesssim t^{\kappa_{ij}}.$$

We look for a sufficient condition for the well-posedness of the Cauchy problem (1.1) in γ^d for any $1 < d < d^*$, for some $d^* > d_B(N)$.

It is easy to check that, if the system has size N=2 and

$$|\lambda_1 - \lambda_2| \approx t^{\alpha}, \quad 1 < \alpha < \infty,$$

then the Cauchy problem (1.1) is well posed in γ^d for any $1 < d < d^*$, where

$$d^* = 1 + \frac{\alpha + 1}{\alpha - 1} = 2 + \frac{2}{\alpha - 1}.$$

We remark that $d^* > 2 = d_B(2)$. On the other hand, if $|\lambda_1 - \lambda_2| \approx t$, then (1.1) is well posed in any γ^d , d > 1, and in \mathcal{C}^{∞} .

For the sake of brevity, in this article we assume $N \geq 3$ (in particular, for systems with size 2 or 3, see also [DAT]). F. Colombini and G. Taglialatela [CT] stated a condition for the well-posedness of the equation of order N in Gevrey classes; in [CT] the functions λ_j represent the roots of the characteristic equation.

With the notation in Assumption 1, they assumed the existence of $\kappa_1, \ldots, \kappa_{N-1} \geq 1$, such that

(1.4)
$$\kappa_1 \le \kappa_2 \le \dots \le \kappa_{N-1} < \infty \quad \text{and}$$

$$\kappa_{ij} = \kappa_i, \quad \text{for any } j = i+1, \dots, N,$$

and they proved, in [CT, Theorem 1.2], that the Cauchy problem for the equation of order N is strongly well posed in γ^d for any $1 < d < d^*$ with

(1.5)
$$d^* = 1 + \frac{\kappa_h + 1}{(N - h - 1)\kappa_h + s_h - 1},$$

where

$$s_p = \kappa_1 + \dots + \kappa_p$$
 and $h := \min\{p : s_p + p \ge N\}.$

Condition (1.4) on the structure of $\kappa = (\kappa_{ij})_{i,j}$ is very restrictive; in fact,

$$\kappa = \begin{pmatrix} \infty & \kappa_1 & \kappa_1 & \dots & \kappa_1 \\ \kappa_1 & \infty & \kappa_2 & \dots & \kappa_2 \\ \kappa_1 & \kappa_2 & \infty & \dots & \kappa_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \kappa_1 & \kappa_2 & \kappa_3 & \dots & \infty \end{pmatrix}.$$

In order to get a similar result of well-posedness without condition (1.4) on the matrix κ , we have to construct a suitable sequence $\kappa_1, \ldots, \kappa_{N-1}$, which depends on the structure of the matrix $\kappa = (\kappa_{ij})$.

DEFINITION 2

Let $k \in [1, \infty]$. Then there exist a unique integer $m \le N$ and a unique partition $P_k(I) = \{I_1, \ldots, I_m\}$ of the set $I = \{1, \ldots, N\}$, namely,

$$I = \bigcup_{p=1}^m I_p \quad \text{with } I_p \neq \emptyset \text{ and } I_p \cap I_q = \emptyset \text{ for } p \neq q,$$

such that $\kappa_{ij} > k$ if and only if $i, j \in I_p$ for some p. We call such a partition the k-partition of the set I. We define

$$\alpha = \min\{\kappa_{ij} : i, j = 1, \dots, N\},\$$

and we call the minimum partition of the set I the partition $P_{\min}(I) = P_{\alpha}(I)$.

REMARK 1.2

Let $k \in [1, \infty]$; then the *k*-partition of *I* is the trivial partition $P_k(I) = \{I\}$ if and only if $k < \alpha$. On the other hand, for $k = \infty$, the ∞ -partition of *I* is the trivial partition $P_{\infty}(I) = \{\{1\}, \{2\}, \dots, \{N\}\}$.

We remark that if $k_{ij} = \alpha$ for any $i \neq j$, then $P_{\min}(I) = P_{\alpha}(I) = \{\{1\}, \{2\}, \dots, \{N\}\},$ too.

REMARK 1.3

Let $P_{\min}(I) = \{I_1, \dots, I_m\}$ be the minimum partition of I. After a permutation on I, we can write

$$I_1 = \{1, \dots, \#(I_1)\}, \qquad I_2 = \{\#(I_1) + 1, \dots, \#(I_1) + \#(I_2)\}, \dots,$$

$$I_m = \{N - \#(I_m) + 1, \dots, N\}.$$

Therefore (see Remark 1.1) the matrix $\kappa = (\kappa_{ij})$ can be represented in the block form

(1.6)
$$\kappa = \begin{pmatrix} \kappa^{(1)} & C_{\alpha} & C_{\alpha} & \dots & C_{\alpha} \\ C_{\alpha} & \kappa^{(2)} & C_{\alpha} & \dots & C_{\alpha} \\ C_{\alpha} & C_{\alpha} & \kappa^{(3)} & \dots & C_{\alpha} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ C_{\alpha} & C_{\alpha} & C_{\alpha} & \dots & \kappa^{(m)} \end{pmatrix},$$

where C_{α} are blocks with suitable size and each entry equal to α , and $\kappa^{(p)} = (\kappa_{ij})_{i,j \in I_p}$ are square blocks with size $\#(I_p)$ and $\kappa^{(p)}_{ij} > \alpha$.

REMARK 1.4

Let $P_{\min}(I) = \{I_1, \dots, I_m\}$ be the *minimum partition* of I; if there exist two different subsets I_p, I_q with $\#(I_p), \#(I_q) \geq 2$, then condition (1.4) cannot be satisfied.

EXAMPLE 1.5

Let N = 4, and assume that

$$\kappa_{12} = \beta_1, \qquad \kappa_{34} = \beta_2, \qquad \kappa_{13} = \alpha$$

with $\alpha < \beta_1, \beta_2$; that is,

$$\kappa = \begin{pmatrix} \infty & \beta_1 & \alpha & \alpha \\ \dots & \infty & \alpha & \alpha \\ \dots & \dots & \infty & \beta_2 \\ \dots & \dots & \dots & \infty \end{pmatrix}.$$

It is clear that condition (1.4) is not satisfied. Nevertheless, in [CT, Theorem 1.3], it is proved that the Cauchy problem is strongly well posed in γ^d for any $1 < d < d^*$, where d^* is determined as in (1.5), provided that we put

$$\kappa_1 = \kappa_2 = \alpha, \quad \kappa_3 = \max\{\beta_1, \beta_2\}.$$

Hence (1.5) gives

$$d^* = 1 + \frac{\alpha + 1}{3\alpha - 1}$$
.

We are ready to state the following.

THEOREM 1

We assume that, for any t > 0, the matrix $A(t,\xi)$ has m distinct eigenvalues μ_1, \ldots, μ_m , that each eigenvalue μ_p has constant multiplicity M_p , and that

$$|\mu_i - \mu_j| \approx t^{\alpha}, \quad i \neq j.$$

Let $M = \max_p M_p$. Then the Cauchy problem (1.1) is strongly well posed in γ^d for any $1 < d < d^*$ with

(1.7)
$$d^* := \begin{cases} 1 + \frac{\alpha + 1}{(N - 1)\alpha - 1} & \text{if } (N - M)\alpha \ge M, \\ 1 + \frac{1}{M - 1} \equiv d_B(M) & \text{if } (N - M)\alpha \le M. \end{cases}$$

REMARK 1.6

More in general, if we assume that $A(t,\xi)$ verifies Assumption 1 and we put

$$M = \max_{p} \#(I_p),$$

where $P_{\min}(I) = P_{\alpha}(I) = \{I_1, \dots, I_m\}$ is the minimum partition of I as in Definition 2, then the Cauchy problem (1.1) is strongly well posed in γ^d for any $1 < d < d^*$ with d^* as in (1.7).

However, in this case the Gevrey index d^* may be improved (see Theorem 2) by adding further assumptions on the blocks $\kappa^{(p)}$ in (1.6). In fact, the proof is an immediate consequence of Theorem 2.

EXAMPLE 1.7

Let

$$A = A_1 \oplus A_2 = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix},$$

where the matrix A_2 has a unique eigenvalue

$$\mu = \lambda_{(N-M)+1} = \cdots = \lambda_N$$

with multiplicity $M \geq N/2$, and assume that

$$|\mu - \lambda_j| \approx t^{\alpha}$$
 for any $j = 1, \dots, N - M$,

$$|\lambda_i - \lambda_j| \lesssim t^{\alpha}$$
 for any $i, j = 1, \dots, N - M$.

Then Remark 1.6 gives $d^* = d_B(M)$, provided that α is sufficiently small, namely,

$$\alpha \le \frac{M}{N-M}$$
.

We remark that $A_2(t,\xi)$ has a unique eigenvalue with constant multiplicity M.

EXAMPLE 1.8

We can apply Theorem 1 to Example 1.5. Indeed, we have

$$P_{\min}(I) = P_{\alpha}(I) = \{I_1, I_2\}$$
 with $I_1 = \{1, 2\}$ and $I_2 = \{3, 4\}$;

hence we get the expected Gevrey index:

$$d^* = 1 + \frac{\alpha + 1}{3\alpha - 1}.$$

We notice that $d^* = d_B(2) = 2$ as in Example 1.7 if and only if $\alpha = 1$ since N = 4 and M = 2.

In order to improve the Gevrey index d^* in Theorem 1, we need to refine the partition of I.

DEFINITION 3

Let $J \subset I$, and let

$$\alpha_J := \min\{\kappa_{ij} : i, j \in J\}.$$

We call the minimum partition of J the α_J -partition of J (see Definition 2): $P_{\alpha_J}(J) = \{J_1, \ldots, J_m\}$. Now we define by induction

$$\Sigma_h[J] := \max_p s_h[J_p, \#(J \setminus J_p)], \quad h = 1, \dots, \#(J) - 1,$$

where

$$s_h[J_p, l] := \begin{cases} h\alpha_J & \text{if } h \le l, \\ l\alpha_J + \Sigma_{h-l}[J_p] & \text{if } h > l. \end{cases}$$

We put $\Sigma_h := \Sigma_h[I]$; it is clear that $\Sigma_1[J] = \alpha_J$.

EXAMPLE 1.9

We consider Example 1.5; with the notation introduced in Definition 3, we easily get

$$\Sigma_1 = \alpha = \kappa_1, \qquad \Sigma_2 = 2\alpha = \kappa_1 + \kappa_2,$$

since $\#(I \setminus I_1) = \#(I \setminus I_2) = 2$, whereas

$$\Sigma_3 = \max\{s_3[I_1, 2], s_3[I_2, 2]\} = 2\alpha + \max\{\Sigma_1[I_1], \Sigma_1[I_2]\} = 2\alpha + \max\{\beta_1, \beta_2\}.$$

LEMMA 1.10

Let $J \subset I$. We assume that for some permutation on the set I, we have $J = \{1, ..., M\}$ with M = #(J), and J satisfies condition (1.4); that is,

$$\kappa_1 \leq \cdots \leq \kappa_{M-1} < \infty$$
 and $\kappa_{ij} = \kappa_i$, for any $j = i+1, \ldots, M$.

Then

$$\Sigma_h[J] = s_h \equiv \kappa_1 + \dots + \kappa_h, \quad h = 1, \dots, M - 1.$$

Proof

We can prove the statement by induction on M. It is trivially true for M=2; we assume that the thesis holds for M-1, and we prove it for M. Let $m \geq 2$ be such that

$$\kappa_1 = \dots = \kappa_{m-1} < \kappa_m;$$

that is, $s_p = p\alpha_J$ for any $p \le m-1$ and $\kappa_m > \alpha_J$. Then J is partitioned in

$$J = \{1\} \cup \cdots \cup \{m-1\} \cup J_m \text{ with } J_m = \{m, \dots, M\},$$

with the notation introduced in Definition 3. Hence it holds that

$$\Sigma_h = \max \left\{ h\alpha_J, \sigma_h[J_m, m-1] \right\} = \begin{cases} s_h & \text{if } h \leq m-1, \\ s_{m-1} + \Sigma_{h-(m-1)}[J_m] & \text{if } m \leq h \leq M-1. \end{cases}$$

Since $\#(J_m) \leq M-1$, we can apply the hypothesis of induction and

$$\sum_{h=(m-1)} [J_m] = \kappa_m + \dots + \kappa_h.$$

This concludes the proof.

We proved that Definition 3 is consistent with the one given in (1.4). Moreover, it is easy to check that each $J \subset I$ with $\#(J) \leq 3$ satisfies (1.4).

