A sufficient condition for well-posedness
for systems with time-dependent
coefficients

Marcello D’Abbicco

Abstract We consider linear, smooth, hyperbolic systems with time-dependent coef-
ficients and size N. We give a condition sufficient for the well-posedness of the Cauchy
Problem in some Gevrey classes. We present some Levi conditions to improve the Gevrey
index of well-posedness for the scalar equation of order N, using the transformation in
[DAS] and following the technique introduced in [CT]. By using this result and adding
some assumptions on the form of the first-order term, we can improve the well-posedness
for systems. A similar condition has been studied in [DAT] for systems with size 3.

1. Introduction

In this article we study the well-posedness of the Cauchy Problem for first-order
(N x N)-systems whose coefficients depend only on the time variable,

{L(t,@t,ﬁx)U(t,x) = f(t,z), (t,z)€[0,T] xR,

(1.1)
U(0,2) = Uy(x), x €R™

where

LU =0,U =Y Aj(t)d:, — B®)U, A;(t) € My (R), B(t) € My (C);
j=1
by My (R) (resp., Mn(C)) we denote the space of the (N x N)-matrices with
entries valued in R (resp., C). We assume that

A(t,€) =1¢™! ZAj<t>fj

is (weakly) hyperbolic; that is, its eigenvalues are real (not necessarily distinct)
for any & € R™\ {0}. We remark that A is real valued, whereas B may be
complex valued. In the following, we assume that A € CV; that is, each entry
of A; belongs to CN([0,T]), for j=1,...,n. We assume also that B € CN~1.
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NOTATION
Let f(¢) and ¢(t) be defined in [0,7]; we write f < g, meaning that there exists
a positive constant C' such that
f(®) <Cg(t) fortel0,T].
Analogously, if f(¢,£) and ¢(t,£) are symbols defined in [0,7] x R™, we write
f < g, meaning that there exists a positive constant C' such that
f(t,6) <Cyg(t,€) for (£,§) €[0,T] xR™.

In both cases, we write f ~ g, meaning that f < g and ¢ < f.

NOTATION

We denote with v¢ the Gevrey class with index d € (1,00), that is, the class of
functions in C*°(R™) such that for any compact K C R", there exists Cx such
that

|0% f(x)] < C"I?|+1(|a|!)d for any x € K and o € N".

NOTATION

We put I:={1,...,N}. We denote by I, the identity matrix of size M. We
denote by ||All :=max; ; |a;;| the norm of a matrix A = (a;;); ;-

DEFINITION 1

The Cauchy problem (1.1) is said to be well posed in v¢ with 1 < d < oo if, for
any choice of the data f € C([0,T],7%(R",C")) and Uy € y4(R™,C"), it admits
a unique solution U € C1([0,T],74(R",CN)).

In this article, we say that (1.1) is strongly well posed in 4¢ to mean that it
is well posed for any choice of the lower-order term B(t) € CN=1([0,T7).

We refer the interested reader to [CI], [CJS], [CO], [D], [DAK], and [Y] for ques-
tions related to the well-posedness of weakly hyperbolic equations and systems.
It is acknowledged (see [B2]) that the Cauchy problem (1.1) for a system is
well posed in v for
1
where r is the maximum multiplicity of the eigenvalues of A. If the multiplicities
of the eigenvalues are not constant, then this Gevrey index may be improved.
In this note, we consider matrices A(t,£) whose eigenvalues have variable multi-
plicity and such that A(0,£) has a unique eigenvalue with multiplicity N; hence,
Bronstein’s index is
1
dp(N)=1+ ——.
s(N) =1+ 5
By Bronstein’s Lemma [B1, Theorem 2] the eigenvalues of A(t,¢), counted with
their multiplicities, namely,

{N(@t,€):i=1,...,N},
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are Lipschitz-continuous functions. In this article, we assume that Aq,..., Ay
satisfy the following.

ASSUMPTION 1

For any ¢,j =1,..., N, there exists x;; € [1,00], such that either
[XNi = \j| =t if Kk € [1,00), or

(1.3)
[Ai = A St for any meN if k5 = o0.

We remark that x;; = x;; and that x;; = co; that is, k = (k;;);; IS a symmetric
matrix with oo as diagonal entries.

REMARK 1.1
If kij < kji for some 14, j, k, then K, = K45; indeed, in such a case, it holds that

SN = AL = A = Akl S A = Al S A= A+ A = Ak S 279

We look for a sufficient condition for the well-posedness of the Cauchy prob-
lem (1.1) in v¢ for any 1 < d < d*, for some d* > dg(N).
It is easy to check that, if the system has size N =2 and

|)\1—)\2‘%ta, 1<a<oo,

then the Cauchy problem (1.1) is well posed in v for any 1 < d < d*, where

1 2
=14+ .
a—1 a—1

We remark that d* > 2 =dp(2). On the other hand, if |A\; — Az| &~ ¢, then (1.1)
is well posed in any v¢, d > 1, and in C.

