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Abstract We consider linear, smooth, hyperbolic systems with time-dependent coef-
ficients and size N . We give a condition sufficient for the well-posedness of the Cauchy
Problem in someGevrey classes.Wepresent someLevi conditions to improve theGevrey
index of well-posedness for the scalar equation of order N , using the transformation in
[DAS] and following the technique introduced in [CT]. By using this result and adding
some assumptions on the form of the first-order term, we can improve the well-posedness
for systems. A similar condition has been studied in [DAT] for systems with size 3.

1. Introduction

In this article we study the well-posedness of the Cauchy Problem for first-order
(N × N)-systems whose coefficients depend only on the time variable,

(1.1)

{
L(t, ∂t, ∂x)U(t, x) = f(t, x), (t, x) ∈ [0, T ] × Rn,

U(0, x) = U0(x), x ∈ Rn.

where

LU = ∂tU −
n∑

j=1

Aj(t)∂xj − B(t)U, Aj(t) ∈ MN (R),B(t) ∈ MN (C);

by MN (R) (resp., MN (C)) we denote the space of the (N × N)-matrices with
entries valued in R (resp., C). We assume that

A(t, ξ) := |ξ|−1
n∑

j=1

Aj(t)ξj

is (weakly) hyperbolic; that is, its eigenvalues are real (not necessarily distinct)
for any ξ ∈ Rn \ {0}. We remark that A is real valued, whereas B may be
complex valued. In the following, we assume that A ∈ CN ; that is, each entry
of Aj belongs to CN ([0, T ]), for j = 1, . . . , n. We assume also that B ∈ CN −1.
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NOTATION

Let f(t) and g(t) be defined in [0, T ]; we write f � g, meaning that there exists
a positive constant C such that

f(t) ≤ Cg(t) for t ∈ [0, T ].

Analogously, if f(t, ξ) and g(t, ξ) are symbols defined in [0, T ] × Rn, we write
f � g, meaning that there exists a positive constant C such that

f(t, ξ) ≤ Cg(t, ξ) for (t, ξ) ∈ [0, T ] × Rn.

In both cases, we write f ≈ g, meaning that f � g and g � f .

NOTATION

We denote with γd the Gevrey class with index d ∈ (1, ∞), that is, the class of
functions in C ∞(Rn) such that for any compact K ⊂ Rn, there exists CK such
that

|∂α
x f(x)| ≤ C

|α|+1
K (|α|!)d for any x ∈ K and α ∈ Nn.

NOTATION

We put I := {1, . . . ,N }. We denote by IM the identity matrix of size M . We
denote by ‖A‖ := maxi,j |aij | the norm of a matrix A = (aij)i,j .

DEFINITION 1

The Cauchy problem (1.1) is said to be well posed in γd with 1 < d < ∞ if, for
any choice of the data f ∈ C([0, T ], γd(Rn,CN )) and U0 ∈ γd(Rn,CN ), it admits
a unique solution U ∈ C1([0, T ], γd(Rn,CN )).

In this article, we say that (1.1) is strongly well posed in γd to mean that it
is well posed for any choice of the lower-order term B(t) ∈ CN −1([0, T ]).

We refer the interested reader to [CI], [CJS], [CO], [D], [DAK], and [Y] for ques-
tions related to the well-posedness of weakly hyperbolic equations and systems.

It is acknowledged (see [B2]) that the Cauchy problem (1.1) for a system is
well posed in γd for

(1.2) 1 < d < dB ≡ dB(r) := 1 +
1

r − 1
,

where r is the maximum multiplicity of the eigenvalues of A. If the multiplicities
of the eigenvalues are not constant, then this Gevrey index may be improved.
In this note, we consider matrices A(t, ξ) whose eigenvalues have variable multi-
plicity and such that A(0, ξ) has a unique eigenvalue with multiplicity N ; hence,
Bronštĕın’s index is

dB(N) = 1 +
1

N − 1
.

By Bronštĕın’s Lemma [B1, Theorem 2] the eigenvalues of A(t, ξ), counted with
their multiplicities, namely, {

λi(t, ξ) : i = 1, . . . ,N
}
,



A condition for systems with time-dependent coefficients 367

are Lipschitz-continuous functions. In this article, we assume that λ1, . . . , λN

satisfy the following.

ASSUMPTION 1

For any i, j = 1, . . . ,N , there exists κij ∈ [1, ∞], such that either

|λi − λj | ≈ tκij if κij ∈ [1, ∞), or
(1.3)

|λi − λj | � tm for any m ∈ N if κij = ∞.

We remark that κij = κji and that κjj = ∞; that is, κ = (κij)i,j is a symmetric
matrix with ∞ as diagonal entries.

REMARK 1.1

If κij < κjk for some i, j, k, then κik = κij ; indeed, in such a case, it holds that

tκij � |λi − λj | − |λj − λk | ≤ |λi − λk | ≤ |λi − λj | + |λj − λk | � tκij .

We look for a sufficient condition for the well-posedness of the Cauchy prob-
lem (1.1) in γd for any 1 < d < d∗, for some d∗ > dB(N).

It is easy to check that, if the system has size N = 2 and

|λ1 − λ2| ≈ tα, 1 < α < ∞,

then the Cauchy problem (1.1) is well posed in γd for any 1 < d < d∗, where

d∗ = 1 +
α + 1
α − 1

= 2 +
2

α − 1
.

We remark that d∗ > 2 = dB(2). On the other hand, if |λ1 − λ2| ≈ t, then (1.1)
is well posed in any γd, d > 1, and in C ∞.

For the sake of brevity, in this article we assume N ≥ 3 (in particular, for
systems with size 2 or 3, see also [DAT]). F. Colombini and G. Taglialatela [CT]
stated a condition for the well-posedness of the equation of order N in Gevrey
classes; in [CT] the functions λj represent the roots of the characteristic equation.

With the notation in Assumption 1, they assumed the existence of κ1, . . . ,

κN −1 ≥ 1, such that

κ1 ≤ κ2 ≤ · · · ≤ κN −1 < ∞ and
(1.4)

κij = κi, for any j = i + 1, . . . ,N,

and they proved, in [CT, Theorem 1.2], that the Cauchy problem for the equation
of order N is strongly well posed in γd for any 1 < d < d∗ with

(1.5) d∗ = 1 +
κh + 1

(N − h − 1)κh + sh − 1
,

where

sp = κ1 + · · · + κp and h := min{p : sp + p ≥ N }.
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Condition (1.4) on the structure of κ = (κij)i,j is very restrictive; in fact,

κ =

⎛⎜⎜⎜⎜⎜⎝
∞ κ1 κ1 . . . κ1

κ1 ∞ κ2 . . . κ2

κ1 κ2 ∞ . . . κ3

...
...

...
. . .

...
κ1 κ2 κ3 . . . ∞

⎞⎟⎟⎟⎟⎟⎠ .

In order to get a similar result of well-posedness without condition (1.4) on the
matrix κ, we have to construct a suitable sequence κ1, . . . , κN −1, which depends
on the structure of the matrix κ = (κij).

DEFINITION 2

Let k ∈ [1, ∞]. Then there exist a unique integer m ≤ N and a unique partition
Pk(I) = {I1, . . . , Im} of the set I = {1, . . . ,N }, namely,

I =
m⋃

p=1

Ip with Ip 
= ∅ and Ip ∩ Iq = ∅ for p 
= q,

such that κij > k if and only if i, j ∈ Ip for some p. We call such a partition the
k-partition of the set I . We define

α = min{κij : i, j = 1, . . . ,N },

and we call the minimum partition of the set I the partition Pmin(I) = Pα(I).

REMARK 1.2

Let k ∈ [1, ∞]; then the k-partition of I is the trivial partition Pk(I) = {I} if and
only if k < α. On the other hand, for k = ∞, the ∞-partition of I is the trivial
partition P∞(I) = { {1}, {2}, . . . , {N } }.

We remark that if kij = α for any i 
= j, then Pmin(I) = Pα(I) = {{1}, {2}, . . . ,

{N }}, too.

REMARK 1.3

Let Pmin(I) = {I1, . . . , Im} be the minimum partition of I . After a permutation
on I , we can write

I1 =
{
1, . . . ,#(I1)

}
, I2 =

{
#(I1) + 1, . . . ,#(I1) + #(I2)

}
, . . . ,

Im =
{
N − #(Im) + 1, . . . ,N

}
.

Therefore (see Remark 1.1) the matrix κ = (κij) can be represented in the block
form

(1.6) κ =

⎛⎜⎜⎜⎜⎜⎝
κ(1) Cα Cα . . . Cα

Cα κ(2) Cα . . . Cα

Cα Cα κ(3) . . . Cα

...
...

...
. . .

...
Cα Cα Cα . . . κ(m)

⎞⎟⎟⎟⎟⎟⎠ ,
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where Cα are blocks with suitable size and each entry equal to α, and κ(p) =
(κij)i,j∈Ip are square blocks with size #(Ip) and κ

(p)
ij > α.

REMARK 1.4

Let Pmin(I) = {I1, . . . , Im} be the minimum partition of I ; if there exist two
different subsets Ip, Iq with #(Ip),#(Iq) ≥ 2, then condition (1.4) cannot be
satisfied.

EXAMPLE 1.5

Let N = 4, and assume that

κ12 = β1, κ34 = β2, κ13 = α

with α < β1, β2; that is,

κ =

⎛⎜⎜⎝
∞ β1 α α

. . . ∞ α α

. . . . . . ∞ β2

. . . . . . . . . ∞

⎞⎟⎟⎠ .

It is clear that condition (1.4) is not satisfied. Nevertheless, in [CT, Theorem 1.3],
it is proved that the Cauchy problem is strongly well posed in γd for any 1 < d <

d∗, where d∗ is determined as in (1.5), provided that we put

κ1 = κ2 = α, κ3 = max{β1, β2}.