REMARK 1.11

With the notation in Definition 2, let $P_{\min}(I) = \{I_1, \dots, I_m\}$, and let $M = \max \#(I_p)$; then

$$\Sigma_h = h\alpha$$
 for any $h \leq N - M$.

Indeed, it holds that

$$s_h[I_p, \#(I \setminus I_p)] = h\alpha, \quad p = 1, \dots, m,$$

since
$$N - \#(I_p) \ge N - M$$
.

DEFINITION 4

We define $\kappa_1 := \Sigma_1 = \alpha$, and we put, for any $h \ge 2$

$$\kappa_h := \begin{cases} \Sigma_h - \Sigma_{h-1} & \text{if } \Sigma_h < \infty, \\ \infty & \text{if } \Sigma_h = \infty. \end{cases}$$

Thanks to Lemma 1.10, Definition 4 is consistent with the one given in (1.4).

EXAMPLE 1.12

Let N = 5; with the notation in Definition 2, we assume that

$$P_{\min}(I) = P_{\alpha}(I) = \{I_1, I_2\}$$
 with $I_1 = \{1, 2\}$ and $I_2 = \{3, 4, 5\}$.

The set I_2 satisfies (1.4) since $\#(I_2) \leq 3$; hence we can assume with no restriction that

$$\kappa = \begin{pmatrix} \infty & \beta_1 & \alpha & \alpha & \alpha \\ \beta_1 & \infty & \alpha & \alpha & \alpha \\ \alpha & \alpha & \infty & \beta_2 & \beta_2 \\ \alpha & \alpha & \beta_2 & \infty & \gamma \\ \alpha & \alpha & \beta_2 & \gamma & \infty \end{pmatrix}, \quad \alpha < \beta_1, \beta_2, \ \beta_2 \le \gamma.$$

With the notation in Definitions 3 and 4, we get

$$\Sigma_1 = \alpha,$$
 $\Sigma_2 = 2\alpha,$ $\Sigma_3 = \max\{3\alpha, 2\alpha + \beta_2\} = 2\alpha + \beta_2,$

$$\Sigma_4 = \max\{3\alpha + \beta_1, 2\alpha + \beta_2 + \gamma\} = 2\alpha + \beta_2 + \max\{\gamma, \beta_1 - (\beta_2 - \alpha)\};$$

hence

$$\kappa_1 = \kappa_2 = \alpha, \qquad \kappa_3 = \beta_2, \qquad \kappa_4 = \max\{\gamma, \beta_1 - (\beta_2 - \alpha)\}.$$

In particular, if $\beta_1 > \beta_2 + \gamma - \alpha$, then κ_4 can be different from any of κ_{ij} . We remark that in such a case, it holds that $\gamma < \kappa_4 < \beta_1$.

Now we are ready to state our main result.

THEOREM 2

If Assumption 1 is satisfied, then the Cauchy problem (1.1) is strongly well posed

in γ^d for any $1 < d < d^*$ with

(1.8)
$$d^* := \begin{cases} 1 + \frac{\kappa_h + 1}{(N - h - 1)\kappa_h + \Sigma_h - 1} & \text{if } \kappa_h < \infty, \\ 1 + \frac{1}{N - h} = d_B (N - (h - 1)) & \text{if } \kappa_h = \infty, \end{cases}$$

where

$$(1.9) h := \min\{p = 1, \dots, N - 1 : \Sigma_p + p \ge N\}.$$

We remark that $\Sigma_p \geq p$; hence $h \leq (N+1)/2$ in Theorem 2. Moreover, the Gevrey index d^* is greater than or equal to $d_B(N)$, and the equality holds if and only if $\alpha = \infty$.

REMARK 1.13

If $\alpha \geq N-1$, then h=1; hence

$$d^* = 1 + \frac{\alpha + 1}{(N - 1)\alpha - 1}.$$

On the other hand, if $\alpha < N-1$, that is, $h \ge 2$, then from (1.9) it follows that

$$\Sigma_{h-1} + (h-1) < N \leq \Sigma_h + h;$$

hence

$$d_B(N-(h-1)) \le d^* \le d_B(N-h).$$

This shows that d^* is increasing with respect to h.

By using Theorem 2, we can prove Theorem 1.

Proof of Theorem 1

We assume first that $(N-M)\alpha \geq M$; that is,

$$(N-M)(\alpha+1) > N$$
.

Then in Theorem 2 we get $h \leq N - M$ since, thanks to Remark 1.11,

$$\Sigma_p + p = p(\alpha + 1)$$
 for any $p \le N - M$.

Hence $\kappa_h = \alpha$ and

$$d^*=1+\frac{\alpha+1}{(N-h-1)\alpha+h\alpha-1}=1+\frac{\alpha+1}{(N-1)\alpha-1}.$$

On the other hand, if $(N-M)\alpha < M$, then $h \ge N-M+1$. Hence, thanks to Remark 1.13, Theorem 2 gives

$$d^* \ge d_B(N - (N - M + 1 - 1)) = d_B(M).$$

This concludes the proof.

EXAMPLE 1.14

Let N = 3M, and assume that $A(t, \xi)$ has three eigenvalues μ_1, μ_2, μ_3 , each one

with multiplicity M for t > 0, such that

$$|\mu_1 - \mu_2|, |\mu_1 - \mu_3| \approx t^{\alpha}, \qquad |\mu_2 - \mu_3| \approx t^{\beta}, \qquad \beta \ge \alpha \ge 1.$$

Then we can apply Theorem 2; the matrix κ can be written as

$$\kappa = \begin{pmatrix} C_{\infty} & C_{\alpha} & C_{\alpha} \\ C_{\alpha} & C_{\infty} & C_{\beta} \\ C_{\alpha} & C_{\beta} & C_{\infty} \end{pmatrix},$$

where C_{α} (resp., C_{β} , C_{∞}) is an $(M \times M)$ -block with each entry equal to α (resp., β , ∞). We get

$$\Sigma_h = \begin{cases} h\alpha & \text{if } h \le M, \\ M\alpha + (h-M)\beta & \text{if } M+1 \le h \le 2M, \\ \infty & \text{if } 2M+1 \le h. \end{cases}$$

Hence

$$d^* = \begin{cases} 1 + \frac{\alpha+1}{(3M-1)\alpha-1} & \text{if } \alpha \ge 2, \\ 1 + \frac{\beta+1}{(2M-1)\beta+(M-1)} & \text{if } \alpha = 1. \end{cases}$$

Under additional assumptions on the form of $A(t,\xi)$ and on κ , we can improve Theorem 2.

ASSUMPTION 2

We consider the Cauchy problem (1.1) and Assumption 1 to be true. Moreover, we assume that there exists $0<\gamma\leq\alpha$ such that

(1.10)
$$\|\widetilde{A}(t,\xi)\| \lesssim t^{\gamma}, \text{ where } \widetilde{A} = A - \left(\frac{\operatorname{tr} A}{N}\right) I_{N}.$$

REMARK 1.15

Condition (1.10) is equivalent to

$$||A(t,\xi) - \lambda_i(t,\xi)I_N|| \lesssim t^{\gamma}$$
 for some i.

Indeed,

$$||A(t,\xi) - \lambda_i(t,\xi)I_N|| \le ||\widetilde{A}(t,\xi)|| + \left|\frac{\operatorname{tr} A}{N} - \lambda_i\right| \lesssim ||\widetilde{A}(t,\xi)|| + t^{\alpha}$$

since $\gamma \leq \alpha$; analogously, we can prove the inverse inequality.

REMARK 1.16

Let $A(t,\xi)$ be a triangular matrix; that is, let $a_{ij} = 0$ for j < i. Then, since $a_{ii} = \lambda_i$, condition (1.10) is equivalent to

$$|a_{ij}| \lesssim t^{\gamma}$$
 for $j > i$.

Thanks to Assumption 2 we can state the following.

THEOREM 3

We consider the Cauchy problem (1.1) and Assumptions 1 and 2 to be true. We assume that (1.4) is satisfied. Let

$$h = \min\{p = 1, \dots, N - 1 : \Sigma_p + p \ge N + (N - 2)\gamma\}.$$

Then the Cauchy Problem is well posed in γ^d for any $1 < d < d^*$, where

$$d^* = \begin{cases} 1 + \frac{\kappa_h + 1}{(N - h - 1)\kappa_h + \Sigma_h - (N - 2)\gamma - 1} & \text{if } \kappa_h < \infty, \\ 1 + \frac{1}{N - h} = d_B(N - (h - 1)) & \text{if } \kappa_h = \infty. \end{cases}$$

The proof of Theorem 3 follows as a corollary of Theorem 6 stated in Section 4. Under additional assumptions on the Jordan canonical form of $A(t,\xi)$, we can improve Theorem 1.

ASSUMPTION 3

We assume that there exists a matrix $C \in \mathcal{C}^N$, homogeneous of degree zero in ξ and with $|\det C(t,\xi)| \ge c > 0$, such that

$$C(t,\xi)A(t,\xi)C^{-1}(t,\xi) = J_A(t,\xi)$$

is a Jordan matrix, that is, a block diagonal matrix whose blocks are Jordan blocks. The matrix J_A is the Jordan canonical form of A.

If Assumption 3 is satisfied, then J_A is smooth; that is, each nondiagonal term is constantly equal to 1 or zero. In particular, if $\lambda_i(t,\xi) \neq \lambda_j(t,\xi)$ for any t > 0, $\xi \neq 0$, and $i \neq j$, then A is uniformly diagonalizable. Moreover, if Assumption 3 is satisfied, by the substitution W = CV the Cauchy problem (2.1) is equivalent to

(1.11)
$$\begin{cases} W' = i|\xi|J_A(t,\xi)W + B_1(t,\xi)W, \\ W(0,\xi) = C^{-1}(0,\xi)V_0(\xi), \end{cases}$$

where

$$B_1 = (C'(t,\xi) + C(t,\xi)B(t))C^{-1}(t,\xi) \in \mathcal{C}^{N-1}.$$

Hence the strong well-posedness for $\partial_t - i|\xi|A$ is equivalent to the strong well-posedness for $\partial_t - i|\xi|J_A$. We are ready to state the following result, which improves Theorem 1.

THEOREM 4

We assume that for any t > 0, the matrix $A(t,\xi)$ has m distinct eigenvalues μ_1, \ldots, μ_m , each one with constant multiplicity M_p , and that

$$|\mu_i - \mu_j| \approx t^{\alpha}, \quad i \neq j,$$

for some $\alpha \geq 1$. Let $M = \max_p M_p$, with $M \geq 2$, be the maximum multiplicity of the eigenvalues of $A(t,\xi)$ for t > 0. If Assumption 3 is satisfied, then the Cauchy

problem (1.1) is strongly well posed in γ^d for any $1 < d < d^*$ with

(1.12)
$$d^* := \begin{cases} 1 + \frac{\alpha + 1}{(N - m - 1)\alpha - 1} & \text{if } (N - M - m)\alpha \ge M, \\ 1 + \frac{1}{M - 1} \equiv d_B(M) & \text{if } (N - M - m)\alpha \le M, \end{cases}$$

provided that $M + m \le N - 1$.

On the other hand, if $M + m \ge N - 1$, then the Cauchy problem (1.1) is strongly well posed in γ^d for any $1 < d < d^*$ with

(1.13)
$$d^* := \begin{cases} 1 + \frac{\alpha+1}{M\alpha-1} & \text{if } \alpha \ge M, \\ 1 + \frac{1}{M-1} \equiv d_B(M) & \text{if } \alpha \le M. \end{cases}$$

The proof of Theorem 4 follows from Theorem 6, stated in Section 4.

2. Proof of Theorem 2

Let U be a solution of the system (1.1), and let $V(t,\xi) := \widehat{U}(t,\xi)$ (resp., $V_0(\xi) = \widehat{U_0}(\xi)$) be the Fourier transform with respect to the x-variable of U (resp., U_0); using the Duhamel principle, we can assume $f \equiv 0$. Then V satisfies the system

(2.1)
$$\begin{cases} V' = iA(t,\xi)|\xi|V + B(t)V, \\ V(0,\xi) = V_0(\xi). \end{cases}$$

First, we assume that $A(t,\xi)$ is a Sylvester matrix; that is,

(2.2)
$$A(t,\xi) = \begin{pmatrix} 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ & & \ddots & \ddots & \\ 0 & 0 & \dots & 0 & 1 \\ a_N & a_{N-1} & \dots & \dots & a_1 \end{pmatrix}, \quad a_j = (-1)^{j-1}\sigma_j,$$

where by σ_i we denote the elementary symmetric function

(2.3)
$$\sigma_{j} \equiv \sigma_{j}[I] = \sum_{I^{[j]}} \prod_{m=1}^{j} \lambda_{p(m)},$$

$$I^{[j]} = \{p(1), \dots, p(j) \in I : p(1) < \dots < p(j)\}.$$

Let

$$\omega[I] := -(a_N, \dots, a_1) = ((-1)^N \sigma_N, (-1)^{N-1} \sigma_{N-1}, \dots, -\sigma_1).$$

We remark that $-\omega[I]$ is the Nth row of A.