For the sake of brevity, in this article we assume N >3 (in particular, for
systems with size 2 or 3, see also [DAT]). F. Colombini and G. Taglialatela [CT]
stated a condition for the well-posedness of the equation of order N in Gevrey
classes; in [CT] the functions A; represent the roots of the characteristic equation.

With the notation in Assumption 1, they assumed the existence of k1, ...,
kn_1 > 1, such that

K1 <Ke<--<Ky_1<00 and
(1.4)
Kij = kg, forany j=i+1,...,N,

and they proved, in [CT, Theorem 1.2], that the Cauchy problem for the equation
of order N is strongly well posed in v for any 1 < d < d* with

knp+1

1. d =1
(1.5) +(N—h—1)l€h+8h—1’

where

Sp=FK1+ -+ Kp and h:=min{p: s, +p> N}.
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Condition (1.4) on the structure of x = (k;;);,; is very restrictive; in fact,

X K1 K1 ... K1
K1 X0 Ko ... Ro
k= |1 K2 X ... K3
K1 K2 K3 ... OO

In order to get a similar result of well-posedness without condition (1.4) on the
matrix x, we have to construct a suitable sequence k1, ...,kx_1, which depends
on the structure of the matrix x = (k;5).

DEFINITION 2

Let k € [1,00]. Then there exist a unique integer m < N and a unique partition
P.(I)={IL,...,In} of the set T ={1,..., N}, namely,

I=J I, withI,#0 and I, I, =0 for p#q,
p=1

such that x;; > k if and only if 4, j € I, for some p. We call such a partition the
k-partition of the set I. We define
a=min{x;; :i,j=1,...,N},

and we call the minimum partition of the set I the partition Puyi,(I) = P, (I).

REMARK 1.2
Let k € [1,00]; then the k-partition of I is the trivial partition Py (I) = {I} if and
only if £ < a. On the other hand, for k = 0o, the co-partition of I is the trivial

partition P (1) ={{1},{2},...,{N}}.
We remark that if k;; = o for any i # j, then Puin (1) = Po(I) = {{1},{2},.. .,
{N}}, too.

REMARK 1.3
Let Ppin(I) ={I1,...,In} be the minimum partition of I. After a permutation
on I, we can write

I = {133#(11)}’ I, = {#(Il)+177#(11) +#(IQ)}73
Im={N—#(In)+1,....N}.

Therefore (see Remark 1.1) the matrix x = (k;;) can be represented in the block

form

DO, Oy Cy,

Cy k(2 Co ... C4
(1.6) k= | Ca Cq K3 O, ’
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where C, are blocks with suitable size and each entry equal to «, and x®) =
(Kij)i,jer, are square blocks with size #([,) and fig) > a.

REMARK 1.4

Let Puin(l) = {I1,...,In} be the minimum partition of I; if there exist two
different subsets I,,I, with #(I,),#(I;) > 2, then condition (1.4) cannot be
satisfied.

EXAMPLE 1.5
Let N =4, and assume that
K12 = B, K34 = B2, K13 = Q

with « < (1, B2; that is,

oo [
00

It is clear that condition (1.4) is not satisfied. Nevertheless, in [CT, Theorem 1.3],
it is proved that the Cauchy problem is strongly well posed in 4¢ for any 1 < d <
d*, where d* is determined as in (1.5), provided that we put

R1 = R2 = @, K3=max{5laﬁz}-
Hence (1.5) gives
a+1
d"=1 .
+ 3a—1

We are ready to state the following.

THEOREM 1
We assume that, for any t >0, the matriz A(t,€) has m distinct eigenvalues
M1,y m, that each eigenvalue p, has constant multiplicity My, and that

i — py| =%, i

Let M =max, M,. Then the Cauchy problem (1.1) is strongly well posed in ~¢
for any 1 <d < d* with

(L.7) d* = L+ w1 if (N=M)a>M,
1+ 57 =dg(M) if (N—M)a<M.
REMARK 1.6

More in general, if we assume that A(t,&) verifies Assumption 1 and we put

M= mgx#(lp),
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where Ppin(I) = Po(I) ={I1,..., Iz} is the minimum partition of I as in Def-
inition 2, then the Cauchy problem (1.1) is strongly well posed in v? for any
1<d<d* with d* as in (1.7).

However, in this case the Gevrey index d* may be improved (see Theorem 2)
by adding further assumptions on the blocks x() in (1.6). In fact, the proof is
an immediate consequence of Theorem 2.