Hence (1.5) gives

d∗ = 1 +
α + 1
3α − 1

.

We are ready to state the following.

THEOREM 1

We assume that, for any t > 0, the matrix A(t, ξ) has m distinct eigenvalues
μ1, . . . , μm, that each eigenvalue μp has constant multiplicity Mp, and that

|μi − μj | ≈ tα, i 
= j.

Let M = maxp Mp. Then the Cauchy problem (1.1) is strongly well posed in γd

for any 1 < d < d∗ with

(1.7) d∗ :=

⎧⎨⎩1 + α+1
(N −1)α−1 if (N − M)α ≥ M,

1 + 1
M −1 ≡ dB(M) if (N − M)α ≤ M.

REMARK 1.6

More in general, if we assume that A(t, ξ) verifies Assumption 1 and we put

M = max
p

#(Ip),
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where Pmin(I) = Pα(I) = {I1, . . . , Im} is the minimum partition of I as in Def-
inition 2, then the Cauchy problem (1.1) is strongly well posed in γd for any
1 < d < d∗ with d∗ as in (1.7).

However, in this case the Gevrey index d∗ may be improved (see Theorem 2)
by adding further assumptions on the blocks κ(p) in (1.6). In fact, the proof is
an immediate consequence of Theorem 2.

EXAMPLE 1.7

Let

A = A1 ⊕ A2 =
(

A1 0
0 A2

)
,

where the matrix A2 has a unique eigenvalue

μ = λ(N −M)+1 = · · · = λN

with multiplicity M ≥ N/2, and assume that

|μ − λj | ≈ tα for any j = 1, . . . ,N − M,

|λi − λj | � tα for any i, j = 1, . . . ,N − M.

Then Remark 1.6 gives d∗ = dB(M), provided that α is sufficiently small, namely,

α ≤ M

N − M
.

We remark that A2(t, ξ) has a unique eigenvalue with constant multiplicity M .

EXAMPLE 1.8

We can apply Theorem 1 to Example 1.5. Indeed, we have

Pmin(I) = Pα(I) = {I1, I2} with I1 = {1,2} and I2 = {3,4};

hence we get the expected Gevrey index:

d∗ = 1 +
α + 1
3α − 1

.

We notice that d∗ = dB(2) = 2 as in Example 1.7 if and only if α = 1 since N = 4
and M = 2.

In order to improve the Gevrey index d∗ in Theorem 1, we need to refine the
partition of I .

DEFINITION 3

Let J ⊂ I , and let

αJ := min{κij : i, j ∈ J }.

We call the minimum partition of J the αJ -partition of J (see Definition 2):
PαJ

(J) = {J1, . . . , Jm}. Now we define by induction

Σh[J ] := max
p

sh[Jp,#(J \ Jp)], h = 1, . . . ,#(J) − 1,
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where

sh[Jp, l] :=

{
hαJ if h ≤ l,

lαJ + Σh−l[Jp] if h > l.

We put Σh := Σh[I]; it is clear that Σ1[J ] = αJ .

EXAMPLE 1.9

We consider Example 1.5; with the notation introduced in Definition 3, we easily
get

Σ1 = α = κ1, Σ2 = 2α = κ1 + κ2,

since #(I \ I1) = #(I \ I2) = 2, whereas

Σ3 = max
{
s3[I1,2], s3[I2,2]

}
= 2α + max

{
Σ1[I1],Σ1[I2]

}
= 2α + max{β1, β2}.

LEMMA 1.10

Let J ⊂ I. We assume that for some permutation on the set I, we have J =
{1, . . . ,M } with M = #(J), and J satisfies condition (1.4); that is,

κ1 ≤ · · · ≤ κM −1 < ∞ and κij = κi, for any j = i + 1, . . . ,M.

Then

Σh[J ] = sh ≡ κ1 + · · · + κh, h = 1, . . . ,M − 1.

Proof
We can prove the statement by induction on M . It is trivially true for M = 2;
we assume that the thesis holds for M − 1, and we prove it for M . Let m ≥ 2 be
such that

κ1 = · · · = κm−1 < κm;

that is, sp = pαJ for any p ≤ m − 1 and κm > αJ . Then J is partitioned in

J = {1} ∪ · · · ∪ {m − 1} ∪ Jm with Jm = {m, . . . ,M },

with the notation introduced in Definition 3. Hence it holds that

Σh = max
{
hαJ , σh[Jm,m − 1]

}
=

{
sh if h ≤ m − 1,

sm−1 + Σh−(m−1)[Jm] if m ≤ h ≤ M − 1.

Since #(Jm) ≤ M − 1, we can apply the hypothesis of induction and

Σh−(m−1)[Jm] = κm + · · · + κh.

This concludes the proof. �

We proved that Definition 3 is consistent with the one given in (1.4). Moreover,
it is easy to check that each J ⊂ I with #(J) ≤ 3 satisfies (1.4).
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REMARK 1.11

With the notation in Definition 2, let Pmin(I) = {I1, . . . , Im}, and let M =
max#(Ip); then

Σh = hα for any h ≤ N − M.

Indeed, it holds that

sh[Ip,#(I \ Ip)] = hα, p = 1, . . . ,m,

since N − #(Ip) ≥ N − M .

DEFINITION 4

We define κ1 := Σ1 = α, and we put, for any h ≥ 2,

κh :=

{
Σh − Σh−1 if Σh < ∞,

∞ if Σh = ∞.

Thanks to Lemma 1.10, Definition 4 is consistent with the one given in (1.4).

EXAMPLE 1.12

Let N = 5; with the notation in Definition 2, we assume that

Pmin(I) = Pα(I) = {I1, I2} with I1 = {1,2} and I2 = {3,4,5}.

The set I2 satisfies (1.4) since #(I2) ≤ 3; hence we can assume with no restriction
that

κ =

⎛⎜⎜⎜⎜⎝
∞ β1 α α α

β1 ∞ α α α

α α ∞ β2 β2

α α β2 ∞ γ

α α β2 γ ∞

⎞⎟⎟⎟⎟⎠ , α < β1, β2, β2 ≤ γ.

With the notation in Definitions 3 and 4, we get

Σ1 = α, Σ2 = 2α, Σ3 = max{3α,2α + β2} = 2α + β2,

Σ4 = max{3α + β1,2α + β2 + γ} = 2α + β2 + max
{
γ,β1 − (β2 − α)

}
;

hence

κ1 = κ2 = α, κ3 = β2, κ4 = max
{
γ,β1 − (β2 − α)

}
.

In particular, if β1 > β2 + γ − α, then κ4 can be different from any of κij . We
remark that in such a case, it holds that γ < κ4 < β1.

Now we are ready to state our main result.

THEOREM 2

If Assumption 1 is satisfied, then the Cauchy problem (1.1) is strongly well posed
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in γd for any 1 < d < d∗ with

(1.8) d∗ :=

⎧⎨⎩1 + κh+1
(N −h−1)κh+Σh −1 if κh < ∞,

1 + 1
N −h = dB

(
N − (h − 1)

)
if κh = ∞,

where

(1.9) h := min{p = 1, . . . ,N − 1 : Σp + p ≥ N }.

We remark that Σp ≥ p; hence h ≤ (N + 1)/2 in Theorem 2. Moreover, the
Gevrey index d∗ is greater than or equal to dB(N), and the equality holds if and
only if α = ∞.

REMARK 1.13

If α ≥ N − 1, then h = 1; hence

d∗ = 1 +
α + 1

(N − 1)α − 1
.

On the other hand, if α < N − 1, that is, h ≥ 2, then from (1.9) it follows that

Σh−1 + (h − 1) < N ≤ Σh + h;

hence

dB

(
N − (h − 1)

)
≤ d∗ ≤ dB(N − h).

This shows that d∗ is increasing with respect to h.

By using Theorem 2, we can prove Theorem 1.

Proof of Theorem 1
We assume first that (N − M)α ≥ M ; that is,

(N − M)(α + 1) ≥ N.

Then in Theorem 2 we get h ≤ N − M since, thanks to Remark 1.11,

Σp + p = p(α + 1) for any p ≤ N − M.

Hence κh = α and

d∗ = 1 +
α + 1

(N − h − 1)α + hα − 1
= 1 +

α + 1
(N − 1)α − 1

.

On the other hand, if (N − M)α < M , then h ≥ N − M + 1. Hence, thanks to
Remark 1.13, Theorem 2 gives

d∗ ≥ dB

(
N − (N − M + 1 − 1)

)
= dB(M).

This concludes the proof. �

EXAMPLE 1.14

Let N = 3M , and assume that A(t, ξ) has three eigenvalues μ1, μ2, μ3, each one
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with multiplicity M for t > 0, such that

|μ1 − μ2|, |μ1 − μ3| ≈ tα, |μ2 − μ3| ≈ tβ , β ≥ α ≥ 1.

Then we can apply Theorem 2; the matrix κ can be written as

κ =

⎛⎝C∞ Cα Cα

Cα C∞ Cβ

Cα Cβ C∞

⎞⎠ ,

where Cα (resp., Cβ , C∞) is an (M × M)-block with each entry equal to α

(resp., β, ∞). We get

Σh =

⎧⎪⎪⎨⎪⎪⎩
hα if h ≤ M,

Mα + (h − M)β if M + 1 ≤ h ≤ 2M,

∞ if 2M + 1 ≤ h.

Hence

d∗ =

⎧⎨⎩1 + α+1
(3M −1)α−1 if α ≥ 2,

1 + β+1
(2M −1)β+(M −1) if α = 1.

Under additional assumptions on the form of A(t, ξ) and on κ, we can improve
Theorem 2.

ASSUMPTION 2

We consider the Cauchy problem (1.1) and Assumption 1 to be true. Moreover,
we assume that there exists 0 < γ ≤ α such that

(1.10) ‖Ã(t, ξ)‖ � tγ , where Ã = A −
( trA

N

)
IN .