DEFINITION 5

For any $K \subset I$ and $j \leq \#(K)$, we define the symmetric function

$$\sigma_{j}[K] := \sum_{K[j]} \prod_{m=1}^{j} \lambda_{p(m)}, \quad K^{[j]} = \{p(1), \dots, p(j) \in K : p(1) < \dots < p(j)\}.$$

We put $\sigma_0[K] = 1$, and $\sigma_j[K] = 0$ for any j > #(K).

In order to establish our energy estimates by using the symmetric functions in Definition 5, we prepare some tools. It is clear that

(2.4)
$$\sigma_{j}[K] = \begin{cases} \lambda_{i}\sigma_{j-1}[K \setminus \{i\}] & \text{for } j = \#(K), \\ \sigma_{j}[K \setminus \{i\}] + \lambda_{i}\sigma_{j-1}[K \setminus \{i\}] & \text{for any } 1 \leq j < \#(K), \end{cases}$$

for any choice of $i \in K$. Moreover, $\partial_t \sigma_0[K] = 0$, whereas

(2.5)
$$\partial_t \sigma_j[K] = \sum_{i \in K} (\partial_t \lambda_i) \sigma_{j-1}[K \setminus \{i\}] \quad \text{for any } 1 \le j \le \#(K).$$

Now, for any $K \subseteq I$, we put k = #(K) and we define the row vector

$$\omega[K] := ((-1)^k \sigma_k[K], (-1)^{k-1} \sigma_{k-1}[K], \dots, -\sigma_1[K], 1, 0, \dots, 0);$$

that is,

(2.6)
$$\omega[K] = \begin{cases} (1,0,\dots) & \text{if } K = \emptyset, \\ (-\lambda_i, 1, 0, \dots) & \text{if } K = \{i\}, \\ (\lambda_i \lambda_j, -(\lambda_i + \lambda_j), 1, 0, \dots) & \text{if } K = \{i, j\}, \\ \vdots & \vdots & \vdots \end{cases}$$

We denote also $\omega[K] = \omega_{i_1 \dots i_k}$, where $K = \{i_1, \dots, i_k\}$ and $\omega[\emptyset] = \omega$.

We can use (2.4) to prove that $\omega[I \setminus \{i\}]$ is the left eigenvector of A related to λ_i , that is, that

$$\omega[I \setminus \{i\}]A = \lambda_i \omega[I \setminus \{i\}]$$
 for any $i \in I$.

On the other hand, using again (2.4), we can prove that for any $K \subseteq I$, we have

(2.7)
$$\omega[K \setminus \{i\}] A = \omega[K] + \lambda_i \omega[K \setminus \{i\}] \quad \text{for any } i \in K.$$

It is clear that $\partial_t \omega = 0$, whereas we can use (2.5) to prove that if $K \neq \emptyset$, then

$$(2.8) \ \partial_t \omega[K] = ((-1)^k \partial_t \sigma_k[K], \dots, -\partial_t \sigma_1[K], 0, \dots, 0) = -\sum_{i \in K} (\partial_t \lambda_i) \omega[K \setminus \{i\}].$$

DEFINITION 6

For any vector $V \in \mathbb{C}^N$, we define

$$[V]_l^2 := \sum_{\#(K)=l} |\omega[K]V|^2, \quad l = 0, \dots, N-1.$$

REMARK 2.1

Now let $K \subseteq I$ with $\#(K) \le N-2$. It is clear that

$$\omega[K \cup \{i\}] - \omega[K \cup \{j\}] = (\lambda_j - \lambda_i)\omega[K] \quad \text{for any } i, j \not \in K;$$

hence for any vector $V \in \mathbb{C}^n$, we get

$$|\omega[K]V| \lesssim \frac{|\omega[K \cup \{i\}]V| + |\omega[K \cup \{j\}]V|}{t^{\kappa_{ij}}},$$

provided that $\kappa_{ij} < \infty$.

We are ready to state the following.

LEMMA 2.2

Let $K \subseteq I$ with k = #(K); we put $J = I \setminus K$. Then for any vector $V \in \mathbb{C}^n$, we have

$$(2.9) |\omega[K]V| \lesssim \frac{[V]_l}{t^{\sum_{l-k}[J]}}, \quad l = k, \dots, N-1.$$

To prove Lemma 2.2, we need the following.

LEMMA 2.3

Let $J \subset I$, and let $J' = J \setminus \{j\}$ for some $j \in J$. Then we have

$$\Sigma_{h+1}[J] \ge \alpha_J + \Sigma_h[J'], \quad h = 0, \dots, \#(J) - 2.$$

Proof

We prove the statement by induction on M = #(J). It is trivially true for M = 2 since $\Sigma_1[J] = \alpha_J$. We assume that the thesis is satisfied for some M - 1, and we prove it for M.

With the notation introduced in Definition 3, let

$$P_{\min}(J) = P_{\alpha_J}(J) = \{J_1, \dots, J_m\}.$$

Now $j \in J_p$ for some p, say, p = 1. We recall that

$$\Sigma_{h+1}[J] = \max_{p} \sigma_{h+1}[J_p, \#(J \setminus J_p)];$$

we have

$$\sigma_{h+1}[J_p, \#(J \setminus J_p)] = \sigma_{h+1}[J_p, M - \#(J_p)]$$

$$= \alpha_J + \sigma_h[J_p, (M-1) - \#(J_p)]$$

$$= \alpha_J + \sigma_h[J_p, \#(J' \setminus J_p)]$$

for any $p \ge 2$, whereas if we put $l = M - \#(J_1)$, then

$$\sigma_{h+1}[J_1, l] = \begin{cases} (h+1)\alpha_J & \text{if } (h+1) \le l, \\ l\alpha_J + \Sigma_{h+1-l}[J_1] & \text{if } (h+1) \ge l+1. \end{cases}$$

Now, being $\#(J_1) \leq M - 1$, we can apply the hypothesis of induction; hence

$$\Sigma_{h+1-l}[J_1] \ge \alpha_J + \Sigma_{h-l}[J_1'],$$

where we put $J_1' = J_1 \setminus \{j\}$. We remark that

$$\sigma_{h+1}[J_1,l] \geq \alpha_J + \begin{cases} h\alpha_J & \text{if } h \leq l, \\ l\alpha_J + \Sigma_{h-l}[J_1'] & \text{if } h \geq l+1; \end{cases}$$

that is,

$$\sigma_{h+1}[J_1, l] \ge \alpha_J + \sigma_h[J_1', \#(J' \setminus J_1')].$$

This concludes the proof.

Proof of Lemma 2.2

We proceed by induction on n = l - #(K). If n = 0, then (2.9) is trivial. We assume that (2.9) is satisfied for some n, and we prove it for n + 1.

We put $J = I \setminus K$. Let α_J and

$$P_{\min}(J) = P_{\alpha_J}(J) = \{J_1, \dots, J_m\}$$

be as in Definition 3. Let $i_1 \in J_1$ and $i_2 \in J_2$; then

$$(2.10) |\omega[K]V| \lesssim \frac{|\omega[K \cup \{i_1\}]V| + |\omega[K \cup \{i_2\}]V|}{t^{\alpha_J}}.$$

Now we can apply the hypothesis of induction to the term $|\omega[K \cup \{i_p\}]V|$ since

$$l - \#(K \cup \{i_n\}) = n.$$

We get

$$|\omega[K \cup \{i_p\}]V| \lesssim \frac{[V]_l}{t^{\sum_{l-(k+1)}[J']}},$$

where $J' = J \setminus \{i_p\}$. Thanks to Lemma 2.3, we have

$$\alpha_J + \Sigma_{l-(k+1)}[J'] \le \Sigma_{l-k}[J].$$

This concludes the proof.

We show how Lemma 2.2 works with the following.

EXAMPLE 2.4

We consider Example 1.12:

$$P_{\min}(I) = \{I_1, I_2\}, \quad I_1 = \{1, 2\}, I_2 = \{3, 4, 5\},$$

with

$$\kappa = \begin{pmatrix} \infty & \beta_1 & \alpha & \alpha & \alpha \\ \beta_1 & \infty & \alpha & \alpha & \alpha \\ \alpha & \alpha & \infty & \beta_2 & \beta_2 \\ \alpha & \alpha & \beta_2 & \infty & \gamma \\ \alpha & \alpha & \beta_2 & \gamma & \infty \end{pmatrix},$$

and we directly prove the estimate

$$|\omega V| \lesssim [V]_3 \cdot t^{-\Sigma_3}$$
.

In fact, we have

$$|\omega[\emptyset]V| \lesssim \frac{|\omega_1 V| + |\omega_3 V|}{t^\alpha} \lesssim \frac{|\omega_{12} V| + |\omega_{13} V|}{t^{2\alpha}} + \frac{|\omega_{31} V| + |\omega_{34} V|}{t^{2\alpha}}$$

$$= \frac{|\omega_{12}V| + 2|\omega_{13}V| + |\omega_{34}V|}{t^{2\alpha}}$$

$$\lesssim \frac{|\omega_{123}V| + |\omega_{124}V|}{t^{2\alpha+\beta_2}} + \frac{2|\omega_{123}V| + 2|\omega_{134}V|}{t^{3\alpha}} + \frac{|\omega_{134}V| + |\omega_{345}V|}{t^{3\alpha}}$$

$$\lesssim [V]_3 t^{-\max\{2\alpha+\beta_2,3\alpha\}}.$$

LEMMA 2.5

If $V(t,\xi)$ satisfies (2.1), then we have the following estimates:

$$\partial_t [V]_0^2 \lesssim (|\xi|[V]_1 + |BV|)[V]_0,$$

(2.11)
$$\partial_t [V]_l^2 \lesssim ([V]_{l-1} + |\xi|[V]_{l+1} + |BV|)[V]_l, \quad l = 1, \dots, N-2,$$
$$\partial_t [V]_{N-1}^2 \lesssim ([V]_{N-2} + |BV|)[V]_{N-1}.$$

Proof

We fix l and $K \subset I$ to be such that #(K) = l, as in Definition 6. We have to estimate

(2.12)
$$\partial_t |\omega[K]V|^2 = 2\operatorname{Re}(\partial_t(\omega[K]V), \omega[K]V) \\ = 2\operatorname{Re}(i|\xi|\omega[K]AV + \omega[K]BV + (\partial_t\omega[K])V, \omega[K]V).$$

Let $j \in I \setminus K$; thanks to (2.7), we get

 $\begin{aligned} &\operatorname{Re}(i|\xi|\omega[K]AV,\omega[K]V) = \operatorname{Re}(i|\xi|\lambda_j\omega[K]V,\omega[K]V) + \operatorname{Re}(i|\xi|\omega[K\cup\{j\}]V,\omega[K]V); \\ &\operatorname{since}\ \lambda_j \text{ is real valued, the first term vanishes, whereas} \end{aligned}$

$$|\xi||\omega[K \cup \{j\}]V| \cdot |\omega[K]V| \lesssim |\xi|[V]_{l+1}[V]_l.$$

For the second term of (2.12), we simply estimate $|\omega[K]BV| \lesssim |BV|$, whereas for the third one, thanks to (2.8), we get

$$|(\partial_t \omega[K])V| \le \sum_{i \in K} |\partial_t \lambda_i| |\omega[K \setminus \{i\}]V| \lesssim [V]_{l-1}$$

since λ_i is Lipschitz continuous.

DEFINITION 7

Let $K^1 = \emptyset$. We define by induction a sequence of sets $K^k \subsetneq I$ with $\#(K^k) = k - 1$, such that

$$K^1 \subset K^2 \subset \cdots \subset K^N$$
.

It is clear that there exists a (unique) permutation π over I such that

$$K^{k} = \{\pi(1), \pi(2), \dots, \pi(k-1)\}.$$

We define the vectors

$$w_k := \omega[K^k] \equiv \omega_{\pi(1), \pi(2), \dots, \pi(k-1)}, \quad k = 1, \dots, N.$$

REMARK 2.6

With the notation in Definition 7, (w_1, \ldots, w_N) is a base of the vector space \mathbb{C}^n over \mathbb{C} .