EXAMPLE 1.7
Let

B (A0
AAl@A2<O A2>7

where the matrix As has a unique eigenvalue
B=AN-—M)4+1="""=AN
with multiplicity M > N/2, and assume that
| —Aj|=t* foranyj=1,...,N— M,
[Ai — Al St foranyi,j=1,...,N—M.

Then Remark 1.6 gives d* = dg (M), provided that « is sufficiently small, namely,
< —.
“=N-M

We remark that Ay (¢,£) has a unique eigenvalue with constant multiplicity M.

EXAMPLE 1.8
We can apply Theorem 1 to Example 1.5. Indeed, we have

Pmin(I) = Pa(I) = {11712} with Il = {1,2} and _[2 = {3,4};
hence we get the expected Gevrey index:
a+1
3a—1"
We notice that d* =dp(2) =2 as in Example 1.7 if and only if @ =1 since N =4
and M =2.

=1+

In order to improve the Gevrey index d* in Theorem 1, we need to refine the
partition of I.

DEFINITION 3
Let J C I, and let

ay:=min{k;; : i,j € J}.

We call the minimum partition of J the aj-partition of J (see Definition 2):
P,,(J)={N,...,Jm}. Now we define by induction

ZnlJ] ::mﬁxsh[']p)#(‘]\‘]p)]a h=1,....%(J) -1,
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where

S Lo it h<1,
S =
mr lay +Snaldy] it h>1.

We put Xj, := X [I]; it is clear that X1[J] = a.
EXAMPLE 1.9

We consider Example 1.5; with the notation introduced in Definition 3, we easily
get

Yhi=a=~kq, Yo =2a =K1+ Ko,
since #(I'\ 1) =#(I \ I2) =2, whereas
Y3 =max{s3[l1,2], 5312, 2]} = 2a + max{1[11], $1[L2] } = 2o + max{f1, B2}

LEMMA 1.10

Let J CI. We assume that for some permutation on the set I, we have J =
{1,..., M} with M =+#(J), and J satisfies condition (1.4); that is,

K1 << Ky <00 and Kij =k, forany j=i+1,...,M.
Then
SplJl=sp=k1+-+kKp, h=1,....M—1.
Proof
We can prove the statement by induction on M. It is trivially true for M = 2;

we assume that the thesis holds for M — 1, and we prove it for M. Let m > 2 be
such that

K1 =" =Kmn-1<Km;
that is, s, =pay for any p <m —1 and k,, > a;. Then J is partitioned in
J={1}U---U{m—-1}UJ,, with J,={m,...,M},
with the notation introduced in Definition 3. Hence it holds that

s, ifh<m-—1,
¥ = max{haj,ah[Jm,m — 1]} =
Sm—1+ Eh—(m—l)[c]m] ifm<h<M-1.
Since #(J,,,) < M — 1, we can apply the hypothesis of induction and
2h—(m—l)[‘]m] =Km + -+ Kn.
This concludes the proof. O

We proved that Definition 3 is consistent with the one given in (1.4). Moreover,
it is easy to check that each J C I with #(J) < 3 satisfies (1.4).
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REMARK 1.11
With the notation in Definition 2, let Pyin(l) = {I1,...,In}, and let M =
max #(I,); then

Y =ha forany h< N — M.
Indeed, it holds that
sullp £\ L) =ha, p=1,....m,
since N —#(I,) > N — M.
DEFINITION 4
We define k1 := ¥ = «, and we put, for any h > 2,

Yhp—2p_1 ¥R < o0,
Rp =
o0 if Eh = Q.

Thanks to Lemma 1.10, Definition 4 is consistent with the one given in (1.4).

EXAMPLE 1.12
Let N =5; with the notation in Definition 2, we assume that

Poin(I)=Po(I)={I1,I,}  with I = {1,2} and I, = {3,4,5}.

The set, I satisfies (1.4) since #(I2) < 3; hence we can assume with no restriction
that

© /i a a «
B © a a «
k=|a a oo [ Pof|, a<pi,fB2, f2<1.
a a [ oo v
a a fr oy o©

With the notation in Definitions 3 and 4, we get
Yi=a, Yo = 2a, Y3 =max{3a,2a+ B2} =2a + Ba,
¥4 =max{3a+ f1,2a + B2 +7} =2a + B2 + max{y, b1 — (B2 — ) };
hence
K1 = K2 = Q, K3 = 2, n4:max{’y,ﬂ1—(ﬁg—a)}.
In particular, if £, > 82 + v — o, then x4 can be different from any of x;;. We
remark that in such a case, it holds that v < k4 < f3;.

Now we are ready to state our main result.

THEOREM 2
If Assumption 1 is satisfied, then the Cauchy problem (1.1) is strongly well posed
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in ¢ for any 1 < d < d* with

(1.8) oo |1 s if K < 00,
1+ gt =dp(N = (h=1)) if = o0,

where

(1.9) h:=min{p=1,...,.N—1:3,+p>N}.