REMARK 1.15

Condition (1.10) is equivalent to

‖A(t, ξ) − λi(t, ξ)IN ‖ � tγ for some i.

Indeed,

‖A(t, ξ) − λi(t, ξ)IN ‖ ≤ ‖Ã(t, ξ)‖ +
∣∣∣ trA

N
− λi

∣∣∣� ‖Ã(t, ξ)‖ + tα

since γ ≤ α; analogously, we can prove the inverse inequality.

REMARK 1.16

Let A(t, ξ) be a triangular matrix; that is, let aij = 0 for j < i. Then, since
aii = λi, condition (1.10) is equivalent to

|aij | � tγ for j > i.

Thanks to Assumption 2 we can state the following.
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THEOREM 3

We consider the Cauchy problem (1.1) and Assumptions 1 and 2 to be true. We
assume that (1.4) is satisfied. Let

h = min
{
p = 1, . . . ,N − 1 : Σp + p ≥ N + (N − 2)γ

}
.

Then the Cauchy Problem is well posed in γd for any 1 < d < d∗, where

d∗ =

⎧⎨⎩1 + κh+1
(N −h−1)κh+Σh −(N −2)γ−1 if κh < ∞,

1 + 1
N −h = dB(N − (h − 1)) if κh = ∞.

The proof of Theorem 3 follows as a corollary of Theorem 6 stated in Section 4.
Under additional assumptions on the Jordan canonical form of A(t, ξ), we

can improve Theorem 1.

ASSUMPTION 3

We assume that there exists a matrix C ∈ CN , homogeneous of degree zero in ξ

and with | detC(t, ξ)| ≥ c > 0, such that

C(t, ξ)A(t, ξ)C−1(t, ξ) = JA(t, ξ)

is a Jordan matrix, that is, a block diagonal matrix whose blocks are Jordan
blocks. The matrix JA is the Jordan canonical form of A.

If Assumption 3 is satisfied, then JA is smooth; that is, each nondiagonal term
is constantly equal to 1 or zero. In particular, if λi(t, ξ) 
= λj(t, ξ) for any t > 0,
ξ 
= 0, and i 
= j, then A is uniformly diagonalizable. Moreover, if Assumption 3
is satisfied, by the subsitution W = CV the Cauchy problem (2.1) is equivalent
to

(1.11)

{
W ′ = i|ξ|JA(t, ξ)W + B1(t, ξ)W,

W (0, ξ) = C−1(0, ξ)V0(ξ),

where

B1 =
(
C ′(t, ξ) + C(t, ξ)B(t)

)
C−1(t, ξ) ∈ CN −1.

Hence the strong well-posedness for ∂t − i|ξ|A is equivalent to the strong well-
posedness for ∂t − i|ξ|JA. We are ready to state the following result, which
improves Theorem 1.

THEOREM 4

We assume that for any t > 0, the matrix A(t, ξ) has m distinct eigenvalues
μ1, . . . , μm, each one with constant multiplicity Mp, and that

|μi − μj | ≈ tα, i 
= j,

for some α ≥ 1. Let M = maxp Mp, with M ≥ 2, be the maximum multiplicity of
the eigenvalues of A(t, ξ) for t > 0. If Assumption 3 is satisfied, then the Cauchy
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problem (1.1) is strongly well posed in γd for any 1 < d < d∗ with

(1.12) d∗ :=

⎧⎨⎩1 + α+1
(N −m−1)α−1 if (N − M − m)α ≥ M,

1 + 1
M −1 ≡ dB(M) if (N − M − m)α ≤ M,

provided that M + m ≤ N − 1.
On the other hand, if M +m ≥ N − 1, then theCauchy problem (1.1) is strongly

well posed in γd for any 1 < d < d∗ with

(1.13) d∗ :=

{
1 + α+1

Mα−1 if α ≥ M,

1 + 1
M −1 ≡ dB(M) if α ≤ M.

The proof of Theorem 4 follows from Theorem 6, stated in Section 4.

2. Proof of Theorem 2

Let U be a solution of the system (1.1), and let V (t, ξ) := Û(t, ξ) (resp., V0(ξ) =
Û0(ξ)) be the Fourier transform with respect to the x-variable of U (resp., U0);
using the Duhamel principle, we can assume f ≡ 0. Then V satisfies the system

(2.1)

{
V ′ = iA(t, ξ)|ξ|V + B(t)V,

V (0, ξ) = V0(ξ).

First, we assume that A(t, ξ) is a Sylvester matrix; that is,

(2.2) A(t, ξ) =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 . . .

0 0 1 0 . . .
. . . . . .

0 0 . . . 0 1
aN aN −1 . . . . . . a1

⎞⎟⎟⎟⎟⎟⎠ , aj = (−1)j−1σj ,

where by σj we denote the elementary symmetric function

σj ≡ σj [I] =
∑
I[j]

j∏
m=1

λp(m),

(2.3)
I [j] =

{
p(1), . . . , p(j) ∈ I : p(1) < · · · < p(j)

}
.

Let

ω[I] := −(aN , . . . , a1) =
(
(−1)NσN , (−1)N −1σN −1, . . . , −σ1

)
.

We remark that −ω[I] is the N th row of A.

DEFINITION 5

For any K ⊂ I and j ≤ #(K), we define the symmetric function

σj [K] :=
∑
K[j]

j∏
m=1

λp(m), K [j] =
{
p(1), . . . , p(j) ∈ K : p(1) < · · · < p(j)

}
.
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We put σ0[K] = 1, and σj [K] = 0 for any j > #(K).

In order to establish our energy estimates by using the symmetric functions in
Definition 5, we prepare some tools. It is clear that

(2.4) σj [K] =

{
λiσj−1[K \ {i}] for j = #(K),

σj [K \ {i}] + λiσj−1[K \ {i}] for any 1 ≤ j < #(K),

for any choice of i ∈ K. Moreover, ∂tσ0[K] = 0, whereas

(2.5) ∂tσj [K] =
∑
i∈K

(∂tλi)σj−1[K \ {i}] for any 1 ≤ j ≤ #(K).

Now, for any K � I , we put k = #(K) and we define the row vector

ω[K] :=
(
(−1)kσk[K], (−1)k−1σk−1[K], . . . , −σ1[K],1,0, . . . ,0

)
;

that is,

(2.6) ω[K] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1,0, . . .) if K = ∅,

(−λi,1,0, . . .) if K = {i},

(λiλj , −(λi + λj),1,0, . . .) if K = {i, j},
...

...

We denote also ω[K] = ωi1···ik
, where K = {i1, . . . , ik } and ω[∅] = ω.

We can use (2.4) to prove that ω[I \ {i}] is the left eigenvector of A related
to λi, that is, that

ω[I \ {i}]A = λiω[I \ {i}] for any i ∈ I.

On the other hand, using again (2.4), we can prove that for any K � I , we have

(2.7) ω[K \ {i}]A = ω[K] + λiω[K \ {i}] for any i ∈ K.

It is clear that ∂tω = 0, whereas we can use (2.5) to prove that if K 
= ∅, then

(2.8) ∂tω[K] =
(
(−1)k∂tσk[K], . . . , −∂tσ1[K],0, . . . ,0

)
= −
∑
i∈K

(∂tλi)ω[K \ {i}].

DEFINITION 6

For any vector V ∈ CN , we define

[V ]2l :=
∑

#(K)=l

|ω[K]V |2, l = 0, . . . ,N − 1.

REMARK 2.1

Now let K � I with #(K) ≤ N − 2. It is clear that

ω[K ∪ {i}] − ω[K ∪ {j}] = (λj − λi)ω[K] for any i, j 
∈ K;

hence for any vector V ∈ Cn, we get

|ω[K]V | � |ω[K ∪ {i}]V | + |ω[K ∪ {j}]V |
tκij

,
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provided that κij < ∞.

We are ready to state the following.

LEMMA 2.2

Let K � I with k = #(K); we put J = I \ K. Then for any vector V ∈ Cn, we
have

(2.9) |ω[K]V | � [V ]l
tΣl−k[J]

, l = k, . . . ,N − 1.

To prove Lemma 2.2, we need the following.

LEMMA 2.3

Let J ⊂ I, and let J ′ = J \ {j} for some j ∈ J . Then we have

Σh+1[J ] ≥ αJ + Σh[J ′], h = 0, . . . ,#(J) − 2.

Proof
We prove the statement by induction on M = #(J). It is trivially true for M = 2
since Σ1[J ] = αJ . We assume that the thesis is satisfied for some M − 1, and we
prove it for M .

With the notation introduced in Definition 3, let

Pmin(J) = PαJ
(J) = {J1, . . . , Jm}.

Now j ∈ Jp for some p, say, p = 1. We recall that

Σh+1[J ] = max
p

σh+1[Jp,#(J \ Jp)];

we have

σh+1[Jp,#(J \ Jp)] = σh+1[Jp,M − #(Jp)]

= αJ + σh[Jp, (M − 1) − #(Jp)]

= αJ + σh[Jp,#(J ′ \ Jp)]

for any p ≥ 2, whereas if we put l = M − #(J1), then

σh+1[J1, l] =

{
(h + 1)αJ if (h + 1) ≤ l,

lαJ + Σh+1−l[J1] if (h + 1) ≥ l + 1.

Now, being #(J1) ≤ M − 1, we can apply the hypothesis of induction; hence

Σh+1−l[J1] ≥ αJ + Σh−l[J ′
1],

where we put J ′
1 = J1 \ {j}. We remark that

σh+1[J1, l] ≥ αJ +

{
hαJ if h ≤ l,

lαJ + Σh−l[J ′
1] if h ≥ l + 1;
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that is,

σh+1[J1, l] ≥ αJ + σh[J ′
1,#(J ′ \ J ′

1)].