Moreover, if we denote by (e_1, \ldots, e_N) the canonical base, that is,

$$e_1 = (1, 0, \ldots), \quad e_2 = (0, 1, 0, \ldots), \quad \ldots,$$

then it can be proved that

(2.13)
$$w_i = \sum_{j=1}^{i} (-1)^{i-j} \sigma_{i-j}[K^i] e_j, \quad i = 1, \dots, N,$$

(2.14)
$$e_j = \sum_{k=1}^{j} \widetilde{\sigma}_{j-k} [K^{k+1}] w_k, \quad j = 1, \dots, N,$$

where for any $K \subset I$ we define the symmetric functions

$$\widetilde{\sigma}_j[K] := \sum_{\widetilde{K[j]}} \prod_{m=1}^j \lambda_{p(m)}, \quad \widetilde{K^{[j]}} = \{p(1), \dots, p(j) \in K : p(1) \leq \dots \leq p(j)\}.$$

DEFINITION 8

Let $|\xi| \geq 1$. We set the energy

$$E_1(t,\xi) := |V|^2$$
.

We remark that for any $t \geq 0$ and $\xi \in \mathbb{R}^n$, the energy $E_1(t,\xi)$ represents a norm for the vector $V(t,\xi) \in \mathbb{C}^N$. Since

$$\partial_t E_1(t,\xi) \le |\xi| |V|^2 = |\xi| E_1(t,\xi),$$

by applying Grönwall's lemma for $t \leq t_1(\xi)$, where we put

$$(2.15) t_1(\xi) := |\xi|^{-1 + (1/d^*)},$$

we get

$$(2.16) E_1(t,\xi) \lesssim \exp\left(\int_0^{t_1(\xi)} C_1|\xi| \, ds\right) E_1(0,\xi) \lesssim \exp(C_1|\xi|^{1/d^*}) E_1(0,\xi).$$

DEFINITION 9

For any $t \in [t_1(\xi), T]$, we set the energy

$$E_2(t,\xi) := \sum_{l=0}^{N-1} \left(\frac{t_1(\xi)}{t}\right)^{2(N-(l+1))} [V]_l^2.$$

For any $t \in [t_1(\xi), T]$ and $\xi \in \mathbb{R}^n$, the energy $E_2(t, \xi)$ represents a norm for $V(t, \xi) \in \mathbb{C}^N$; moreover, thanks to Remark 2.6,

(2.17)
$$\begin{cases} E_2(t,\xi) \lesssim E_1(t,\xi), \\ E_1(t,\xi) \lesssim (t_1(\xi))^{-2(N-1)} E_2(t,\xi) \\ = |\xi|^C E_2(t,\xi), \quad C = 2(N-1) \left(1 - \frac{1}{d^*}\right). \end{cases}$$

We get

$$(2.18) \quad \partial_t E_2(t,\xi) = -\frac{2(N-(l+1))}{t} E_2(t,\xi) + \sum_{l=0}^{N-1} \left(\frac{t_1(\xi)}{t}\right)^{2(N-(l+1))} \partial_t [V]_l^2,$$

and we claim that the second term in (2.18) is estimated by

$$|\xi|^{1/d^*} \frac{1}{t} E_2(t,\xi).$$

This is sufficient to conclude the proof since, by applying Grönwall's lemma,

$$E_{2}(t,\xi) \lesssim \exp\left(\int_{t_{1}}^{T} C_{1}|\xi|^{1/d^{*}} \frac{1}{s} ds\right) E_{2}(t_{1}(\xi),\xi)$$

$$= \exp\left(C_{1}|\xi|^{1/d^{*}} \log \frac{t}{t_{1}}\right) E_{2}(t_{1}(\xi),\xi)$$

$$\lesssim \exp\left(C_{1}|\xi|^{1/d^{*}} \left(\log T + \left(1 - \frac{1}{d^{*}}\right) \log |\xi|\right)\right) E_{2}(t_{1}(\xi),\xi),$$

$$t \in [t_{1}(\xi),T].$$

Therefore we should prove the following.

LEMMA 2.7

For any $t \in [t_1(\xi), T]$, we have

$$\left(\frac{t_1(\xi)}{t}\right)^{2(N-(l+1))} \partial_t[V]_l^2 \lesssim |\xi|^{1/d^*} \frac{1}{t} E_2(t,\xi), \quad l = 0, \dots, N-1.$$

Before proving Lemma 2.7, we need the following.

DEFINITION 10

Let

$$\omega := \max\{\kappa_{ij} : i \neq j\} \in [\alpha, \infty];$$

we put

(2.20)
$$d_{\max} := \begin{cases} \infty & \text{if } \omega = 1, \\ 2 + \frac{2}{\omega - 1} & \text{if } 1 < \omega < \infty, \\ 2 & \text{if } \omega = \infty. \end{cases}$$

REMARK 2.8

The Gevrey index given by Theorem 2 satisfies $d^* \leq d_{\text{max}}$.

In particular, if $N \ge 4$, then Theorem 2 gives $d^* \le 2 \le d_{\text{max}}$, whereas if N = 3, then $\kappa_2 = \omega$ and Theorem 2 (see also [DAT]) gives

$$d^* = \begin{cases} 1 + \frac{\alpha+1}{2\alpha-1} & \text{if } \alpha \ge 2, \\ 2 & \text{if } \alpha = 1 \text{ and } \omega = \infty, \\ 2 + \frac{1}{\omega} & \text{if } \alpha = 1 \text{ and } \omega < \infty. \end{cases}$$

Proof of Lemma 2.7

Thanks to (2.11), it is sufficient to prove the following:

(2.21)
$$\left(\frac{t_1(\xi)}{t}\right)^{N-(l+1)} [V]_{l-1} \lesssim |\xi|^{1/d^*} \frac{1}{t} \sqrt{E_2}, \quad l = 1, \dots, N-1,$$

$$(2.22) \qquad \left(\frac{t_1(\xi)}{t}\right)^{N-(l+1)} |\xi|[V]_{l+1} \lesssim |\xi|^{1/d^*} \frac{1}{t} \sqrt{E_2}, \quad l = 0, \dots, N-2,$$

(2.23)
$$|BV| \lesssim |\xi|^{1/d^*} \frac{1}{t} \sqrt{E_2}.$$

In order to prove (2.21), we set

$$t_2(\xi) := |\xi|^{-1/2\omega}$$

for $\omega < \infty$, and $t_2(\xi) = T$ for $\omega = \infty$. First, we assume that $t_1(\xi) \le t_2(\xi)$. Then, for any $t \in [t_1, t_2]$,

$$\frac{t^2}{t_1(\xi)} \le \frac{t_2^2}{t_1} = |\xi|^{-1/\omega} |\xi|^{(d^*-1)/d^*} \le |\xi|^{1/d^*}$$

since

$$-\frac{1}{\omega} \le -1 + \frac{2}{d^*}, \quad \text{where } d^* \le d_{\max} = \frac{2\omega}{\omega - 1}.$$

Hence we get (2.21) in $[t_1, t_2]$; indeed,

$$\left(\frac{t_1(\xi)}{t}\right)^{N-(l+1)}[V]_{l-1} = \frac{t^2}{t_1(\xi)} \cdot \frac{1}{t} \left(\frac{t_1(\xi)}{t}\right)^{N-l} [V]_{l-1} \leq |\xi|^{1/d^*} \frac{1}{t} \sqrt{E_2}.$$

On the other hand, for any $t \in [t_2, T]$, by applying Lemma 2.2 we can estimate

$$(2.24) [V]_{l-1} \lesssim \frac{1}{t^{\omega}} [V]_l \leq \frac{1}{t_2^{\omega-1}} \frac{1}{t} [V]_l = |\xi|^{(\omega-1)/2\omega} \frac{1}{t} [V]_l \leq |\xi|^{1/d^*} \frac{1}{t} [V]_l.$$

Hence

$$(2.25) \qquad \left(\frac{t_1(\xi)}{t}\right)^{N-(l+1)} [V]_{l-1} \lesssim \left(\frac{t_1(\xi)}{t}\right)^{N-(l+1)} |\xi|^{1/d^*} \frac{1}{t} [V]_l \leq |\xi|^{1/d^*} \frac{1}{t} \sqrt{E_2}.$$

On the other hand, if $t_2(\xi) \le t_1(\xi)$, then for any $t \in [t_1, T]$ we can estimate

$$[V]_{l-1} \lesssim \frac{1}{t^{\omega}} [V]_l \leq \frac{1}{t_1^{\omega - 1}} \frac{1}{t} [V]_l \leq \frac{1}{t_2^{\omega - 1}} \frac{1}{t} [V]_l,$$

and the proof follows from (2.24) and (2.25).

In order to prove (2.22), it is sufficient to notice that $|\xi|t_1(\xi) = |\xi|^{1/d^*}$; hence

$$\left(\frac{t_1(\xi)}{t}\right)^{N-(l+1)} |\xi|[V]_{l+1} = t_1(\xi)|\xi| \frac{1}{t} \left(\frac{t_1(\xi)}{t}\right)^{N-(l+2)} [V]_{l+1} \lesssim |\xi|^{1/d^*} \frac{1}{t} \sqrt{E_2}.$$

We consider now (2.23). With the notation in Definition 7 we get

$$(2.26) |BV| \lesssim |V| \lesssim \sum_{n=1}^{N} |\omega[K^p]V|.$$

It is immediate that

$$|\omega[K^N]V| \le |V|_{N-1} \le \sqrt{E_2}.$$

Let $p \leq N-1$. Thanks to Lemma 2.2, if we put $J^p = I \setminus K^p$, then

$$\begin{split} |\omega[K^pV]| \lesssim \frac{[V]_l}{t^{\Sigma_{l-(p-1)}[J^p]}} & \leq \left(\frac{t}{t_1(\xi)}\right)^{N-(l+1)} \frac{1}{t^{\Sigma_{l-(p-1)}[J^p]-1}} \times \frac{1}{t} \sqrt{E_2(t,\xi)}, \\ l &= p-1, \dots, N-1. \end{split}$$

From Lemma 2.3, since $\#(J^p) = N - (p-1)$, it follows that

$$\sum_{l=(n-1)} [J^p] \leq \sum_l;$$

hence, for fixed l, we get

$$(2.27) \qquad |\omega[K^p]V| \lesssim \left(\frac{t}{t_1(\xi)}\right)^{N-(l+1)} \frac{1}{t^{\Sigma_l-1}} \times \frac{1}{t} \sqrt{E_2(t,\xi)} \quad \text{for any } p \leq l+1.$$

Moreover, (2.27) is trivially satisfied for p > l + 1, too, since

$$|\omega[K^p]V| \le [V]_{p-1} \le \left(\frac{t}{t_1(\xi)}\right)^{N-p} \sqrt{E_2(t,\xi)} \lesssim \left(\frac{t}{t_1(\xi)}\right)^{N-(l+1)} \sqrt{E_2(t,\xi)}.$$

Let h be as in (1.9). We set

(2.28)
$$t_2(\xi) := (t_1(\xi))^{1/(\kappa_h + 1)} \equiv |\xi|^{-(d^* - 1)/(\kappa_h + 1)d^*}$$

for $\kappa_h < \infty$ and $t_2(\xi) = T$ for $\kappa_h = \infty$. For any $t \in [t_1, t_2]$, we take l = h - 1 in (2.27); hence, thanks to (1.9), we obtain

(2.29)
$$|BV| \lesssim t_1^{-(N-h)} t_2^{N-h+1-\Sigma_{h-1}} \frac{1}{t} \sqrt{E_2}.$$

By using (2.28), since

$$-(N-h) + \frac{N-h+1-\Sigma_{h-1}}{\kappa_h+1} = -\frac{(N-h)\kappa_h + (\Sigma_{h-1}-1)}{\kappa_h+1}$$
$$= -\frac{1}{d^*-1},$$

we get

$$(2.30) |V| \lesssim t_1^{-1/(d^*-1)} \frac{1}{t} \sqrt{E_2} = |\xi|^{1/d^*} \frac{1}{t} \sqrt{E_2}.$$

For any $t \in [t_2, T]$, we take l = h in (2.27); hence, thanks to (1.9), we get

(2.31)
$$|BV| \lesssim t_1^{-(N-(h+1))} t_2^{N-(h+1)+1-\Sigma_h} \frac{1}{t} \sqrt{E_2}.$$

By using again (2.28), we find the same estimate in (2.30) since

$$-(N-h-1) + \frac{N-h-\Sigma_h}{\kappa_h+1} = -\frac{(N-h)\kappa_h + (\Sigma_{h-1}-1)}{\kappa_h+1} = -\frac{1}{d^*-1}.$$

This concludes the proof.

Now we are ready to prove Theorem 2.