We remark that ¥, > p; hence h < (N +1)/2 in Theorem 2. Moreover, the
Gevrey index d* is greater than or equal to dg(IN), and the equality holds if and
only if @ = 0.

REMARK 1.13
If >N —1, then h =1; hence
a+1
(N-Da-1
On the other hand, if « < N — 1, that is, h > 2, then from (1.9) it follows that

d"=1+

Sho1+(h=1)< N<XE, +h
hence
dB(N— (h— 1)) <d*<dp(N —h).

This shows that d* is increasing with respect to h.

By using Theorem 2, we can prove Theorem 1.

Proof of Theorem 1
We assume first that (N — M)a > M; that is,

(N—M)(a+1)>N.
Then in Theorem 2 we get h < N — M since, thanks to Remark 1.11,
Yp+p=pla+1) forany p<N—M.
Hence k5, = « and

a+1 a+1

(N—h—-1)a+ha—1 Jr(N—1)04—1
On the other hand, if (N — M)a < M, then h > N — M + 1. Hence, thanks to

Remark 1.13, Theorem 2 gives
d*>dg(N—(N—-M+1-1))=dp(M).

d"=1+

This concludes the proof. O

EXAMPLE 1.14
Let N =3M, and assume that A(t,£) has three eigenvalues 1, us2, pi3, each one
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with multiplicity M for ¢ > 0, such that
1 — pials o — ps| =8, Jpp —ps| =1, Bra>1

Then we can apply Theorem 2; the matrix x can be written as

Coo Co Cs
k=|C. Cw Cs,
Co C5 Co

where C, (resp., Cs, Cu) is an (M x M)-block with each entry equal to «
(resp., B, 00). We get

ho if h< M,
Yph=Ma+h-M)p it M+1<h<2M,
0 if2M +1<h.
Hence
1+ —(3M°1+1)1a_1 if a>2,

&=
p+1 o
Lt marprar =1

Under additional assumptions on the form of A(t,&) and on k, we can improve
Theorem 2.

ASSUMPTION 2
We consider the Cauchy problem (1.1) and Assumption 1 to be true. Moreover,
we assume that there exists 0 < v < a such that

~ ~ trA
< Y = — | —
(1.10) |4 S, where A=A (52T,

REMARK 1.15
Condition (1.10) is equivalent to

A, &) — Ni(t,)In]| St for some i.
Indeed,

- A ~
14 €) Xl Ol < NA®E] + |5 = M| S 1A + 10

since v < «; analogously, we can prove the inverse inequality.

REMARK 1.16
Let A(t,€) be a triangular matrix; that is, let a;; =0 for j < ¢. Then, since
ai; = A, condition (1.10) is equivalent to

la;;| St7 for j > 1.

Thanks to Assumption 2 we can state the following.
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THEOREM 3

We consider the Cauchy problem (1.1) and Assumptions 1 and 2 to be true. We
assume that (1.4) is satisfied. Let

h=min{p=1,....,N—=1:5,+p>N+ (N —2)7}.
Then the Cauchy Problem is well posed in v¢ for any 1 < d < d*, where

+1
d* = 1+ (N*hfl)i‘éh,?zilf(l\ffZ)'yfl

1+ =dp(N—(h—1)) if k=00

if kK, < 00,

The proof of Theorem 3 follows as a corollary of Theorem 6 stated in Section 4.
Under additional assumptions on the Jordan canonical form of A(¢,€), we
can improve Theorem 1.

ASSUMPTION 3

We assume that there exists a matrix C' € CV, homogeneous of degree zero in ¢
and with |det C(¢,€)| > ¢ >0, such that

C(t,OA(t,ECT(t,€) = Ja(t,€)

is a Jordan matrix, that is, a block diagonal matrix whose blocks are Jordan
blocks. The matrix Jy is the Jordan canonical form of A.

If Assumption 3 is satisfied, then J4 is smooth; that is, each nondiagonal term
is constantly equal to 1 or zero. In particular, if A;(¢,&) # A;(¢,€) for any ¢ > 0,
£#£0, and i # j, then A is uniformly diagonalizable. Moreover, if Assumption 3
is satisfied, by the subsitution W = CV the Cauchy problem (2.1) is equivalent
to

(1.11) {W’il&IJA(t,E)W+Bl(t,§)W,

W(0,8) =C~1(0,6)Vo (),
where
By = (C'(t,§) + C(t,€)B(t))C~(t,6) e V1.

Hence the strong well-posedness for 9; — i|{|A is equivalent to the strong well-
posedness for 0; — i|€|Ja. We are ready to state the following result, which
improves Theorem 1.