This concludes the proof. �

Proof of Lemma 2.2
We proceed by induction on n = l − #(K). If n = 0, then (2.9) is trivial. We
assume that (2.9) is satisfied for some n, and we prove it for n + 1.

We put J = I \ K. Let αJ and

Pmin(J) = PαJ
(J) = {J1, . . . , Jm}

be as in Definition 3. Let i1 ∈ J1 and i2 ∈ J2; then

(2.10) |ω[K]V | � |ω[K ∪ {i1}]V | + |ω[K ∪ {i2}]V |
tαJ

.

Now we can apply the hypothesis of induction to the term |ω[K ∪ {ip}]V | since

l − #(K ∪ {ip}) = n.

We get

|ω[K ∪ {ip}]V | � [V ]l
tΣl−(k+1)[J ′]

,

where J ′ = J \ {ip}. Thanks to Lemma 2.3, we have

αJ + Σl−(k+1)[J ′] ≤ Σl−k[J ].

This concludes the proof. �

We show how Lemma 2.2 works with the following.

EXAMPLE 2.4

We consider Example 1.12:

Pmin(I) = {I1, I2}, I1 = {1,2}, I2 = {3,4,5},

with

κ =

⎛⎜⎜⎜⎜⎝
∞ β1 α α α

β1 ∞ α α α

α α ∞ β2 β2

α α β2 ∞ γ

α α β2 γ ∞

⎞⎟⎟⎟⎟⎠ ,

and we directly prove the estimate

|ωV | � [V ]3 · t−Σ3 .

In fact, we have

|ω[∅]V | � |ω1V | + |ω3V |
tα

� |ω12V | + |ω13V |
t2α

+
|ω31V | + |ω34V |

t2α
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=
|ω12V | + 2|ω13V | + |ω34V |

t2α

� |ω123V | + |ω124V |
t2α+β2

+
2|ω123V | + 2|ω134V |

t3α
+

|ω134V | + |ω345V |
t3α

� [V ]3t− max{2α+β2,3α}.

LEMMA 2.5

If V (t, ξ) satisfies (2.1), then we have the following estimates:

∂t[V ]20 � (|ξ|[V ]1 + |BV |)[V ]0,

∂t[V ]2l � ([V ]l−1 + |ξ|[V ]l+1 + |BV |)[V ]l, l = 1, . . . ,N − 2,(2.11)

∂t[V ]2N −1 � ([V ]N −2 + |BV |)[V ]N −1.

Proof
We fix l and K ⊂ I to be such that #(K) = l, as in Definition 6. We have to
estimate

∂t|ω[K]V |2 = 2Re
(
∂t(ω[K]V ), ω[K]V

)
(2.12)

= 2Re
(
i|ξ|ω[K]AV + ω[K]BV + (∂tω[K])V,ω[K]V

)
.

Let j ∈ I \ K; thanks to (2.7), we get

Re(i|ξ|ω[K]AV,ω[K]V ) = Re(i|ξ|λjω[K]V,ω[K]V )+Re(i|ξ|ω[K ∪ {j}]V,ω[K]V );

since λj is real valued, the first term vanishes, whereas

|ξ| |ω[K ∪ {j}]V | · |ω[K]V | � |ξ|[V ]l+1[V ]l.

For the second term of (2.12), we simply estimate |ω[K]BV | � |BV |, whereas for
the third one, thanks to (2.8), we get

|(∂tω[K])V | ≤
∑
i∈K

|∂tλi| |ω[K \ {i}]V | � [V ]l−1

since λi is Lipschitz continuous. �

DEFINITION 7

Let K1 = ∅. We define by induction a sequence of sets Kk � I with #(Kk) =
k − 1, such that

K1 ⊂ K2 ⊂ · · · ⊂ KN .

It is clear that there exists a (unique) permutation π over I such that

Kk =
{
π(1), π(2), . . . , π(k − 1)

}
.

We define the vectors

wk := ω[Kk] ≡ ωπ(1),π(2),...,π(k−1), k = 1, . . . ,N.
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REMARK 2.6

With the notation in Definition 7, (w1, . . . ,wN ) is a base of the vector space Cn

over C.
Moreover, if we denote by (e1, . . . , eN ) the canonical base, that is,

e1 = (1,0, . . .), e2 = (0,1,0, . . .), . . . ,

then it can be proved that

wi =
i∑

j=1

(−1)i−jσi−j [Ki]ej , i = 1, . . . ,N,(2.13)

ej =
j∑

k=1

σ̃j−k[Kk+1]wk, j = 1, . . . ,N,(2.14)

where for any K ⊂ I we define the symmetric functions

σ̃j [K] :=
∑
K̃[j]

j∏
m=1

λp(m), K̃ [j] =
{
p(1), . . . , p(j) ∈ K : p(1) ≤ · · · ≤ p(j)

}
.

DEFINITION 8

Let |ξ| ≥ 1. We set the energy

E1(t, ξ) := |V |2.

We remark that for any t ≥ 0 and ξ ∈ Rn, the energy E1(t, ξ) represents a norm
for the vector V (t, ξ) ∈ CN . Since

∂tE1(t, ξ) � |ξ| |V |2 = |ξ|E1(t, ξ),

by applying Grönwall’s lemma for t ≤ t1(ξ), where we put

(2.15) t1(ξ) := |ξ| −1+(1/d∗),

we get

(2.16) E1(t, ξ) � exp
(∫ t1(ξ)

0

C1|ξ| ds
)
E1(0, ξ) � exp(C1|ξ|1/d∗

)E1(0, ξ).

DEFINITION 9

For any t ∈ [t1(ξ), T ], we set the energy

E2(t, ξ) :=
N −1∑
l=0

( t1(ξ)
t

)2(N −(l+1))

[V ]2l .

For any t ∈ [t1(ξ), T ] and ξ ∈ Rn, the energy E2(t, ξ) represents a norm for
V (t, ξ) ∈ CN ; moreover, thanks to Remark 2.6,

(2.17)

⎧⎪⎪⎨⎪⎪⎩
E2(t, ξ) � E1(t, ξ),

E1(t, ξ) � (t1(ξ))−2(N −1)E2(t, ξ)

= |ξ|CE2(t, ξ), C = 2(N − 1)
(
1 − 1

d∗

)
.
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We get

(2.18) ∂tE2(t, ξ) = − 2(N − (l + 1))
t

E2(t, ξ) +
N −1∑
l=0

( t1(ξ)
t

)2(N −(l+1))

∂t[V ]2l ,

and we claim that the second term in (2.18) is estimated by

|ξ|1/d∗ 1
t
E2(t, ξ).

This is sufficient to conclude the proof since, by applying Grönwall’s lemma,

E2(t, ξ) � exp
(∫ T

t1

C1|ξ|1/d∗ 1
s

ds
)
E2

(
t1(ξ), ξ

)
= exp

(
C1|ξ|1/d∗

log
t

t1

)
E2

(
t1(ξ), ξ

)
(2.19)

� exp
(

C1|ξ|1/d∗
(
logT +

(
1 − 1

d∗

)
log |ξ|

))
E2

(
t1(ξ), ξ

)
,

t ∈ [t1(ξ), T ].

Therefore we should prove the following.

LEMMA 2.7

For any t ∈ [t1(ξ), T ], we have( t1(ξ)
t

)2(N −(l+1))

∂t[V ]2l � |ξ|1/d∗ 1
t
E2(t, ξ), l = 0, . . . ,N − 1.

Before proving Lemma 2.7, we need the following.

DEFINITION 10

Let

ω := max{κij : i 
= j} ∈ [α, ∞];

we put

(2.20) dmax :=

⎧⎪⎪⎨⎪⎪⎩
∞ if ω = 1,

2 + 2
ω−1 if 1 < ω < ∞,

2 if ω = ∞.

REMARK 2.8

The Gevrey index given by Theorem 2 satisfies d∗ ≤ dmax.
In particular, if N ≥ 4, then Theorem 2 gives d∗ ≤ 2 ≤ dmax, whereas if

N = 3, then κ2 = ω and Theorem 2 (see also [DAT]) gives

d∗ =

⎧⎪⎪⎨⎪⎪⎩
1 + α+1

2α−1 if α ≥ 2,

2 if α = 1 and ω = ∞,

2 + 1
ω if α = 1 and ω < ∞.
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Proof of Lemma 2.7
Thanks to (2.11), it is sufficient to prove the following:( t1(ξ)

t

)N −(l+1)

[V ]l−1 � |ξ|1/d∗ 1
t

√
E2, l = 1, . . . ,N − 1,(2.21) ( t1(ξ)

t

)N −(l+1)

|ξ|[V ]l+1 � |ξ|1/d∗ 1
t

√
E2, l = 0, . . . ,N − 2,(2.22)

|BV | � |ξ|1/d∗ 1
t

√
E2.(2.23)

In order to prove (2.21), we set

t2(ξ) := |ξ| −1/2ω

for ω < ∞, and t2(ξ) = T for ω = ∞. First, we assume that t1(ξ) ≤ t2(ξ). Then,
for any t ∈ [t1, t2],

t2

t1(ξ)
≤ t22

t1
= |ξ| −1/ω |ξ|(d∗ −1)/d∗ ≤ |ξ|1/d∗

since

− 1
ω

≤ −1 +
2
d∗ , where d∗ ≤ dmax =

2ω

ω − 1
.

Hence we get (2.21) in [t1, t2]; indeed,( t1(ξ)
t

)N −(l+1)

[V ]l−1 =
t2

t1(ξ)
· 1
t

( t1(ξ)
t

)N −l

[V ]l−1 ≤ |ξ|1/d∗ 1
t

√
E2.

On the other hand, for any t ∈ [t2, T ], by applying Lemma 2.2 we can estimate

(2.24) [V ]l−1 � 1
tω

[V ]l ≤ 1
tω−1
2

1
t
[V ]l = |ξ|(ω−1)/2ω 1

t
[V ]l ≤ |ξ|1/d∗ 1

t
[V ]l.