Proof of Theorem 2

As in [DAS, Section 4], we transform the first-order system (1.1) into an Nth-order system whose principal part is a block Sylvester matrix. Using the Duhamel

principle, we can assume $f \equiv 0$. Let

$$\begin{split} L(t,\tau,i\xi) &= \tau - i |\xi| A(t,\xi) - B(t), \qquad \chi(t,\tau,i\xi) := \tau - i |\xi| A(t,\xi), \\ \Lambda(t,\tau,i\xi) &:= \left(\chi(t,\tau,i\xi)\right)^{\mathrm{adj}}, \end{split}$$

where $\chi(t, \partial_t, \partial_x)$ is the principal part of $L(t, \partial_t, \partial_x)$, and with the notation F^{adj} we denote the classical adjoint (or adjugate) matrix of F, that is, the transpose of the matrix of cofactors.

It is clear that the well-posedness for the systems

(2.32)
$$\mathcal{L}_1(t,\partial_t,\partial_x) = \Lambda(t,\partial_t,\partial_x)L(t,\partial_t,\partial_x),$$
$$\mathcal{L}_2(t,\partial_t,\partial_x) = L(t,\partial_t,\partial_x)\Lambda(t,\partial_t,\partial_x)$$

implies the well-posedness for $L(t, \partial_t, \partial_x)$. The systems $\mathcal{L}_1(t, \partial_t, \partial_x)$ and $\mathcal{L}_2(t, \partial_t, \partial_x)$ are Nth-order systems with diagonal principal part $P(t, \partial_t, \partial_x) \mathbf{I}_N$, where $P(t, \tau, i\xi)$ is the characteristic polynomial of $\chi(t, \tau, i\xi) = \tau - i|\xi|A(t, \xi)$. Let

$$\mathcal{W} := \begin{pmatrix} W^{(1)} \\ W^{(2)} \\ \vdots \\ W^{(N)} \end{pmatrix} \in \mathbb{C}^{N^2} \quad \text{with } W^{(j)} := \begin{pmatrix} (i|\xi|)^{N-1}V^{(j)} \\ (i|\xi|)^{N-2}\partial_tV^{(j)} \\ \vdots \\ \partial_t^{N-1}V^{(j)} \end{pmatrix};$$

then the Cauchy problem for $\mathcal{L}_1(t, \partial_t, i\xi)V(t, \xi) = 0$ (or $\mathcal{L}_2(t, \partial_t, i\xi)V(t, \xi) = 0$) is equivalent to the Cauchy problem for

(2.33)
$$\partial_t W - i|\xi| \mathcal{A}(t,\xi) W - \mathcal{B}(t,\xi) W = 0,$$

where

$$\mathcal{A}(t,\xi) = \bigoplus_{i=1}^{N} A_{\mathrm{syl}}(t,\xi),$$

and by $A_{\rm syl}(t,\xi)$ we denote the Sylvester matrix with eigenvalues $\{\lambda_j(t,\xi)\}$, namely, (2.2), whereas $\mathcal B$ is an $((N^2)\times (N^2))$ -matrix with the following block structure:

(2.34)
$$\mathcal{B} = \begin{pmatrix} \mathcal{B}_{[1,1]} & \mathcal{B}_{[1,2]} & \dots & \mathcal{B}_{[1,N]} \\ \mathcal{B}_{[2,1]} & \mathcal{B}_{[2,2]} & \dots & \mathcal{B}_{[2,N]} \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{B}_{[N,1]} & \mathcal{B}_{[N,2]} & \dots & \mathcal{B}_{[N,N]} \end{pmatrix};$$

each $(N \times N)$ -block $\mathcal{B}_{[j,k]}$ has nonzero elements only on the last row and is bounded (for $|\xi| \geq 1$).

We remark that $W^{(j)}$ satisfies the $(N \times N)$ -system

$$(2.35) W_t^{(j)} - i|\xi| A_{\text{syl}}(t,\xi) W^{(j)} - \mathcal{B}_{[j,j]}(t,\xi) W^{(j)} = \sum_{k \neq j} \mathcal{B}_{[j,k]}(t,\xi) W^{(k)};$$

hence we may regard $\sum_{k\neq j}\mathcal{B}_{[j,k]}(t,\xi)W^{(k)}$ as a second member.

Let $|\xi| \ge 1$, and let $E_1[W^{(j)}](t,\xi)$ and $E_2[W^{(j)}](t,\xi)$ be the energies of the solution $W^{(j)}$ of (2.35), as in Definitions 8 and 9; we define the energies for the

solution W of (2.33),

$$\mathcal{E}_1(t,\xi) := \sum_{j=1}^N E_1[W^{(j)}](t,\xi), \qquad \mathcal{E}_2(t,\xi) := \sum_{j=1}^N E_2[W^{(j)}](t,\xi).$$

For any j = 1, ..., N, we have

$$E_1[W^{(j)}]'(t,\xi) \lesssim |\xi| E_1[W^{(j)}](t,\xi) + \left[\sum_{k \neq j} \mathcal{B}_{[j,k]}(t,\xi)W^{(k)}\right]^2,$$

and using

$$\left[\sum_{k \neq j} \mathcal{B}_{[j,k]}(t,\xi) W^{(k)}\right]^2 \lesssim \sum_{k \neq j} [W^{(k)}]^2 \lesssim \sum_{k \neq j} E_1[W^{(j)}],$$

we derive

$$\mathcal{E}'_1(t,\xi) \lesssim |\xi| \mathcal{E}_1(t,\xi).$$

Therefore, from (2.16) we obtain

$$\mathcal{E}_1(t,\xi) \lesssim \exp(C_1|\xi|^{1/d^*})\mathcal{E}_1(0,\xi), \quad t \in [0,t_1(\xi)],$$

and, analogously, from (2.19) we get

$$\mathcal{E}_2(t,\xi) \lesssim \exp\left(C_1|\xi|^{1/d^*} \left(\log T + \left(1 - \frac{1}{d^*}\right) \log|\xi|\right)\right) \mathcal{E}_2\left(t_1(\xi), \xi\right), \quad t \in [t_1(\xi), T].$$

By using (2.17), we can prove that

$$\mathcal{E}_1(t,\xi) \lesssim |\xi|^C \exp\left(C_1|\xi|^{1/d^*} \left(\log T + \left(1 - \frac{1}{d^*}\right) \log |\xi|\right)\right) \mathcal{E}_1(0,\xi), \quad t \in [0,T];$$

Therefore, for any $1 < d < d^*$,

$$\mathcal{E}_1(t,\xi) \le \exp(C'|\xi|^{\frac{1}{d}})\mathcal{E}_1(0,\xi), \quad t \in [0,T].$$

We conclude the proof by standard methods using a Paley-Wiener-Schwartz-type theorem (see [H]) for the characterization of functions in Gevrey classes via estimates of their Fourier-Laplace transforms.

3. Levi conditions for the Nth order scalar equation

We consider the Cauchy problem

(3.1)
$$\begin{cases} L(t, \partial_t, \partial_x) u(t, x) = \sum_{j=0}^{N-1} M_j(t, \partial_t, \partial_x) u(t, x), \\ \partial_t^i u(0, x) = u_i(x), \quad i = 0, \dots, N-1, \end{cases}$$

where

$$L(t, \partial_t, \partial_x) = \partial_t^N + \sum_{0 \le k \le N-1} a_k(t, \partial_x) \partial_t^k,$$

with $a_k(t,\xi)$ homogeneous of degree N-k in ξ , is an Nth-order homogeneous operator in normal form and

$$M_j(t, \partial_t, \partial_x) = \sum_{0 \le l \le j} b_{j,l}(t, \partial_x) \partial_t^l,$$

with $b_{j,l}(t,\xi)$ homogeneous of degree j-l in ξ , is a lower-order term.

We assume that the roots λ_j of the characteristic equation $L(t, \lambda_j(t, \xi), \xi/|\xi|) = 0$ verify Assumption 1.

We define the following vector functions, homogeneous of degree zero in ξ :

$$b_j(t,\xi) := \sum_{l=0}^{j} b_{j,l}(t,\xi/|\xi|)e_{l+1} = \sum_{l=0}^{j} |\xi|^{-(j-l)}b_{j,l}(t,\xi)e_{l+1},$$

where (e_l) denotes the canonical basis of \mathbb{C}^N .

Let u be a solution of the scalar equation in (3.1), and let $v(t,\xi) := \widehat{u}(t,\xi)$ (resp., $v_i(\xi) = \widehat{u}_i(\xi)$) be the Fourier transform with respect to the x-variable of u (resp., u_i); then v satisfies the system

(3.2)
$$\begin{cases} L(t, \partial_t, i\xi) v(t, \xi) = \sum_{j=0}^{N-1} M_j(t, \partial_t, i\xi) v(t, \xi), \\ \partial_t^i v(0, \xi) = v_i(\xi), \quad i = 0, \dots, N-1. \end{cases}$$

We put, for $|\xi| \ge 1$,

$$V := \begin{pmatrix} (i|\xi|)^{N-1}v \\ (i|\xi|)^{N-2}\partial_t v \\ \dots \\ \partial_t^{N-1}v \end{pmatrix};$$

then the scalar equation in (3.2) is equivalent to the first-order $(N \times N)$ -system

$$\partial_t V - i|\xi|A_{\text{syl}}(t,\xi)V - B(t,\xi)V = 0,$$

where $A_{\rm syl}(t,\xi)$ is the Sylvester matrix in (2.2) and B is an $(N \times N)$ -matrix with nonzero elements only on the last row, which can be written in the following form:

$$(B)_{N} = \sum_{j=0}^{N-1} (i|\xi|)^{-(N-1-j)} b_j(t,\xi).$$

In order to refine the estimate of |BV| in Lemma 2.5 by using some Levi conditions, we introduce the following.

DEFINITION 11

Let $b = \sum_{l=1}^{N} b_l e_l$ be a vector in \mathbb{C}^N . We define by induction

$$\Delta_0[b](\tau) = \sum_{l=1}^N b_l \tau^{l-1},$$

$$\Delta_1[b](\tau_0, \tau_1) = \frac{\Delta_0[b](\tau_0) - \Delta_0[b](\tau_1)}{\tau_0 - \tau_1},$$

$$\Delta_2[b](\tau_0, \tau_1, \tau_2) = \frac{\Delta_1[b](\tau_0, \tau_1) - \Delta_0[b](\tau_0, \tau_2)}{\tau_1 - \tau_2},$$

$$\cdots = \cdots$$

$$\Delta_{k}[b](\tau_{0}, \dots, \tau_{k-2}, \tau_{k-1}, \tau_{k})$$

$$= \frac{\Delta_{k-1}[b](\tau_{0}, \dots, \tau_{k-3}, \tau_{k-2}, \tau_{k-1}) - \Delta_{k-1}[b](\tau_{0}, \dots, \tau_{k-3}, \tau_{k-2}, \tau_{k})}{\tau_{k-1} - \tau_{k}}.$$

We remark that $\Delta_k[b](\tau_0,\ldots,\tau_{k-2},\tau_{k-1},\tau_k)$ is bounded for any $k\geq 0$ and that

$$\Delta_0[b](\tau) = b \cdot V(\tau), \text{ where } V(\tau) = (1, \tau, \tau^2, \dots, \tau^{N-1}).$$

LEMMA 3.1

Let $b \in \mathbb{C}^N$ be as in Definition 11; we have

$$b \equiv \sum_{l=1}^{N} b_{l} e_{l} = \sum_{k=1}^{N} \left(\sum_{l=k}^{N} b_{l} \widetilde{\sigma}_{l-k} [K^{k+1}] \right) w_{k} = \sum_{k=1}^{N} \Delta_{k-1} [b] (\lambda_{\pi(1)}, \dots, \lambda_{\pi(k)}) w_{k},$$

where we use the notation introduced in Definition 7.

Proof

See [CT, Proposition 3.2].

REMARK 3.2

We remark that

$$(b_k = \cdots = b_N = 0) \Longrightarrow (\Delta_{k-1}[b] = \cdots = \Delta_{N-1}[b] = 0).$$

Thanks to Lemma 3.1, we can write the vector $b_j(t,\xi) \in \mathbb{C}^N$ in the form

$$b_j(t,\xi) = \sum_{k=1}^{N} \Delta_{k-1}[b_j(t,\xi)](\lambda_{\pi(1)},\dots,\lambda_{\pi(k)})w_k;$$

hence it follows that

$$|BV| \leq \sum_{j=0}^{N-1} |\xi|^{-(N-1-j)} |b_{j}V|$$

$$\leq \sum_{j=0}^{N-1} |\xi|^{-(N-1-j)} \sum_{k=1}^{j+1} |\Delta_{k-1}[b_{j}](\lambda_{\pi(1)}, \dots, \lambda_{\pi(k)})||w_{k}V|,$$

where π is the permutation introduced in Definition 7. We introduce the following.