THEOREM 4
We assume that for any t > 0, the matriz A(t,£) has m distinct eigenvalues
M1,y m, each one with constant multiplicity M,,, and that

i — pj| =%, i #j,

for some a>1. Let M =max, M,, with M > 2, be the mazimum multiplicity of
the eigenvalues of A(t,€) fort > 0. If Assumption 3 is satisfied, then the Cauchy
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problem (1.1) is strongly well posed in v¢ for any 1 < d < d* with

14—l if (N—M—m)a>M,
(112) d* = (N m—1)a—1 f( )
provided that M +m < N — 1.
On the other hand, if M +m > N — 1, then the Cauchy problem (1.1) is strongly
well posed in ¥ for any 1 < d < d* with
g N1 if a> M,
1+ 545 =dp(M) ifa<M.

(1.13)

The proof of Theorem 4 follows from Theorem 6, stated in Section 4.

2. Proof of Theorem 2

Let U be a solution of the system (1.1), and let V (¢,€) := U(t,€) (resp., Vo (&) =
Up(§)) be the Fourier transform with respect to the a-variable of U (resp., Up);
using the Duhamel principle, we can assume f=0. Then V satisfies the system

(2.1) {V’ =iA(tLOIEIV + B®)V,
V(07£) = VO(&)

First, we assume that A(t,€) is a Sylvester matrix; that is,

0 1 0o ...
0 0 1 0
(22) A(tag): ’ a’j:(_l)j_lo-jv
0 0 ... 0 1
any aN-—-1 al

where by o; we denote the elementary symmetric function

J
1] :Z H )‘p(m)’
Jlil m=1

={p(1) YET:p(l)<---<p(j)}.

(2.3)

Let
wll]:=—(an,...,a1) = ((—1)1\/01\[7 (—1)N_10N,1, e —01).

We remark that —w([I] is the Nth row of A.

DEFINITION 5
For any K C I and j < #(K), we define the symmetric function

ZH%» KW = {p(1) JeK:p(1)<---<p(j)}-
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We put o¢[K] =1, and 0;[K] =0 for any j > #(K).

In order to establish our energy estimates by using the symmetric functions in
Definition 5, we prepare some tools. It is clear that

(24) oK)= {Aiaj—l[ff\{i}] - forj= #(K?,

o [KA\{a}] + Aioj 1 [\ {i}]  for any 1 <j < #(K),
for any choice of i € K. Moreover, d;00[K] =0, whereas
(2.5) 010 (K] = (0iA\i)oj1[K \ {i}] for any 1 < j < #(K).

ieK

Now, for any K C I, we put k= #(K) and we define the row vector
1

w[K]:= ((—1)kak[K],(—l)k_ ak,l[K],...,—Ul[K],l,Q...70);
that is,
(1,0,...) if K=0,
(=M 1,0,...) if K = {i},
(2:6) wiK]= (Aidj, —(Ni +X5),1,0,...) if K = {i,j},
We denote also w[K] = wj,...;;, where K = {i1,... i} and w[l] =w.

We can use (2.4) to prove that w[l\ {i}] is the left eigenvector of A related
to \;, that is, that

wlI\ {i}]A=Nw[I\{i}] foranyiel.

On the other hand, using again (2.4), we can prove that for any K C I, we have

(2.7) wK\{i}]A=w[K]+ \w[K \ {i}] for any i€ K.

It is clear that d;w = 0, whereas we can use (2.5) to prove that if K # 0, then

(2.8) Ow[K] = ((—1)*004[K],...,—001[K],0,...,0) = — Z(@t)\i)w[K \ {i}].
€K

DEFINITION 6

For any vector V € CV, we define

V= > wKIV]*, 1=0,....N—1
#(K)=1

REMARK 2.1
Now let K C I with #(K) <N —2. It is clear that

WK U{i}] —w[KU{j} = (A; = A)w[K] for any i,j & K

hence for any vector V € C”, we get
WK U{i V] + [wKU{j}V]

this

WKV S

b
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provided that r;; < 0o.
We are ready to state the following.

LEMMA 2.2
Let K C I with k=+#(K); we put J=1\ K. Then for any vector V€ C", we
have

V]

m’ l:k,..,7N_1.

(2.9) WIKIVIS
To prove Lemma 2.2, we need the following.