Hence

(2.25)
( t1(ξ)

t

)N −(l+1)

[V ]l−1 �
( t1(ξ)

t

)N −(l+1)

|ξ|1/d∗ 1
t
[V ]l ≤ |ξ|1/d∗ 1

t

√
E2.

On the other hand, if t2(ξ) ≤ t1(ξ), then for any t ∈ [t1, T ] we can estimate

[V ]l−1 � 1
tω

[V ]l ≤ 1
tω−1
1

1
t
[V ]l ≤ 1

tω−1
2

1
t
[V ]l,

and the proof follows from (2.24) and (2.25).
In order to prove (2.22), it is sufficient to notice that |ξ|t1(ξ) = |ξ|1/d∗

; hence( t1(ξ)
t

)N −(l+1)

|ξ|[V ]l+1 = t1(ξ)|ξ| 1
t

( t1(ξ)
t

)N −(l+2)

[V ]l+1 � |ξ|1/d∗ 1
t

√
E2.

We consider now (2.23). With the notation in Definition 7 we get

(2.26) |BV | � |V | �
N∑

p=1

|ω[Kp]V |.

It is immediate that

|ω[KN ]V | ≤ [V ]N −1 ≤
√

E2.
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Let p ≤ N − 1. Thanks to Lemma 2.2, if we put Jp = I \ Kp, then

|ω[KpV ]| � [V ]l
tΣl−(p−1)[Jp]

≤
( t

t1(ξ)

)N −(l+1) 1
tΣl−(p−1)[Jp]−1

× 1
t

√
E2(t, ξ),

l = p − 1, . . . ,N − 1.

From Lemma 2.3, since #(Jp) = N − (p − 1), it follows that

Σl−(p−1)[Jp] ≤ Σl;

hence, for fixed l, we get

(2.27) |ω[Kp]V | �
( t

t1(ξ)

)N −(l+1) 1
tΣl −1

× 1
t

√
E2(t, ξ) for any p ≤ l + 1.

Moreover, (2.27) is trivially satisfied for p > l + 1, too, since

|ω[Kp]V | ≤ [V ]p−1 ≤
( t

t1(ξ)

)N −p√
E2(t, ξ) �

( t

t1(ξ)

)N −(l+1)√
E2(t, ξ).

Let h be as in (1.9). We set

(2.28) t2(ξ) :=
(
t1(ξ)
)1/(κh+1) ≡ |ξ| −(d∗ −1)/(κh+1)d∗

for κh < ∞ and t2(ξ) = T for κh = ∞. For any t ∈ [t1, t2], we take l = h − 1
in (2.27); hence, thanks to (1.9), we obtain

(2.29) |BV | � t
−(N −h)
1 t

N −h+1−Σh−1
2

1
t

√
E2.

By using (2.28), since

−(N − h) +
N − h + 1 − Σh−1

κh + 1
= − (N − h)κh + (Σh−1 − 1)

κh + 1

= − 1
d∗ − 1

,

we get

(2.30) |V | � t
−1/(d∗ −1)
1

1
t

√
E2 = |ξ|1/d∗ 1

t

√
E2.

For any t ∈ [t2, T ], we take l = h in (2.27); hence, thanks to (1.9), we get

(2.31) |BV | � t
−(N −(h+1))
1 t

N −(h+1)+1−Σh

2

1
t

√
E2.

By using again (2.28), we find the same estimate in (2.30) since

−(N − h − 1) +
N − h − Σh

κh + 1
= − (N − h)κh + (Σh−1 − 1)

κh + 1
= − 1

d∗ − 1
.

This concludes the proof. �

Now we are ready to prove Theorem 2.

Proof of Theorem 2
As in [DAS, Section 4], we transform the first-order system (1.1) into an N th-
order system whose principal part is a block Sylvester matrix. Using the Duhamel
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principle, we can assume f ≡ 0. Let

L(t, τ, iξ) = τ − i|ξ|A(t, ξ) − B(t), χ(t, τ, iξ) := τ − i|ξ|A(t, ξ),

Λ(t, τ, iξ) :=
(
χ(t, τ, iξ)

)adj
,

where χ(t, ∂t, ∂x) is the principal part of L(t, ∂t, ∂x), and with the notation F adj

we denote the classical adjoint (or adjugate) matrix of F , that is, the transpose
of the matrix of cofactors.

It is clear that the well-posedness for the systems

L1(t, ∂t, ∂x) = Λ(t, ∂t, ∂x)L(t, ∂t, ∂x),
(2.32)

L2(t, ∂t, ∂x) = L(t, ∂t, ∂x)Λ(t, ∂t, ∂x)

implies the well-posedness for L(t, ∂t, ∂x). The systems L1(t, ∂t, ∂x) and L2(t,
∂t, ∂x) are N th-order systems with diagonal principal part P (t, ∂t, ∂x)IN , where
P (t, τ, iξ) is the characteristic polynomial of χ(t, τ, iξ) = τ − i|ξ|A(t, ξ). Let

W :=

⎛⎜⎜⎜⎝
W (1)

W (2)

...
W (N)

⎞⎟⎟⎟⎠ ∈ CN2
with W (j) :=

⎛⎜⎜⎜⎝
(i|ξ|)N −1V (j)

(i|ξ|)N −2∂tV
(j)

...
∂N −1

t V (j)

⎞⎟⎟⎟⎠ ;

then the Cauchy problem for L1(t, ∂t, iξ)V (t, ξ) = 0 (or L2(t, ∂t, iξ)V (t, ξ) = 0) is
equivalent to the Cauchy problem for

(2.33) ∂tW − i|ξ| A(t, ξ)W − B(t, ξ)W = 0,

where

A(t, ξ) =
N⊕

i=1

Asyl(t, ξ),

and by Asyl(t, ξ) we denote the Sylvester matrix with eigenvalues {λj(t, ξ)},
namely, (2.2), whereas B is an ((N2) × (N2))-matrix with the following block
structure:

(2.34) B =

⎛⎜⎜⎜⎝
B[1,1] B[1,2] . . . B[1,N ]

B[2,1] B[2,2] . . . B[2,N ]

...
...

. . .
...

B[N,1] B[N,2] . . . B[N,N ]

⎞⎟⎟⎟⎠ ;

each (N × N)-block B[j,k] has nonzero elements only on the last row and is
bounded (for |ξ| ≥ 1).

We remark that W (j) satisfies the (N × N)-system

(2.35) W
(j)
t − i|ξ|Asyl(t, ξ)W (j) − B[j,j](t, ξ)W (j) =

∑
k �=j

B[j,k](t, ξ)W (k);

hence we may regard
∑

k �=j B[j,k](t, ξ)W (k) as a second member.
Let |ξ| ≥ 1, and let E1[W (j)](t, ξ) and E2[W (j)](t, ξ) be the energies of the

solution W (j) of (2.35), as in Definitions 8 and 9; we define the energies for the
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solution W of (2.33),

E1(t, ξ) :=
N∑

j=1

E1[W (j)](t, ξ), E2(t, ξ) :=
N∑

j=1

E2[W (j)](t, ξ).

For any j = 1, . . . ,N , we have

E1[W (j)]′(t, ξ) � |ξ|E1[W (j)](t, ξ) +
[∑

k �=j

B[j,k](t, ξ)W (k)
]2

,

and using [∑
k �=j

B[j,k](t, ξ)W (k)
]2

�
∑
k �=j

[W (k)]2 �
∑
k �=j

E1[W (j)],

we derive

E ′
1(t, ξ) � |ξ| E1(t, ξ).

Therefore, from (2.16) we obtain

E1(t, ξ) � exp(C1|ξ|1/d∗
)E1(0, ξ), t ∈ [0, t1(ξ)],

and, analogously, from (2.19) we get

E2(t, ξ) � exp
(

C1|ξ|1/d∗
(
logT +

(
1 − 1

d∗

)
log |ξ|

))
E2

(
t1(ξ), ξ

)
, t ∈ [t1(ξ), T ].

By using (2.17), we can prove that

E1(t, ξ) � |ξ|C exp
(

C1|ξ|1/d∗
(
logT +

(
1 − 1

d∗

)
log |ξ|

))
E1(0, ξ), t ∈ [0, T ];

Therefore, for any 1 < d < d∗,

E1(t, ξ) � exp(C ′ |ξ| 1
d )E1(0, ξ), t ∈ [0, T ].

We conclude the proof by standard methods using a Paley-Wiener-Schwartz-
type theorem (see [H]) for the characterization of functions in Gevrey classes via
estimates of their Fourier-Laplace transforms. �

3. Levi conditions for the N th order scalar equation

We consider the Cauchy problem

(3.1)

{
L(t, ∂t, ∂x)u(t, x) =

∑N −1
j=0 Mj(t, ∂t, ∂x)u(t, x),

∂i
tu(0, x) = ui(x), i = 0, . . . ,N − 1,

where

L(t, ∂t, ∂x) = ∂N
t +

∑
0≤k≤N −1

ak(t, ∂x)∂k
t ,

with ak(t, ξ) homogeneous of degree N − k in ξ, is an N th-order homogeneous
operator in normal form and

Mj(t, ∂t, ∂x) =
∑

0≤l≤j

bj,l(t, ∂x)∂l
t,



A condition for systems with time-dependent coefficients 387

with bj,l(t, ξ) homogeneous of degree j − l in ξ, is a lower-order term.
We assume that the roots λj of the characteristic equation L(t, λj(t, ξ),

ξ/|ξ|) = 0 verify Assumption 1.
We define the following vector functions, homogeneous of degree zero in ξ:

bj(t, ξ) :=
j∑

l=0

bj,l(t, ξ/|ξ|)el+1 =
j∑

l=0

|ξ| −(j−l)bj,l(t, ξ)el+1,

where (el) denotes the canonical basis of CN .
Let u be a solution of the scalar equation in (3.1), and let v(t, ξ) := û(t, ξ)

(resp., vi(ξ) = ûi(ξ)) be the Fourier transform with respect to the x-variable of
u (resp., ui); then v satisfies the system

(3.2)

{
L(t, ∂t, iξ)v(t, ξ) =

∑N −1
j=0 Mj(t, ∂t, iξ)v(t, ξ),

∂i
tv(0, ξ) = vi(ξ), i = 0, . . . ,N − 1.