ASSUMPTION 4

Fix a permutation π in Definition 7, and let $\gamma_{j,k} \in [0,\infty)$ be such that

$$(3.4) \quad |\Delta_{k-1}[b_i](\lambda_{\pi(1)}, \dots, \lambda_{\pi(k)})| \lesssim t^{\gamma_{j,k}}, \quad j = 0, \dots, N-1, \ k = 1, \dots, j+1.$$

LEMMA 3.3

If we assume that

$$(3.5) |\Delta_0[b_i](\lambda_{\pi(l)})| \lesssim t^{\gamma_j} for any l = 1, \dots, j+1,$$

then condition (3.4) is satisfied by

(3.6)
$$\gamma_{j,k} = [\gamma_j - \overline{\Sigma}_{k-1}]^+, \quad 1 \le k \le j+1,$$

where $[a]^+ := \max\{a, 0\}$ is the positive part of a, and

$$\overline{\Sigma}_{k-1} := \sum_{m=1}^{k-1} \max_{m+1 \le l \le k} \kappa_{\pi(m)\pi(l)}
= \kappa_{\pi(k-1),\pi(k)} + \max\{\kappa_{\pi(k-2),\pi(k-1)}, \kappa_{\pi(k-2),\pi(k)}\} + \dots + \max_{2 \le l \le k} \kappa_{\pi(1)\pi(l)}.$$

Proof

For the sake of brevity, let π be the identical permutation on I.

If $\gamma_j \leq \overline{\Sigma}_{k-1}$, then $\gamma_{j,k} = 0$ and (3.6) follows from the boundedness of $\Delta_{k-1}[b_j]$. If $\gamma_j > \overline{\Sigma}_{k-1}$, thanks to Definition 11, it is clear that

$$|\Delta_{k-1}[b_j](\lambda_1, \dots, \lambda_k)| \leq \frac{|\Delta_{k-2}[b_j](\lambda_1, \dots, \lambda_{k-1})| + |\Delta_{k-2}[b_j](\lambda_1, \dots, \lambda_{k-2}, \lambda_k)|}{|\lambda_{k-1} - \lambda_k|}$$

$$\lesssim \frac{|\Delta_{k-2}[b_j](\lambda_1, \dots, \lambda_{k-1})| + |\Delta_{k-2}[b_j](\lambda_1, \dots, \lambda_{k-2}, \lambda_k)|}{t^{\kappa_{k-1}, k}};$$

on the other hand,

$$\begin{split} |\Delta_{k-2}[b_j](\lambda_1, \dots, \lambda_{k-2}, \lambda_{k-1})| \\ &\leq \frac{|\Delta_{k-3}[b_j](\lambda_1, \dots, \lambda_{k-2})| + |\Delta_{k-3}[b_j](\lambda_1, \dots, \lambda_{k-3}, \lambda_{k-1})|}{|\lambda_{k-2} - \lambda_{k-1}|} \\ &\lesssim \frac{|\Delta_{k-3}[b_j](\lambda_1, \dots, \lambda_{k-2})| + |\Delta_{k-3}[b_j](\lambda_1, \dots, \lambda_{k-3}, \lambda_{k-1})|}{t^{\kappa_{k-2,k-1}}} \\ |\Delta_{k-2}[b_j](\lambda_1, \dots, \lambda_{k-2}, \lambda_k)| \\ &\leq \frac{|\Delta_{k-3}[b_j](\lambda_1, \dots, \lambda_{k-2})| + |\Delta_{k-3}[b_j](\lambda_1, \dots, \lambda_{k-3}, \lambda_k)|}{|\lambda_{k-2} - \lambda_k|} \\ &\lesssim \frac{|\Delta_{k-3}[b_j](\lambda_1, \dots, \lambda_{k-2})| + |\Delta_{k-3}[b_j](\lambda_1, \dots, \lambda_{k-3}, \lambda_k)|}{t^{\kappa_{k-2,k}}}. \end{split}$$

Hence we may estimate $|\Delta_{k-1}[b_j](\lambda_1,\ldots,\lambda_k)|$ with

$$(2|\Delta_{k-3}[b_j](\lambda_1, \dots, \lambda_{k-2})| + |\Delta_{k-3}[b_j](\lambda_1, \dots, \lambda_{k-3}, \lambda_{k-1})|$$

$$+ |\Delta_{k-3}[b_j](\lambda_1, \dots, \lambda_{k-3}, \lambda_k)|)/t^{\kappa_{k-1,k} + \max\{\kappa_{k-2,k-1}, \kappa_{k-2,k}\}}.$$

By applying induction arguments, thanks to (3.5) we can prove

$$|\Delta_{k-1}[b_j](\lambda_1,\ldots,\lambda_k)| \lesssim \cdots \lesssim \frac{\sum_{l=1}^k |\Delta_0[b_j](\lambda_{\pi(l)})|}{t^{\overline{\Sigma}_{k-1}}} \lesssim \frac{t^{\gamma_j}}{t^{\overline{\Sigma}_{k-1}}};$$

that is, we have proved (3.6).

REMARK 3.4

If condition (1.4) is satisfied, then

$$\overline{\Sigma}_{k-1} = \Sigma_{k-1} = \kappa_1 + \dots + \kappa_{k-1}$$

by taking the identical permutation in Definition 7; that is, $K^k = \{1, \dots, k-1\}$.

REMARK 3.5

With the notation in Definition 2, let $P_{\min}(I) = P_{\alpha}(I) = \{I_1, \dots, I_m\}$. Then one can take a permutation π in Definition 7 such that

$$\overline{\Sigma}_{k-1} = (k-1)\alpha = \Sigma_{k-1}$$
 for $k \le m$.

Indeed, it is sufficient to take $\pi(p) \in I_p$ for $p \leq m$.

DEFINITION 12

Let Assumptions 1 and 4 be satisfied. For any $1 \le k \le j+1 \le N$, we put

$$J^k := I \setminus K^k;$$

we remark that $\#(J^k) = N - (k-1)$. For any $p \ge k$, we denote

(3.7)
$$\Sigma_{p}^{j,k} := \Sigma_{p-(k-1)}[J^{k}] - \gamma_{j,k},$$

(3.8)
$$\kappa_p^{j,k} := \begin{cases} \Sigma_1[J^k] - \gamma_{j,k} & \text{if } p = k, \\ \Sigma_p^{j,k} - \Sigma_{p-1}^{j,k} & \text{if } p > k \text{ and } \Sigma_p^{j,k} < \infty, \\ \infty & \text{otherwise.} \end{cases}$$

Now, let

(3.9)
$$h^{j,k} = \min\{p = k, \dots, N - 1 : \Sigma_p^{j,k} + p \ge N\}$$

if the minimum exists, and let $h^{j,k} = N$ otherwise. We define

(3.10)
$$\Gamma^j = \max_{1 \le k \le j+1} \Gamma^{j,k},$$

where

(3.11)
$$\Gamma^{j,k} := \begin{cases} \frac{(N-h)\kappa_h^{j,k} + \Sigma_h^{j,k}}{\kappa_h^{j,k} + 1} & \text{if } \kappa_h^{j,k} < \infty, \\ N - (h-1) & \text{if } \kappa_h^{j,k} = \infty. \end{cases}$$

For the sake of brevity, we omitted the apexes in $h^{j,k}$ in (3.11).

REMARK 3.6

We remark that for any j, k, it holds that

$$N - h^{j,k} \le \Gamma^{j,k} \le N - (h^{j,k} - 1);$$

that is, $\Gamma^{j,k}$ is decreasing with respect to $h^{j,k}$. It is clear that if we put

$$h^j := \min_k h^{j,k},$$

then

$$\max_{1 \le k \le j+1} \Gamma^{j,k} = \max_{\mathcal{H}_j} \Gamma^{j,k}, \quad \mathcal{H}_j := \{k : h^{j,k} = h^j\};$$

it follows that

$$N - h^j \le \Gamma^j \le N - (h^j - 1).$$

Moreover, once we have fixed h^j , then for any $k \in \mathcal{H}_j$ we can write $\Gamma^{j,k}$ as

$$\Gamma^{j,k} = N - (h^j - 1) - \frac{N - (h^j - 1) - \sum_{h^j - 1}^{j,k}}{\kappa_{h^j}^{j,k} + 1};$$

hence it is increasing with respect to $\Sigma_{h^j-1}^{j,k}$ and $\kappa_{h^j}^{j,k}$

REMARK 3.7

Let (1.4) and (3.5) be satisfied; thanks to Remark 3.4, with the notation in Definition 12, we get

$$K^k = \{1, \dots, k-1\}, \qquad J^k = I \setminus K^k = \{k, \dots, N\}.$$

Hence it holds that

$$\begin{split} \Sigma_p^{j,k} &= \Sigma_{p-(k-1)}[J^k] - \left[\gamma_j - \overline{\Sigma}_{k-1}[K^k]\right]^+ \\ &\leq \kappa_k + \dots + \kappa_p - \gamma_j + \Sigma_{k-1} = \Sigma_p - \gamma_j = \Sigma_p^{j,1}. \end{split}$$

It follows that $h^{j,k} \ge h^{j,1}$; that is, $h^j = h^{j,1}$. Moreover, $\kappa_p^{j,k} \le \kappa_p^{j,1}$. Therefore, from Remark 3.6, it follows that $\Gamma^j = \Gamma^{j,1}$.

We are ready to state the following.

THEOREM 5

Let Assumptions 1 and 4 be satisfied. Then the Cauchy problem (3.1) is well posed in γ^d for any $1 < d < \min\{d^*, d_{\max}\}$, where d_{\max} is defined in (2.20), and

(3.12)
$$d^* = \min\{d_j : j = 1, \dots, N - 1\},\$$

(3.13)
$$d_j := \begin{cases} \infty & \text{if } \Gamma^j \leq N - j, \\ 1 + \frac{N - j}{\Gamma^j - (N - j)} & \text{otherwise.} \end{cases}$$

REMARK 3.8

We remark that $d_j = \infty$, that is $\Gamma^j \leq N - j$, if and only if either $h^j \geq j + 1$, or $h^j = j$ and $\Sigma_j^{j,k} + j = N$ for any $k \in \mathcal{H}^j$, that is

$$\Sigma_j^{j,k}+j\leq N, \qquad \text{for any } k.$$

REMARK 3.9

We notice that d_j can be written as

$$d_j = 1 + \frac{1}{\frac{\Gamma_j}{N-j} - 1} = d_B \left(\frac{\Gamma_j}{N-j}\right).$$

From Remark 3.6, being $\Gamma^j \leq N$, it follows that

$$d_j \ge d_B \left(\frac{N}{N-j}\right),$$

namely, $d_{N-1} \ge d_B(N)$, $d_{N-2} \ge d_B(N/2)$,...

In particular, if $h^{N-1} \leq N/2 - 1$, then $d^* = d_{N-1}$, since

$$d_{N-1} \le 1 + \frac{1}{N/2 - 1} \le d_j$$
 for any $j \le N - 2$.

Proof of Theorem 5

The proof is based on the same energies $E_1(t,\xi)$ and $E_2(t,\xi)$ introduced in Definitions 8 and 9, but we have to replace (2.26) with (3.3) in the proof of Lemma 2.7. Therefore, in order to derive (2.23), we have to control the terms

$$|\xi|^{-(N-1-j)} |\Delta_{k-1}[b_j(t,\xi)] (\lambda_{\pi(1)}(t,\xi), \dots, \lambda_{\pi(k)}(t,\xi)) ||w_k V|,$$

 $j = 0, \dots, N-1, \ 1 \le k \le j+1,$

in $t \in [t_1(\xi), T]$, where $t_1(\xi) = |\xi|^{-1 + \frac{1}{d^*}}$ as in (2.15).

For the sake of brevity, let π be the identical permutation in Definition 7. We fix j, k. Thanks to (3.4) and to Lemma 2.2, we get

$$(3.14) \quad |\Delta_{k-1}[b_j](\lambda_1, \dots, \lambda_k)||w_k V| \lesssim t^{\gamma_{jk}} |\omega[K^k]V| \lesssim \frac{[V]_l}{t^{\sum_{l-(k-1)}[J^k]}} t^{\gamma_{j,k}}$$

$$\lesssim \left(\frac{t}{t_1(\xi)}\right)^{N-(l+1)} \frac{1}{t^{\sum_{l}^{j,k}-1}} \times \frac{1}{t} \sqrt{E_2(t,\xi)}$$

for any $l \ge k-1$, where $\Sigma_l^{j,k}$ is defined in (3.7) for p=l.