LEMMA 2.3
Let JC I, and let J' = J\ {j} for some j € J. Then we have

Snald] = ay+ SalT], h=0,.. #(]) — 2

Proof

We prove the statement by induction on M = #(J). It is trivially true for M =2
since X1[J] = ;. We assume that the thesis is satisfied for some M — 1, and we

prove it for M.
With the notation introduced in Definition 3, let

Pain(J) =P, (J) ={J1,..., Jm}-
Now j € J, for some p, say, p=1. We recall that
S ] = maxon 1Ty, #H0T\ ,)
we have
Oni1[Jps # (I \ Jp)] = Ong1[Jp, M = #(Jp)]
= ay+on[Jy, (M 1) = 3#(Jp)]
=ay+onlJp, #(J\ Jp)]
for any p > 2, whereas if we put | = M — #(J1), then
sl = {(h+ Day ?f (h+1)<l,
lag+Ypp1[h] f(h+1)>1+1.
Now, being #(J;) < M — 1, we can apply the hypothesis of induction; hence
She1—i[J1] > ag + Zp_i[J1],
where we put J; = Jp \ {j}. We remark that
hay if h<l,

o Ju,l > a5+
mal/l] z s {ZaJ+zhl[J{] ifh>141;
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that is,
Ong1[J1, 1) > ag + ol J1, #(JT\ 7))
This concludes the proof. (I

Proof of Lemma 2.2
We proceed by induction on n=1— #(K). If n=0, then (2.9) is trivial. We
assume that (2.9) is satisfied for some n, and we prove it for n + 1.

We put J =T\ K. Let ay and

PII]iIl(J):P(XJ(']):{‘]17"'7J7TL}
be as in Definition 3. Let i; € J; and iy € Ja; then

(2.10) WKV < lwK U {in V| + |w[K U {Zz}}V\

tes

Now we can apply the hypothesis of induction to the term |w[K U {i,}]V] since
I—=#(KU{ip}) =n.
We get

V1
5 ey ]

where J’ = J\ {i,}. Thanks to Lemma 2.3, we have

WK U{ip} VIS

ay+ 2 g J] < Bk ]

This concludes the proof. 0
We show how Lemma 2.2 works with the following.

EXAMPLE 2.4
We consider Example 1.12:

Pmin(I):{Il7]2}7 11:{172}512:{37475}7

with
© [ a a «
f1 o0 a a «
k=la a oo [ B2,
a a [y oo v
a a [Py v o0

and we directly prove the estimate
WV S [V]s-t7.
In fact, we have

|W1V| + |w3V| < |w12V| + |w13V| + \wglV\ + ‘(.4)34‘/‘

<
|UJ [®] V| ~ to $2a {2
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- |w12V| + 2|(.L)13V| + |(.«J34V|
- +2a

< lwi2s V| + w124V | 2lwi2sV |+ 2|lwi34V| | wizd V| + |wsas V|
~ t2a+62 + tSa + t3a

< [V]3t_ max{2a+32,3a} )

LEMMA 2.5
If V(t,€) satisfies (2.1), then we have the following estimates:

3 V15 S (ElV]s + IBV)[V]o,

(2.11) VI S (V0Iiea + [El[V]ia + [BV)IV], 1=1,...,N =2,
VI S (VN2 + |BV])[VIn-1.

Proof

We fix [ and K C I to be such that #(K) =1, as in Definition 6. We have to
estimate

OUAKIVI = 2Re (94 (w[K]V), w[K]V)
(242 = 2Re(i|E|w[K]AV + w[K] BV + (9w[K))V,w[K]V).
Let j € I\ K; thanks to (2.7), we get
Re(i[|w[K]AV, w[K]|V) = Re(i[¢|\jw[K |V, w[K]V) +Re(i[¢|w[K U{j}]V,w[K]V);
since ), is real valued, the first term vanishes, whereas
[Ellw[E U {GHV| - [wK]V] S V] V]

For the second term of (2.12), we simply estimate |w[K]|BV| < |BV|, whereas for
the third one, thanks to (2.8), we get

(O [K]V] < Z 0Nl KAV S V]

since A; is Lipschitz continuous. ([l

DEFINITION 7
Let K' =(. We define by induction a sequence of sets K* C I with #(K*) =
k — 1, such that

K'cK?*c---cK"N,
It is clear that there exists a (unique) permutation 7 over I such that
K*={n(1),7(2),...,7(k—1)}.
We define the vectors

wy = w[K" = wr ) (@), mh-1), k=1,...,N.
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REMARK 2.6
With the notation in Definition 7, (w1,...,wy) is a base of the vector space C"
over C.

Moreover, if we denote by (eq,...,en) the canonical base, that is,

e1=(1,0,...), e2=(0,1,0,...), ...,
then it can be proved that

3

(2.13) wi=» (=)o j[K'e;, i=1,...,N,
j=1
J

(2.14) ej=> G- k[K* M wy, j=1,...,N,
k=1

where for any K C I we define the symmetric functions

5K = 3" I Memys KU = {p(1),....p(j) € K : p(1) <--- < p(j)}.
K1 m=1

DEFINITION 8
Let |¢] > 1. We set the energy

Byi(t,6) =|V]°.