We put, for |ξ| ≥ 1,

V :=

⎛⎜⎜⎜⎝
(i|ξ|)N −1v

(i|ξ|)N −2∂tv

. . .

∂N −1
t v

⎞⎟⎟⎟⎠ ;

then the scalar equation in (3.2) is equivalent to the first-order (N × N)-system

∂tV − i|ξ|Asyl(t, ξ)V − B(t, ξ)V = 0,

where Asyl(t, ξ) is the Sylvester matrix in (2.2) and B is an (N × N)-matrix with
nonzero elements only on the last row, which can be written in the following
form:

(B)N · =
N −1∑
j=0

(i|ξ|)−(N −1−j)bj(t, ξ).

In order to refine the estimate of |BV | in Lemma 2.5 by using some Levi condi-
tions, we introduce the following.

DEFINITION 11

Let b =
∑N

l=1 blel be a vector in CN . We define by induction

Δ0[b](τ) =
N∑

l=1

blτ
l−1,

Δ1[b](τ0, τ1) =
Δ0[b](τ0) − Δ0[b](τ1)

τ0 − τ1
,

Δ2[b](τ0, τ1, τ2) =
Δ1[b](τ0, τ1) − Δ0[b](τ0, τ2)

τ1 − τ2
,

· · · = · · ·
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Δk[b](τ0, . . . , τk−2, τk−1, τk)

=
Δk−1[b](τ0, . . . , τk−3, τk−2, τk−1) − Δk−1[b](τ0, . . . , τk−3, τk−2, τk)

τk−1 − τk
.

We remark that Δk[b](τ0, . . . , τk−2, τk−1, τk) is bounded for any k ≥ 0 and that

Δ0[b](τ) = b · V (τ), where V (τ) = (1, τ, τ2, . . . , τN −1).

LEMMA 3.1

Let b ∈ CN be as in Definition 11; we have

b ≡
N∑

l=1

blel =
N∑

k=1

( N∑
l=k

blσ̃l−k[Kk+1]
)
wk =

N∑
k=1

Δk−1[b](λπ(1), . . . , λπ(k))wk,

where we use the notation introduced in Definition 7.

Proof
See [CT, Proposition 3.2]. �

REMARK 3.2

We remark that

(bk = · · · = bN = 0) =⇒ (Δk−1[b] = · · · = ΔN −1[b] = 0).

Thanks to Lemma 3.1, we can write the vector bj(t, ξ) ∈ CN in the form

bj(t, ξ) =
N∑

k=1

Δk−1[bj(t, ξ)](λπ(1), . . . , λπ(k))wk;

hence it follows that

|BV | ≤
N −1∑
j=0

|ξ| −(N −1−j)|bjV |

(3.3)

≤
N −1∑
j=0

|ξ| −(N −1−j)

j+1∑
k=1

|Δk−1[bj ](λπ(1), . . . , λπ(k))| |wkV |,

where π is the permutation introduced in Definition 7. We introduce the follow-
ing.

ASSUMPTION 4

Fix a permutation π in Definition 7, and let γj,k ∈ [0, ∞) be such that

(3.4) |Δk−1[bj ](λπ(1), . . . , λπ(k))| � tγj,k , j = 0, . . . ,N − 1, k = 1, . . . , j + 1.

LEMMA 3.3

If we assume that

(3.5) |Δ0[bj ](λπ(l))| � tγj for any l = 1, . . . , j + 1,
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then condition (3.4) is satisfied by

(3.6) γj,k = [γj − Σk−1]+, 1 ≤ k ≤ j + 1,

where [a]+ := max{a,0} is the positive part of a, and

Σk−1 :=
k−1∑
m=1

max
m+1≤l≤k

κπ(m)π(l)

= κπ(k−1),π(k) + max{κπ(k−2),π(k−1), κπ(k−2),π(k)} + · · · + max
2≤l≤k

κπ(1)π(l).

Proof
For the sake of brevity, let π be the identical permutation on I .

If γj ≤ Σk−1, then γj,k = 0 and (3.6) follows from the boundedness of
Δk−1[bj ]. If γj > Σk−1, thanks to Definition 11, it is clear that

|Δk−1[bj ](λ1, . . . , λk)| ≤ |Δk−2[bj ](λ1, . . . , λk−1)| + |Δk−2[bj ](λ1, . . . , λk−2, λk)|
|λk−1 − λk |

� |Δk−2[bj ](λ1, . . . , λk−1)| + |Δk−2[bj ](λ1, . . . , λk−2, λk)|
tκk−1,k

;

on the other hand,

|Δk−2[bj ](λ1, . . . , λk−2, λk−1)|

≤ |Δk−3[bj ](λ1, . . . , λk−2)| + |Δk−3[bj ](λ1, . . . , λk−3, λk−1)|
|λk−2 − λk−1|

� |Δk−3[bj ](λ1, . . . , λk−2)| + |Δk−3[bj ](λ1, . . . , λk−3, λk−1)|
tκk−2,k−1

,

|Δk−2[bj ](λ1, . . . , λk−2, λk)|

≤ |Δk−3[bj ](λ1, . . . , λk−2)| + |Δk−3[bj ](λ1, . . . , λk−3, λk)|
|λk−2 − λk |

� |Δk−3[bj ](λ1, . . . , λk−2)| + |Δk−3[bj ](λ1, . . . , λk−3, λk)|
tκk−2,k

.

Hence we may estimate |Δk−1[bj ](λ1, . . . , λk)| with(
2|Δk−3[bj ](λ1, . . . , λk−2)| + |Δk−3[bj ](λ1, . . . , λk−3, λk−1)|

+ |Δk−3[bj ](λ1, . . . , λk−3, λk)|
)
/tκk−1,k+max{κk−2,k−1,κk−2,k }.

By applying induction arguments, thanks to (3.5) we can prove

|Δk−1[bj ](λ1, . . . , λk)| � · · · �
∑k

l=1 |Δ0[bj ](λπ(l))|
tΣk−1

� tγj

tΣk−1
;

that is, we have proved (3.6). �

REMARK 3.4

If condition (1.4) is satisfied, then

Σk−1 = Σk−1 = κ1 + · · · + κk−1
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by taking the identical permutation in Definition 7; that is, Kk = {1, . . . , k − 1}.

REMARK 3.5

With the notation in Definition 2, let Pmin(I) = Pα(I) = {I1, · · · , Im}. Then one
can take a permutation π in Definition 7 such that

Σk−1 = (k − 1)α = Σk−1 for k ≤ m.

Indeed, it is sufficient to take π(p) ∈ Ip for p ≤ m.

DEFINITION 12

Let Assumptions 1 and 4 be satisfied. For any 1 ≤ k ≤ j + 1 ≤ N , we put

Jk := I \ Kk;

we remark that #(Jk) = N − (k − 1). For any p ≥ k, we denote

Σj,k
p := Σp−(k−1)[Jk] − γj,k,(3.7)

κj,k
p :=

⎧⎪⎪⎨⎪⎪⎩
Σ1[Jk] − γj,k if p = k,

Σj,k
p − Σj,k

p−1 if p > k and Σj,k
p < ∞,

∞ otherwise.

(3.8)

Now, let

(3.9) hj,k = min{p = k, . . . ,N − 1 : Σj,k
p + p ≥ N }

if the minimum exists, and let hj,k = N otherwise. We define

(3.10) Γj = max
1≤k≤j+1

Γj,k,

where

(3.11) Γj,k :=

⎧⎨⎩
(N −h)κj,k

h +Σj,k
h

κj,k
h +1

if κj,k
h < ∞,

N − (h − 1) if κj,k
h = ∞.

For the sake of brevity, we omitted the apexes in hj,k in (3.11).

REMARK 3.6

We remark that for any j, k, it holds that

N − hj,k ≤ Γj,k ≤ N − (hj,k − 1);

that is, Γj,k is decreasing with respect to hj,k. It is clear that if we put

hj := min
k

hj,k,

then

max
1≤k≤j+1

Γj,k = max
Hj

Γj,k, Hj := {k : hj,k = hj };

it follows that

N − hj ≤ Γj ≤ N − (hj − 1).
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Moreover, once we have fixed hj , then for any k ∈ Hj we can write Γj,k as

Γj,k = N − (hj − 1) −
N − (hj − 1) − Σj,k

hj −1

κj,k
hj + 1

;

hence it is increasing with respect to Σj,k
hj −1 and κj,k

hj .

REMARK 3.7

Let (1.4) and (3.5) be satisfied; thanks to Remark 3.4, with the notation in
Definition 12, we get

Kk = {1, . . . , k − 1}, Jk = I \ Kk = {k, . . . ,N }.

Hence it holds that

Σj,k
p = Σp−(k−1)[Jk] −

[
γj − Σk−1[Kk]

]+
≤ κk + · · · + κp − γj + Σk−1 = Σp − γj = Σj,1

p .

It follows that hj,k ≥ hj,1; that is, hj = hj,1. Moreover, κj,k
p ≤ κj,1

p . Therefore,
from Remark 3.6, it follows that Γj = Γj,1.

We are ready to state the following.

THEOREM 5

Let Assumptions 1 and 4 be satisfied. Then the Cauchy problem (3.1) is well
posed in γd for any 1 < d < min{d∗, dmax}, where dmax is defined in (2.20), and

d∗ = min{dj : j = 1, . . . ,N − 1},(3.12)

dj :=

{
∞ if Γj ≤ N − j,

1 + N −j
Γj −(N −j) otherwise.