Let $h = h^{j,k}$ be as in (3.9); we assume $\Gamma^{j,k} > N - j$, with the other case being trivial, and we set $t_2(\xi)$ as in (2.28); that is,

$$(3.15) t_2(\xi) := (t_1(\xi))^{1/(\kappa_h^{j,k}+1)} \equiv |\xi|^{-(d^*-1)/(\kappa_h^{j,k}+1)d^*}$$

for $\kappa_h^{j,k} < \infty$ and $t_2(\xi) = T$ for $\kappa_h^{j,k} = \infty$, where $\kappa_h^{j,k}$ are defined in (3.8) for p = h. For any $t \in [t_1, t_2]$, we take l = h - 1 in (3.14) (we remark that $h^{j,k} - 1 \ge k - 1$ in (3.9)); hence, thanks to (3.9), analogously to (2.29), we get

$$|\Delta_{k-1}[b_j](\lambda_1,\ldots,\lambda_k)||w_k| \lesssim t_1^{-(N-h)} t_2^{N-h-\sum_{h=1}^{j,k}+1} \times \frac{1}{t} \sqrt{E_2}.$$

We notice that

$$(N-h) - \frac{N-h - \sum_{h=1}^{j,k} + 1}{\kappa_h + 1} = \frac{(N-h)\kappa_h + \sum_{h=1}^{j,k} - 1}{\kappa_h + 1} = \Gamma^{j,k} - 1;$$

hence, using (3.15), we get

$$(3.16) |\xi|^{-(N-1-j)} |\Delta_{k-1}[b_j](\lambda_1, \dots, \lambda_k)||w_k| \lesssim |\xi|^{-(N-1-j)} t_1^{1-\Gamma^{j,k}} \frac{1}{t} \sqrt{E_2}.$$

For any $t \in [t_2, T]$, we take l = h in (3.14); hence, thanks to (3.9) and analogously to (2.31), we get

$$|\Delta_{k-1}[b_j](\lambda_1,\dots,\lambda_k)||w_k| \lesssim t_1^{-(N-(h+1))} t_2^{N-(h+1)+1-\sum_h^{j,k}} \frac{1}{t} \sqrt{E_2}.$$

By using (2.28) again we find the same estimate in (3.16) since

$$-(N-h-1) + \frac{N-h-\sum_{h=1}^{j,k}}{\kappa_h+1} = -\frac{(N-h)\kappa_h + \sum_{h=1}^{j,k} -1}{\kappa_h+1} = 1 - \Gamma^{j,k}.$$

Now, from

$$d^* \le d_j = 1 + \frac{N - j}{\Gamma^j - (N - j)} \le 1 + \frac{N - j}{\Gamma^{j,k} - (N - j)} =: d_{j,k},$$

it follows that

$$\begin{split} |\xi|^{-(N-j-1)}t_1^{1-\Gamma^{j,k}} &= |\xi|^{-(N-j-1)+(\Gamma^{j,k}-1)(d^*-1)/d^*} \\ &\leq |\xi|^{-(N-j-1)+(\Gamma^{j,k}-1)(N-j)/\Gamma^{j,k}} \\ &= |\xi|^{1/d_{j,k}} \leq |\xi|^{1/d_j} \leq |\xi|^{1/d^*}. \end{split}$$

This concludes the proof.

4. Proof of Theorems 3 and 4

We come back to the the Cauchy problem (2.33), and we study more in detail the $((N^2) \times (N^2))$ -matrix \mathcal{B} in (2.34). In order to describe explicitly the last row of each $(N \times N)$ -block $\mathcal{B}_{[j,k]}$ of \mathcal{B} (the other rows are zero), we study more in detail the systems \mathcal{L}_1 and \mathcal{L}_2 .

DEFINITION 13

We recall that

$$\Lambda(t, \tau, i\xi) = \chi^{\mathrm{adj}}(t, \tau, i\xi), \qquad \chi = \tau I_N - i|\xi|A(t, \xi),$$

and we define

$$\Lambda^{\{j\}}(t,\tau,i\xi) := \frac{1}{j!} \partial_{\tau}^{j} \Lambda(t,\tau,i\xi), \quad j = 1,\dots, N,$$

$$\Lambda'(t,\tau,i\xi) := \partial_{t} \Lambda(t,\tau,i\xi).$$

We remark that $\Lambda^{\{N\}} \equiv 0$ and that $\Lambda^{\{N-1\}} \equiv I_N$.

Now, since

$$L(t, \partial_t, i\xi) = \partial_t - i|\xi|A(t, \xi) - B(t),$$

with the notation in (2.32) and in Definition 13, we get

$$\mathcal{L}_1(t, \partial_t, i\xi) = \Lambda(t, \partial_t, i\xi) L(t, \partial_t, i\xi) = I_N P(t, \partial_t, i\xi) - \sum_{i=0}^{N-1} M_j(t, \partial_t, i\xi),$$

where

$$M_{j}(t,\tau,i\xi) = i|\xi|\Lambda^{\{N-j\}}(t,\tau,i\xi)A^{(N-j)}(t,\xi) + \Lambda^{\{N-1-j\}}(t,\tau,i\xi)B^{(N-1-j)}(t).$$

Now, each of the N^2 entries of $M_j(t,\tau,i\xi)$, say, the (r,s)th, can be written in the form

$$\sum_{0 \le l \le j} b_{j,l}[r,s](t,i\xi)\tau^l,$$

where $b_{j,l}[r,s](t,\xi)$ is homogeneous of degree j-l in ξ . We put

$$\begin{split} b_j[r,s](t,\xi) &:= \sum_{l=0}^j b_{j,l}[r,s](t,\xi/|\xi|) e_{l+1} \\ &= \sum_{l=0}^j |\xi|^{-(j-l)} b_{j,l}[r,s](t,\xi) e_{l+1}, \end{split}$$

where (e_l) denotes the canonical basis of \mathbb{C}^N . Therefore the last row of the (r, s)th block of \mathcal{B} is

$$(\mathcal{B}_{[r,s]})_{N} = \sum_{j=0}^{N-1} |\xi|^{-(N-1-j)} b_j[r,s](t,\xi),$$

and we have to estimate

$$|\xi|^{-(N-1-j)}|b_j[r,s](t,\xi)W^{(s)}|, \quad j=0,\ldots,N-1, \ r,s=1,\ldots,N,$$

as in (3.3). In order to apply Lemma 3.3 to the Cauchy problem (2.33) for \mathcal{L}_1 , we look for indexes γ_j , not depending on r, s, such that (3.5) is satisfied for $b_j = b_j[r, s]$, for any $j = 0, \ldots, N-1$, and for any $r, s = 1, \ldots, N$. It is easy to check that

$$(4.1) \qquad \Delta_0 \left[b_j[r, s](t, \xi) \right] (\lambda_{\pi(l)}) = \left(M_j(t, \lambda_{\pi(l)}, \xi/|\xi|) \right)_{r.s}$$

for any j = 0, ..., N - 1; hence we have to look for indexes γ_j such that

$$||M_j(t, \lambda_{\pi(l)}, \xi/|\xi|)|| \lesssim t^{\gamma_j}, \text{ for any } l = 1, \dots, j+1;$$

with no assumption on the derivatives of $A(t,\xi)$ and B(t), the estimate above is satisfied if

(4.2)
$$\|\Lambda^{\{N-j\}}(t, \lambda_{\pi(l)}, \xi/|\xi|)\| + \|\Lambda^{\{N-1-j\}}(t, \lambda_{\pi(l)}, \xi/|\xi|)\| \lesssim t^{\gamma_j}$$
 for any $l = 1, \dots, j+1$.

Similarly, with the notation in (2.32) and in Definition 13, we get

$$\mathcal{L}_2(t, \partial_t, i\xi) = L(t, \partial_t, i\xi)\Lambda(t, \partial_t, i\xi) = I_N P(t, \partial_t, i\xi) - M_{N-1}(t, \partial_t, i\xi)$$

with $M_{N-1} = -\Lambda' + B\Lambda$. In order to apply Lemma 3.3 to the Cauchy problem (2.33) for \mathcal{L}_1 , we look for an index γ_{N-1} , not depending on r, s, such that (3.5) is satisfied for $b_{N-1} = b_{N-1}[r, s]$, for any r, s = 1, ..., N. Thanks to the equality (4.1) for j = N - 1, and with no assumption on B(t), we have to look for an index γ_{N-1} such that

(4.3)
$$\|\Lambda'(t, \lambda_{\pi(l)}, \xi/|\xi|)\| + \|\Lambda(t, \lambda_{\pi(l)}, \xi/|\xi|)\| \lesssim t^{\gamma_{N-1}}$$
 for any $l = 1, \dots, j+1$.

We have proved the following corollary of Theorem 5.

THEOREM 6

Let Assumption 1 be satisfied, and assume that

$$(4.4) \qquad \begin{cases} \|\Lambda'(t,\lambda_{l},\xi/|\xi|)\| + \|\Lambda^{\{1\}}(t,\lambda_{l},\xi/|\xi|)\| + \|\Lambda(t,\lambda_{l},\xi/|\xi|)\| \lesssim t^{\gamma_{N-1}}, \\ \|\Lambda^{\{N-j\}}(t,\lambda_{l},\xi/|\xi|)\| + \|\Lambda^{\{N-1-j\}}(t,\lambda_{l},\xi/|\xi|)\| \lesssim t^{\gamma_{j}}, \\ j = 1,\ldots,N-2, \end{cases}$$

for any l = 1, ..., N, with the notation in Definition 13. Moreover, as in (3.6), let

$$\gamma_{j,k} = [\gamma_j - \overline{\Sigma}_{k-1}]^+$$

Then the Cauchy problem (1.1) is strongly well posed in γ^d for any $1 < d < \min\{d^*, d_{\max}\}$, with the notation in Theorem 5.

By adding assumptions on the structure of A, we can obtain (4.4) and then apply Theorem 6.

LEMMA 4.1

If Assumptions 1 and 2 are satisfied, then we get (4.4) for

$$\gamma_i = (j-1)\gamma$$
.

Proof

We notice that

$$\Lambda = \chi^{\text{adj}} = \sigma_{N-1}^* \mathbf{I}_N - \sigma_{N-2}^* \chi + \dots + (-1)^{N-2} \sigma_1^* \chi^{N-2} + (-1)^{N-1} \chi^{N-1},$$

where $\sigma_j^*(t,\tau,\xi)$ for $j=1,\ldots,N-1$ is the jth elementary symmetric function introduced in (2.3) associated to the eigenvalues of the matrix $\chi(t,\tau,i\xi)$, namely,

$$\sigma_j^*(t,\tau,\xi) = \sum_{I[j]} \prod_{m=1}^j (\tau - \lambda_{p(m)}), \quad I^{[j]} = \{p(1), \dots, p(j) \in I : p(1) < \dots < p(j)\}.$$

As in Definition 13, let

$$\sigma_{N-1-r}^{*\{p\}}(t,\tau,\xi) = \frac{1}{p!} \partial_{\tau}^{p} \sigma_{N-1-r}^{*}(t,\tau,\xi), \qquad (\chi^{r})^{\{q\}} = \frac{1}{q!} \partial_{\tau}^{q} \chi^{r};$$

it is clear that

$$\Lambda^{\{s\}} = \frac{1}{s!} \partial_{\tau}^{s} \chi^{\text{adj}} = \frac{1}{s!} \sum_{r=0}^{N-1} (-1)^{r} \left(\sum_{q+p=s} \frac{s!}{p!q!} (\partial_{\tau}^{p} \sigma_{N-1-r}^{*}) (\partial_{\tau}^{q} \chi^{r}) \right)$$
$$= \sum_{r=0}^{N-1} (-1)^{r} \left(\sum_{q+p=s} \sigma_{N-1-r}^{*\{p\}} (\chi^{r})^{\{q\}} \right).$$

We fix l = 1, ..., j + 1. For any $p \le N - 1 - r$, we have

$$|\sigma_{N-1-r}^{*\{p\}}(t,\lambda_l,\xi/|\xi|)| \lesssim (t^{\alpha})^{N-1-r-p}.$$

To estimate the other terms we use (1.10); for any $q \leq r$, we obtain

$$\left| (\chi^r)^{\{q\}}(t,\lambda_l,\xi/|\xi|) \right| \lesssim \|\chi(t,\lambda_l,\xi/|\xi|)\|^{r-q} \lesssim t^{(r-q)\gamma}$$

since

$$\left| \frac{\operatorname{tr} A}{N} - \lambda_l \right| \lesssim t^{\alpha} \lesssim t^{\gamma}.$$

Therefore we have proved (4.2) for $\gamma_j = ((N-1)-(N-j))\gamma = (j-1)\gamma$. Similarly, we prove (4.3) for $\gamma_{N-1} = (N-2)\gamma$. This concludes the proof.