We remark that for any ¢t > 0 and € € R™, the energy F1(t,£) represents a norm
for the vector V (t,£) € CV. Since

OE(t,€) SNV = [€|En(t,€),
by applying Grénwall’s lemma for ¢ < t1(§), where we put
(2.15) t1(€) := ¢TI/,

we get
t1(§) .
216) Bt Sexn([  Cilélds)Ei(0.6) Sexp(GleTIE0.6)
0

DEFINITION 9
For any ¢ € [t1(£),T], we set the energy
N-1

Ea(t,6)=Y (@

2(N —(I+1))
0) |
1=0

Vi

For any t € [t1(£),T] and & € R™, the energy Es(t,&) represents a norm for
V(t,&) € CN; moreover, thanks to Remark 2.6,

Eg(t,f) 5 El(t7§)a
(2.17) Er(t,6) S (11(€) 2NV Ey(t,€)
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We get
N—-1

sz(t7§) +

<w)2(N—(l+l))

(2.18)  OyEs(t,€) =— .

at [V]l27

=0

and we claim that the second term in (2.18) is estimated by

614" Ba(, ).

This is sufficient to conclude the proof since, by applying Grénwall’s lemma,

T
Ba(t.&) Sexp( [ Cule ds) Ea(0(6).¢)

ty
= exp(Clml/d* log %)Eg (tl(é),f)

< exp (alﬂ”d* (log7+ (1- ) 1og|s|))E2 (81().).
teti(),T].

Therefore we should prove the following.

LEMMA 2.7
For any t € [t1(£),T], we have

(tlig))2(N—(l+1))

«1
VI S g SE2(1,6), 1=0,.. N -1,

Before proving Lemma 2.7, we need the following.

DEFINITION 10
Let
w:=max{r;; : 1 # j} € [a,00];

we put

0 ifw=1,
(2.20) dmax =424+ 2 ifl<w<oo,

2 if w=o0.
REMARK 2.8

The Gevrey index given by Theorem 2 satisfies d* < dax.
In particular, if N >4, then Theorem 2 gives d* < 2 < dpax, Whereas if
N =3, then ks =w and Theorem 2 (see also [DAT]) gives

1+ 2t ifa>2,
d =42 ifa=1and w=o0,

2—&-% fa=1and w < co.
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Proof of Lemma 2.7
Thanks to (2.11), it is sufficient to prove the following:

eay (BT i B, =1 N
—(+1) x

o) (Mg < v, =0 N2

(2.23) BV| S 1617 Vs,

In order to prove (2.21), we set

ta(8) 1= ¢ 7/
for w < oo, and t3(§) =T for w = oco. First, we assume that ¢;(£) <t3(§). Then,
for any t € [t1,t2],
t2 t2
G

= ||~/ g @I < jg

since

1 2 2
—— < -1+ —, where d*gdmaxz—w.
w d* w—1

Hence we get (2.21) in [t1,t2]; indeed,
—(+1) 2 - -
(w)N I+1 V)i = t .1(t1(£)>N Z[V]lfl < e %\/E

t ti(§) t\ ot
On the other hand, for any ¢ € [t2,T], by applying Lemma 2.2 we can estimate
1 1 1 1 « 1
(2.24) Vi s ZlVhis o7Vl = D2 [V], < [ V]
o1t t t
Hence
t1(&)\N-0+1) t1(&)\N-0+1) «1 .1
2s) (U (YT g Ly, < e LB,
On the other hand, if t5(£) <#1(£), then for any ¢ € [tl,T} we can estimate
1 1 1 1 1
Vit S — < - < -
VIS Vs = Vs = VI

and the proof follows from (2.24) and (2.25).
In order to prove (2.22), it is sufficient to notice that |£[¢,(€) = [£]'/¢"; hence

N—(1+1 N—(1+2
(N v = nilel (M) W g g VB
We consider now (2.23). With the notation in Definition 7 we get
N
(2.26) BVISIVIS Y WKV,
p=1

It is immediate that

lW[EKNV| < [V]n-1 < VEs.
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Let p < N — 1. Thanks to Lemma 2.2, if we put J? =TI\ K?, then

V1] << t )N*(l+1) 1 1
tq

-0 7] = g (€) FooT < pVERLS),

WIKPV][ S

l=p—1,...,N—1.
From Lemma 2.3, since #(J?) =N — (p — 1), it follows that
Si—p-[JP] <Xy

hence, for fixed [, we get

t N-(+1) 1 1
(227) |W[KP]V|§ (@) tzl—*l X g\/ Eg(t,f) for anyp§l+l

Moreover, (2.27) is trivially satisfied for p >+ 1, too, since
t

N— N—(1+1)
LKV <V < () VEEO S (1) B>(1.8).