(3.13)

REMARK 3.8

We remark that dj = ∞, that is Γj ≤ N − j, if and only if either hj ≥ j + 1, or
hj = j and Σj,k

j + j = N for any k ∈ Hj , that is

Σj,k
j + j ≤ N, for any k.

REMARK 3.9

We notice that dj can be written as

dj = 1 +
1

Γj

N −j − 1
= dB

( Γj

N − j

)
.

From Remark 3.6, being Γj ≤ N , it follows that

dj ≥ dB

( N

N − j

)
,

namely, dN −1 ≥ dB(N), dN −2 ≥ dB(N/2), . . . .
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In particular, if hN −1 ≤ N/2 − 1, then d∗ = dN −1, since

dN −1 ≤ 1 +
1

N/2 − 1
≤ dj for any j ≤ N − 2.

Proof of Theorem 5
The proof is based on the same energies E1(t, ξ) and E2(t, ξ) introduced in Defin-
itions 8 and 9, but we have to replace (2.26) with (3.3) in the proof of Lemma 2.7.
Therefore, in order to derive (2.23), we have to control the terms

|ξ| −(N −1−j)|Δk−1[bj(t, ξ)]
(
λπ(1)(t, ξ), . . . , λπ(k)(t, ξ)

)
| |wkV |,

j = 0, . . . ,N − 1, 1 ≤ k ≤ j + 1,

in t ∈ [t1(ξ), T ], where t1(ξ) = |ξ| −1+ 1
d∗ as in (2.15).

For the sake of brevity, let π be the identical permutation in Definition 7.
We fix j, k. Thanks to (3.4) and to Lemma 2.2, we get

|Δk−1[bj ](λ1, . . . , λk)| |wkV | � tγjk |ω[Kk]V | � [V ]l
tΣl−(k−1)[Jk]

tγj,k(3.14)

�
( t

t1(ξ)

)N −(l+1) 1

tΣ
j,k
l −1

× 1
t

√
E2(t, ξ)

for any l ≥ k − 1, where Σj,k
l is defined in (3.7) for p = l.

Let h = hj,k be as in (3.9); we assume Γj,k > N − j, with the other case being
trivial, and we set t2(ξ) as in (2.28); that is,

(3.15) t2(ξ) :=
(
t1(ξ)
)1/(κj,k

h +1) ≡ |ξ| −(d∗ −1)/(κj,k
h +1)d∗

for κj,k
h < ∞ and t2(ξ) = T for κj,k

h = ∞, where κj,k
h are defined in (3.8) for p = h.

For any t ∈ [t1, t2], we take l = h − 1 in (3.14) (we remark that hj,k − 1 ≥ k − 1
in (3.9)); hence, thanks to (3.9), analogously to (2.29), we get

|Δk−1[bj ](λ1, . . . , λk)| |wk | � t
−(N −h)
1 t

N −h−Σj,k
h−1+1

2 × 1
t

√
E2.

We notice that

(N − h) −
N − h − Σj,k

h−1 + 1
κh + 1

=
(N − h)κh + Σj,k

h−1 − 1
κh + 1

= Γj,k − 1;

hence, using (3.15), we get

(3.16) |ξ| −(N −1−j)|Δk−1[bj ](λ1, . . . , λk)| |wk | � |ξ| −(N −1−j)t1−Γj,k

1

1
t

√
E2.

For any t ∈ [t2, T ], we take l = h in (3.14); hence, thanks to (3.9) and analogously
to (2.31), we get

|Δk−1[bj ](λ1, . . . , λk)| |wk | � t
−(N −(h+1))
1 t

N −(h+1)+1−Σj,k
h

2

1
t

√
E2.

By using (2.28) again we find the same estimate in (3.16) since

−(N − h − 1) +
N − h − Σj,k

h

κh + 1
= −

(N − h)κh + Σj,k
h−1 − 1

κh + 1
= 1 − Γj,k.
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Now, from

d∗ ≤ dj = 1 +
N − j

Γj − (N − j)
≤ 1 +

N − j

Γj,k − (N − j)
=: dj,k,

it follows that

|ξ| −(N −j−1)t1−Γj,k

1 = |ξ| −(N −j−1)+(Γj,k −1)(d∗ −1)/d∗

≤ |ξ| −(N −j−1)+(Γj,k −1)(N −j)/Γj,k

= |ξ|1/dj,k ≤ |ξ|1/dj ≤ |ξ|1/d∗
.

This concludes the proof. �

4. Proof of Theorems 3 and 4

We come back to the the Cauchy problem (2.33), and we study more in detail
the ((N2) × (N2))-matrix B in (2.34). In order to describe explicitly the last row
of each (N × N)-block B[j,k] of B (the other rows are zero), we study more in
detail the systems L1 and L2.

DEFINITION 13

We recall that

Λ(t, τ, iξ) = χadj(t, τ, iξ), χ = τ IN − i|ξ|A(t, ξ),

and we define

Λ{j}(t, τ, iξ) :=
1
j!

∂j
τΛ(t, τ, iξ), j = 1, . . . ,N,

Λ′(t, τ, iξ) := ∂tΛ(t, τ, iξ).

We remark that Λ{N } ≡ 0 and that Λ{N −1} ≡ IN .

Now, since

L(t, ∂t, iξ) = ∂t − i|ξ|A(t, ξ) − B(t),

with the notation in (2.32) and in Definition 13, we get

L1(t, ∂t, iξ) = Λ(t, ∂t, iξ)L(t, ∂t, iξ) = INP (t, ∂t, iξ) −
N −1∑
j=0

Mj(t, ∂t, iξ),

where

Mj(t, τ, iξ) = i|ξ|Λ{N −j}(t, τ, iξ)A(N −j)(t, ξ)

+ Λ{N −1−j}(t, τ, iξ)B(N −1−j)(t).

Now, each of the N2 entries of Mj(t, τ, iξ), say, the (r, s)th, can be written in
the form ∑

0≤l≤j

bj,l[r, s](t, iξ)τ l,
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where bj,l[r, s](t, ξ) is homogeneous of degree j − l in ξ. We put

bj [r, s](t, ξ) :=
j∑

l=0

bj,l[r, s](t, ξ/|ξ|)el+1

=
j∑

l=0

|ξ| −(j−l)bj,l[r, s](t, ξ)el+1,

where (el) denotes the canonical basis of CN . Therefore the last row of the (r, s)th
block of B is

(B[r,s])N · =
N −1∑
j=0

|ξ| −(N −1−j)bj [r, s](t, ξ),

and we have to estimate

|ξ| −(N −1−j)|bj [r, s](t, ξ)W (s)|, j = 0, . . . ,N − 1, r, s = 1, . . . ,N,

as in (3.3). In order to apply Lemma 3.3 to the Cauchy problem (2.33) for L1,
we look for indexes γj , not depending on r, s, such that (3.5) is satisfied for
bj = bj [r, s], for any j = 0, . . . ,N − 1, and for any r, s = 1, . . . ,N . It is easy to
check that

(4.1) Δ0

[
bj [r, s](t, ξ)

]
(λπ(l)) =

(
Mj(t, λπ(l), ξ/|ξ|)

)
r,s

for any j = 0, . . . ,N − 1; hence we have to look for indexes γj such that

‖Mj(t, λπ(l), ξ/|ξ|)‖ � tγj , for any l = 1, . . . , j + 1;

with no assumption on the derivatives of A(t, ξ) and B(t), the estimate above is
satisfied if

‖Λ{N −j}(t, λπ(l), ξ/|ξ|)‖ + ‖Λ{N −1−j}(t, λπ(l), ξ/|ξ|)‖ � tγj

(4.2)
for any l = 1, . . . , j + 1.

Similarly, with the notation in (2.32) and in Definition 13, we get

L2(t, ∂t, iξ) = L(t, ∂t, iξ)Λ(t, ∂t, iξ) = INP (t, ∂t, iξ) − MN −1(t, ∂t, iξ)

with MN −1 = −Λ′ + BΛ. In order to apply Lemma 3.3 to the Cauchy prob-
lem (2.33) for L1, we look for an index γN −1, not depending on r, s, such
that (3.5) is satisfied for bN −1 = bN −1[r, s], for any r, s = 1, . . . ,N . Thanks to
the equality (4.1) for j = N − 1, and with no assumption on B(t), we have to
look for an index γN −1 such that

‖Λ′(t, λπ(l), ξ/|ξ|)‖ + ‖Λ(t, λπ(l), ξ/|ξ|)‖ � tγN −1

(4.3)
for any l = 1, . . . , j + 1.

We have proved the following corollary of Theorem 5.
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THEOREM 6

Let Assumption 1 be satisfied, and assume that

(4.4)

⎧⎪⎪⎨⎪⎪⎩
‖Λ′(t, λl, ξ/|ξ|)‖ + ‖Λ{1}(t, λl, ξ/|ξ|)‖ + ‖Λ(t, λl, ξ/|ξ|)‖ � tγN −1 ,

‖Λ{N −j}(t, λl, ξ/|ξ|)‖ + ‖Λ{N −1−j}(t, λl, ξ/|ξ|)‖ � tγj ,

j = 1, . . . ,N − 2,

for any l = 1, . . . ,N , with the notation in Definition 13. Moreover, as in (3.6),
let

γj,k = [γj − Σk−1]+.

Then the Cauchy problem (1.1) is strongly well posed in γd for any 1 < d <

min{d∗, dmax}, with the notation in Theorem 5.

By adding assumptions on the structure of A, we can obtain (4.4) and then apply
Theorem 6.

LEMMA 4.1

If Assumptions 1 and 2 are satisfied, then we get (4.4) for

γj = (j − 1)γ.