Thanks to Lemma 4.1, we can prove Theorem 3 as a consequence of Theorem 6.

Proof of Theorem 3

Thanks to Remark 3.7, we know that $\Gamma^{j} = \Gamma^{j,1}$. We claim that

$$(4.5) \Gamma^{N-1} - 1 \ge \Gamma^j - (N-j)$$

for any j; hence $d_{N-1} \leq d_j$. We prove (4.5) for j = N-2; that is, $\Gamma^{N-2} \leq \Gamma^{N-1} + 1$, the other cases being analogous.

Let $h = h^{N-1}$ and $h' = h^{N-2}$. It is clear that either h' = h or h' = h - 1 since

$$0 \le \gamma_{N-1} - \gamma_{N-2} = \gamma \le \alpha.$$

If h' = h, then it trivially holds that

$$\Gamma^{N-2} \le N - (h-1) = (N-h) + 1 \le \Gamma^{N-1} + 1.$$

Let h' = h - 1. From (1.4), it follows that $\kappa_h \ge \kappa_{h-1}$ and hence that

$$\kappa_h^{N-1,1} \geq \kappa_{h-1}^{N-2,1};$$

moreover, we have

$$\Sigma_h^{N-1,1} = \kappa_h + \Sigma_{h-1}^{N-2,1} - \gamma.$$

Therefore

$$\Gamma^{N-1} = \frac{(N-h)\kappa_h + \Sigma_h - (N-2)\gamma}{\kappa_h + 1}$$

$$= \frac{(N-(h-1))\kappa_h + \Sigma_{h-1} - (N-3)\gamma - \gamma}{\kappa_h + 1}$$

$$\geq \Gamma^{N-2} - \frac{\gamma}{\kappa_h + 1} \geq \Gamma^{N-2} - 1.$$

In order to conclude the proof, we show that $d^* \leq d_{\text{max}}$, where d^* is as in Theorem 3. We distinguish two possibilities: if $h \leq N - 2$, then

$$d^* \le d_B(N - (N - 2)) = 2 \le d_{\max},$$

whereas if h = N - 1, then $\kappa_h = \omega$; therefore

$$d^* = 1 + \frac{\omega + 1}{\sum_{N-1} - (N-2)\gamma - 1} \le 1 + \frac{\omega + 1}{\omega - 1} = d_{\text{max}}$$

since

$$\Sigma_{N-1} = \kappa_1 + \dots + \kappa_{N-2} + \omega \ge (N-2)\alpha + \omega \ge (N-2)\gamma + \omega.$$

This concludes the proof.

In order to prove Theorem 4, we apply Theorem 6 to the Cauchy problem (1.11).

Proof of Theorem 4

Let J_A be the Jordan canonical form of A. Because $\mu_p - \mu_q \neq 0$ for any t > 0 and thanks to Assumption 3, we can write

$$J_A = \bigoplus_{q=1}^m J_q,$$

where J_q is the Jordan block matrix related to the eigenvalue μ_q , and it has size M_q . If we put

$$\nu_p(t, \tau, \xi) = \tau - \mu_p(t, \xi), \quad p = 1, \dots, m,$$

then

$$\Lambda(t,\tau,\xi/|\xi|) = (\tau \mathbf{I}_N - J_A)^{\mathrm{adj}} = \bigoplus_{q=1}^m \Big((\tau \mathbf{I}_{M_q} - J_q)^{\mathrm{adj}} \prod_{p \neq q} \nu_p^{M_p}(t,\tau,\xi) \Big).$$

Therefore, for any l = 1, ..., m, since $\nu_l(t, \mu_l, \xi) \equiv 0$, we have

$$\Lambda(t,\mu_l,\xi/|\xi|) = 0_{M_1} \oplus \cdots \oplus 0_{M_{l-1}} \oplus (\mu_l \mathbf{I}_{M_l} - J_l)^{\operatorname{adj}} \prod_{p \neq l} (\mu_l - \mu_p)^{M_p}$$

$$\oplus 0_{M_{l+1}} \oplus \cdots \oplus 0_{M_m},$$

where we denote by 0_{M_p} a block with size M_p such that all entries are zero. Now, because $M = \max M_p$, it is easy to check that

$$\|\Lambda(t,\mu_l,\xi/|\xi|)\| \lesssim t^{(N-M)\alpha},$$

$$\|\Lambda'(t,\mu_l,\xi/|\xi|)\| \lesssim t^{(N-M-1)\alpha},$$

$$\|\Lambda^{\{N-j\}}(t,\mu_l,\xi/|\xi|)\| \lesssim t^{(j-M)\alpha} \quad \text{for any } j \geq M.$$

Thanks to Remark 3.5, we have

$$\overline{\Sigma}_{k-1} = \begin{cases} (k-1)\alpha & \text{if } k \leq m, \\ \infty & \text{otherwise;} \end{cases}$$

hence

$$\gamma_{j,k} = \begin{cases} [[j-M]^{+} - (k-1)]^{+} \alpha & \text{if } k \leq m, \\ 0 & \text{if } k > m. \end{cases}$$

We can apply Theorem 6. Since

$$\Sigma_p = \begin{cases} p\alpha & \text{if } p \le N - M, \\ \infty & \text{otherwise,} \end{cases}$$

we get $\Sigma_p^{j,1} = \infty$ for $p \ge N - M + 1$, that is,

$$\max_{k \leq p} \Sigma_p^{j,k} = \Sigma_p^{j,1} = \infty, \quad p \geq N-M+1.$$

On the other hand, for any $k \le p \le N - M$,

$$\Sigma_p^{j,k} = (p - (k-1))\alpha - \gamma_{j,k},$$

and analogously to Remark 3.7, it is easy to show that for any $k \leq p \leq N-M$, it holds that

$$\Sigma_p^{j,k} \le \Sigma_p^{j,1} = (p - [j - M]^+)\alpha$$
 for $k \le m$,

whereas

$$\Sigma_p^{j,k} \le \Sigma_p^{j,m+1} = (p-m)\alpha \quad \text{for } m+1 \le k.$$

Thus we get

$$\max_{k \le p} \Sigma_p^{j,k} = \begin{cases} (p - [j-M]^+)\alpha & \text{if } p \le m, \\ cr(p - [j-M]^+)\alpha & \text{if } m \le p \le N-M \text{ and } j \le M+m, \\ (p-m)\alpha & \text{if } m \le p \le N-M \text{ and } M+m \le j, \\ \infty & \text{if } N-M+1 \le p. \end{cases}$$

We distinguish three cases.

(1) Let $j \ge M + m$. Then $h^j = N - M + 1$ if

$$(N-M-m)\alpha + (N-M) < N$$
, that is, if $(N-M-m)\alpha < M$,

whereas $h^{j} \leq N - M$ otherwise. In the first case, it follows that

$$\Gamma^j = N - (N - M) = M,$$

whereas in the second one we get

$$\Gamma^j = \frac{(N-h)\alpha + (h-m)\alpha}{\alpha + 1} = \frac{(N-m)\alpha}{\alpha + 1}.$$

(2) Let $M \le j \le M + m$. Then $h^j = N - M + 1$ if

$$((N-M)-(j-M))\alpha+(N-M) < N$$
, that is, if $(N-j)\alpha < M$,

whereas $h^j \leq N-M$ otherwise. In the first case, it follows $\Gamma^j=M$ again, whereas in the second one we get

$$\Gamma^{j} = \frac{(N-h)\alpha + (h-(j-M))\alpha}{\alpha + 1} = \frac{(N-j+M)\alpha}{\alpha + 1}.$$

(3) Let $j \leq M$. Then $\Gamma^j = M$ if $(N - M)\alpha < M$, whereas

$$\Gamma^{j} = \frac{N\alpha}{\alpha + 1}$$

if $N\alpha \geq M(\alpha + 1)$.

We assume first that $M+m \leq N-1$. We distinguish three cases.

• If $(N-M)\alpha < M$, then $\Gamma^j = M$ for any j; hence

$$d^* = d_{N-1} = d_B(M).$$

• If there exists j^* , with $M \leq j^* \leq M + m - 1$, such that

$$(4.6) (N - (j^* + 1))\alpha < M \le (N - j^*)\alpha,$$

then $\Gamma^j = M$ for any $j \ge j^* + 1$, whereas

$$\Gamma^j = \frac{(N-j+M)\alpha}{\alpha+1}, \quad M \leq j \leq j^*,$$

$$\Gamma^j = \frac{N\alpha}{\alpha + 1}, \quad j \le M.$$

It follows that $d_{j^*} \leq d_{j^*-1} \leq \cdots$ since

$$\Gamma^{j^*} > \Gamma^{j^*-1} - 1 > \cdots$$

On the other hand, from (4.6) it follows that

$$\Gamma^{j^*}<\frac{(M+1)\alpha+M}{\alpha+1}=M+\frac{\alpha}{\alpha+1}\leq M+1=\Gamma^{j^*+1}+1.$$

Therefore $d^* = d_{N-1} = d_B(M)$.

• If $(N-M-m)\alpha \geq M$, then

$$\Gamma^j = \frac{(N-m)\alpha}{\alpha+1}, \quad M+m \leq j,$$

and

$$\Gamma^{N-1} = \dots = \Gamma^{M+m} > \Gamma^{M+m-1} - 1 > \dots$$

Therefore

$$d^* = d_{N-1} = 1 + \frac{\alpha + 1}{(N - m - 1)\alpha - 1}.$$

We have proved (1.12). Now we assume that $M + m \ge N$, and we prove (1.13). Case (1) is verified for no j; hence we have to distinguish three cases.

• If $(N-M)\alpha < M$, then $\Gamma^j = M$ for any j; hence

$$d^* = d_{N-1} = d_R(M).$$

• If there exists $M \leq j^* \leq N-2$ such that

$$(N - (j^* + 1))\alpha < M \le (N - j^*)\alpha,$$

we obtain again

$$M+1 \ge {\Gamma^{j}}^* \ge {\Gamma^{j}}^*-1 - 1 \ge \cdots.$$

Therefore $d^* = d_{N-1} = d_B(M)$.

• If $\alpha \geq M$, then

$$\Gamma^j = \frac{(N-j+M)\alpha}{\alpha+1}, \quad M \le j;$$

hence

$$\cdots \le \Gamma^{N-2} - 1 \le \Gamma^{N-1} = \frac{(M+1)\alpha}{\alpha+1}.$$

Therefore

$$d^* = d_{N-1} = 1 + \frac{\alpha + 1}{M\alpha - 1}.$$

This concludes the proof.

References

- [B1] M. D. Bronštein, Smoothness of roots of polynomials depending on parameters, Sibirsk. Mat. Zh. 20 (1979), 493–501; English translation in Siberian Math. J. 20 (1980), 347–352.
- [B2] _____, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity (in Russian), Trudy Moskov. Mat. Obshch. 41 (1980), 83–99.
- [CI] F. Colombini and H. Ishida, Well-posedness of the Cauchy problem in Gevrey classes for some weakly hyperbolic equations of higher order, J. Anal. Math. **90** (2003), 13–25.
- [CJS] F. Colombini, E. Jannelli, and S. Spagnolo, Well posedness in the Gevrey classes of the cauchy problem for a nonstrictly hyperbolic equation with coefficients depending on time, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), 291–312.
- [CO] F. Colombini and N. Orrú, Well-posedness in C^{∞} for some weakly hyperbolic equations, J. Math. Kyoto Univ. **39** (1999), 399–420.
- [CT] F. Colombini and G. Taglialatela, Well-posedness for hyperbolic higher order operators with finite degeneracy, J. Math. Kyoto Univ. 46 (2006), 833–877.
- [D] M. D'Abbicco, Some results on the Well-Posedness for Second Order Linear Equations, Osaka J. Math. 46 (2009), 739–767.
- [DAK] P. D'Ancona and T. Kinoshita, On the wellposedness of the Cauchy problem for weakly hyperbolic equations of higher order, Math. Nachr. 278 (2005), 1147–1162.
- [DAS] P. D'Ancona and S. Spagnolo, Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Unione Mat. Ital., Sez. B Artic. Ric. Mat. (8) 1 (1998), 169–185.
- [DAT] M. D'Abbicco and G. Taglialatela, Some results on the well-posedness for systems with time-dependent coefficients, Ann. Fac. Sci. Toulouse Math. (6) 18 (2009), 247–284.
- [H] L. Hörmander, Linear Partial Differential Operators, Grundlehren Math. Wiss. 116 Springer, Berlin, 1963.

[Y] H. Yamahara, Cauchy problem for hyperbolic systems in Gevrey class: A note on Gevrey indices, Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), 147–160.

Dipartimento di Matematica, Università di Bari, via E. Orabona 4, 70125 Bari, Italy