Proof
We notice that

Λ = χadj = σ∗
N −1IN − σ∗

N −2χ + · · · + (−1)N −2σ∗
1χN −2 + (−1)N −1χN −1,

where σ∗
j (t, τ, ξ) for j = 1, . . . ,N − 1 is the jth elementary symmetric function

introduced in (2.3) associated to the eigenvalues of the matrix χ(t, τ, iξ), namely,

σ∗
j (t, τ, ξ) =

∑
I[j]

j∏
m=1

(τ − λp(m)), I [j] =
{
p(1), . . . , p(j) ∈ I : p(1) < · · · < p(j)

}
.

As in Definition 13, let

σ
∗ {p}
N −1−r(t, τ, ξ) =

1
p!

∂p
τ σ∗

N −1−r(t, τ, ξ), (χr){q} =
1
q!

∂q
τχr;

it is clear that

Λ{s} =
1
s!

∂s
τχadj =

1
s!

N −1∑
r=0

(−1)r
( ∑

q+p=s

s!
p!q!

(∂p
τ σ∗

N −1−r)(∂
q
τχr)
)

=
N −1∑
r=0

(−1)r
( ∑

q+p=s

σ
∗ {p}
N −1−r(χ

r){q}
)
.

We fix l = 1, . . . , j + 1. For any p ≤ N − 1 − r, we have

|σ∗ {p}
N −1−r(t, λl, ξ/|ξ|)| � (tα)N −1−r−p.



396 Marcello D’Abbicco

To estimate the other terms we use (1.10); for any q ≤ r, we obtain∣∣(χr){q}(t, λl, ξ/|ξ|)
∣∣� ‖χ(t, λl, ξ/|ξ|)‖r−q � t(r−q)γ

since ∣∣∣ trA

N
− λl

∣∣∣� tα � tγ .

Therefore we have proved (4.2) for γj = ((N − 1) − (N − j))γ = (j − 1)γ. Similarly,
we prove (4.3) for γN −1 = (N − 2)γ. This concludes the proof. �

Thanks to Lemma 4.1, we can prove Theorem 3 as a consequence of Theorem 6.

Proof of Theorem 3
Thanks to Remark 3.7, we know that Γj = Γj,1. We claim that

(4.5) ΓN −1 − 1 ≥ Γj − (N − j)

for any j; hence dN −1 ≤ dj . We prove (4.5) for j = N − 2; that is, ΓN −2 ≤
ΓN −1 + 1, the other cases being analogous.

Let h = hN −1 and h′ = hN −2. It is clear that either h′ = h or h′ = h − 1 since

0 ≤ γN −1 − γN −2 = γ ≤ α.

If h′ = h, then it trivially holds that

ΓN −2 ≤ N − (h − 1) = (N − h) + 1 ≤ ΓN −1 + 1.

Let h′ = h − 1. From (1.4), it follows that κh ≥ κh−1 and hence that

κN −1,1
h ≥ κN −2,1

h−1 ;

moreover, we have

ΣN −1,1
h = κh + ΣN −2,1

h−1 − γ.

Therefore

ΓN −1 =
(N − h)κh + Σh − (N − 2)γ

κh + 1

=
(N − (h − 1))κh + Σh−1 − (N − 3)γ − γ

κh + 1

≥ ΓN −2 − γ

κh + 1
≥ ΓN −2 − 1.

In order to conclude the proof, we show that d∗ ≤ dmax, where d∗ is as in Theo-
rem 3. We distinguish two possibilities: if h ≤ N − 2, then

d∗ ≤ dB

(
N − (N − 2)

)
= 2 ≤ dmax,

whereas if h = N − 1, then κh = ω; therefore

d∗ = 1 +
ω + 1

ΣN −1 − (N − 2)γ − 1
≤ 1 +

ω + 1
ω − 1

= dmax
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since

ΣN −1 = κ1 + · · · + κN −2 + ω ≥ (N − 2)α + ω ≥ (N − 2)γ + ω.

This concludes the proof. �

In order to prove Theorem 4, we apply Theorem 6 to the Cauchy problem (1.11).

Proof of Theorem 4
Let JA be the Jordan canonical form of A. Because μp − μq 
= 0 for any t > 0
and thanks to Assumption 3, we can write

JA =
m⊕

q=1

Jq,

where Jq is the Jordan block matrix related to the eigenvalue μq , and it has
size Mq . If we put

νp(t, τ, ξ) = τ − μp(t, ξ), p = 1, . . . ,m,

then

Λ(t, τ, ξ/|ξ|) = (τ IN − JA)adj =
m⊕

q=1

(
(τ IMq − Jq)adj

∏
p �=q

νMp
p (t, τ, ξ)

)
.

Therefore, for any l = 1, . . . ,m, since νl(t, μl, ξ) ≡ 0, we have

Λ(t, μl, ξ/|ξ|) = 0M1 ⊕ · · · ⊕ 0Ml−1 ⊕ (μlIMl
− Jl)adj

∏
p �=l

(μl − μp)Mp

⊕ 0Ml+1 ⊕ · · · ⊕ 0Mm ,

where we denote by 0Mp a block with size Mp such that all entries are zero. Now,
because M = maxMp, it is easy to check that

‖Λ(t, μl, ξ/|ξ|)‖ � t(N −M)α,

‖Λ′(t, μl, ξ/|ξ|)‖ � t(N −M −1)α,

‖Λ{N −j}(t, μl, ξ/|ξ|)‖ � t(j−M)α for any j ≥ M.

Thanks to Remark 3.5, we have

Σk−1 =

{
(k − 1)α if k ≤ m,

∞ otherwise;

hence

γj,k =

{
[[j − M ]+ − (k − 1)]+α if k ≤ m,

0 if k > m.

We can apply Theorem 6. Since

Σp =

{
pα if p ≤ N − M,

∞ otherwise,
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we get Σj,1
p = ∞ for p ≥ N − M + 1, that is,

max
k≤p

Σj,k
p = Σj,1

p = ∞, p ≥ N − M + 1.

On the other hand, for any k ≤ p ≤ N − M ,

Σj,k
p =

(
p − (k − 1)

)
α − γj,k,

and analogously to Remark 3.7, it is easy to show that for any k ≤ p ≤ N − M ,
it holds that

Σj,k
p ≤ Σj,1

p = (p − [j − M ]+)α for k ≤ m,

whereas

Σj,k
p ≤ Σj,m+1

p = (p − m)α for m + 1 ≤ k.

Thus we get

max
k≤p

Σj,k
p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(p − [j − M ]+)α if p ≤ m,

cr(p − [j − M ]+)α if m ≤ p ≤ N − M and j ≤ M + m,

(p − m)α if m ≤ p ≤ N − M and M + m ≤ j,

∞ if N − M + 1 ≤ p.

We distinguish three cases.
(1) Let j ≥ M + m. Then hj = N − M + 1 if

(N − M − m)α + (N − M) < N, that is, if (N − M − m)α < M,

whereas hj ≤ N − M otherwise. In the first case, it follows that

Γj = N − (N − M) = M,

whereas in the second one we get

Γj =
(N − h)α + (h − m)α

α + 1
=

(N − m)α
α + 1

.

(2) Let M ≤ j ≤ M + m. Then hj = N − M + 1 if(
(N − M) − (j − M)

)
α + (N − M) < N, that is, if (N − j)α < M,

whereas hj ≤ N − M otherwise. In the first case, it follows Γj = M again, whereas
in the second one we get

Γj =
(N − h)α + (h − (j − M))α

α + 1
=

(N − j + M)α
α + 1

.

(3) Let j ≤ M . Then Γj = M if (N − M)α < M , whereas

Γj =
Nα

α + 1

if Nα ≥ M(α + 1).
We assume first that M + m ≤ N − 1. We distinguish three cases.
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• If (N − M)α < M , then Γj = M for any j; hence

d∗ = dN −1 = dB(M).

• If there exists j∗, with M ≤ j∗ ≤ M + m − 1, such that

(4.6)
(
N − (j∗ + 1)

)
α < M ≤ (N − j∗)α,

then Γj = M for any j ≥ j∗ + 1, whereas

Γj =
(N − j + M)α

α + 1
, M ≤ j ≤ j∗,

Γj =
Nα

α + 1
, j ≤ M.

It follows that dj∗ ≤ dj∗ −1 ≤ · · · since

Γj∗ ≥ Γj∗ −1 − 1 ≥ · · · .

On the other hand, from (4.6) it follows that

Γj∗
<

(M + 1)α + M

α + 1
= M +

α

α + 1
≤ M + 1 = Γj∗+1 + 1.

Therefore d∗ = dN −1 = dB(M).
• If (N − M − m)α ≥ M , then

Γj =
(N − m)α

α + 1
, M + m ≤ j,

and

ΓN −1 = · · · = ΓM+m ≥ ΓM+m−1 − 1 ≥ · · · .

Therefore

d∗ = dN −1 = 1 +
α + 1

(N − m − 1)α − 1
.

We have proved (1.12). Now we assume that M + m ≥ N , and we prove (1.13).
Case (1) is verified for no j; hence we have to distinguish three cases.

• If (N − M)α < M , then Γj = M for any j; hence

d∗ = dN −1 = dB(M).

• If there exists M ≤ j∗ ≤ N − 2 such that(
N − (j∗ + 1)

)
α < M ≤ (N − j∗)α,

we obtain again

M + 1 ≥ Γj∗ ≥ Γj∗ −1 − 1 ≥ · · · .

Therefore d∗ = dN −1 = dB(M).
• If α ≥ M , then

Γj =
(N − j + M)α

α + 1
, M ≤ j;
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hence

· · · ≤ ΓN −2 − 1 ≤ ΓN −1 =
(M + 1)α

α + 1
.

Therefore

d∗ = dN −1 = 1 +
α + 1

Mα − 1
.

This concludes the proof. �
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