Let h be as in (1.9). We set

(2.28) ta(€) = (tl(g))l/("h“) = |§‘_(d*_1)/(”h+1)d*

for kp < oo and to(§) =T for K, = oco. For any t € [t1,t2], we take [=h — 1
in (2.27); hence, thanks to (1.9), we obtain

_(N— —h4l— 1
(2.29) IBV| <ty Nt Eh’lzx/E}

By using (2.28), since
N—-—h+1—%,_4 (N—h)l{h—l—(zh_l—l)

—(N —h =—
( )+ Kp+1 kp+1

1

ds—1’

we get

_1/(d*—1) 1 « 1
(2.30) VISH VB =g L VE,
For any ¢ € [ta,T], we take [ = h in (2.27); hence, thanks to (1.9), we get

—(V= - -s, 1
(2.31) |BV| <ty OV (D) N = (D)4 Zh;\/E_w

By using again (2.28), we find the same estimate in (2.30) since
N—h—Eh__(N—h)lﬁh+(Zh71—1) 1

kn+1 kp+1 -1’
This concludes the proof. (]

~(N—h-1)+

Now we are ready to prove Theorem 2.

Proof of Theorem 2
As in [DAS, Section 4], we transform the first-order system (1.1) into an Nth-
order system whose principal part is a block Sylvester matrix. Using the Duhamel
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principle, we can assume f=0. Let
L(t,,i§) =7—ilglA,§) —B(t),  x(t,7,i&) =7 —il¢]A(t,),

At,m,i€) = (x(t,7,i8))™Y,

where x(t,0;,0,) is the principal part of L(t,d;,0,), and with the notation Fa%
we denote the classical adjoint (or adjugate) matrix of F', that is, the transpose
of the matrix of cofactors.

It is clear that the well-posedness for the systems

El(tv Oy, aw) = A(ta O, 8$)L(t7 Oy, 8;v)a
(2.32)

Lo(t,0¢,0,) = L(t,0¢, 0, )A(t, 0, Os)
implies the well-posedness for L(t,0;,0,). The systems L;(t,0:,0,) and Ly(t,
O, 0;) are Nth-order systems with diagonal principal part P(t,0;,0,)In, where
P(t,1,i€) is the characteristic polynomial of x(¢,7,i§) =7 — i|{|A(¢,€). Let

w® (Z‘|£|)N*1V(j)

W) 2 ‘ (ilehN =29,V
W= . eCV  with Wb .= . t ;

W oN -1y )

then the Cauchy problem for £1(t,0,i)V (t,£) =0 (or La(t,0:,i€)V (¢t,€) =0) is
equivalent to the Cauchy problem for

where
N
A(ta g) = @ Asyl(t’ 5)7
i=1

and by Ag(t,€) we denote the Sylvester matrix with eigenvalues {\;(¢,€)},
namely, (2.2), whereas B is an ((N?) x (N?))-matrix with the following block
structure:

B, Bga ... Bpnw
(2:34) p= | TR TR
Bina Bivg oo B

each (N x N)-block Bj; has nonzero elements only on the last row and is
bounded (for |£| > 1).
We remark that W) satisfies the (N x N)-system

(2.35) W — il A (t, WD = By (1, WD =3 By (1, WP,
oy
hence we may regard ;. By i (t, )W *) as a second member.

Let |¢] > 1, and let E;[WW](t,£) and Eo[WW](t,£) be the energies of the
solution W) of (2.35), as in Definitions 8 and 9; we define the energies for the
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solution W of (2.33),

=Y EWONLE), &L= E[WYU(t,6).

j=1 j=1
For any j=1,..., N, we have

EWO (1,€) S 6B IVO(1,) + [3 Byt W]
k#j

and using

[Z By (t’g)W(k)r <SS WER S B W),

k#j k#j k#j
we derive
E1(t,€) S [€lEn(t,€).
Therefore, from (2.16) we obtain
E1(t,) S exp(Crl]T)E1(0,6), tE[0,1(Q)),

and, analogously, from (2.19) we get

Ex(t,€) S exp (C’1|§|1/d* (logT+ (1 ) 1os |g)>52 (t1(6).€), te[ta(6).T).

By using (2.17), we can prove that

X 1
E1(1,8) S |§|Cexp(ca|£1/d (logT+ (1- =) loga))&(o,f), te 0. T;
Therefore, for any 1 <d < d*,
E1(t,€) Sexp(CI€|1)E1(0,€), t€[0,T].

We conclude the proof by standard methods using a Paley-Wiener-Schwartz-
type theorem (see [H]) for the characterization of functions in Gevrey classes via
estimates of their Fourier-Laplace transforms. (|

3. Levi conditions for the Nth order scalar equation

We consider the Cauchy problem

3.1) L(t, 8,0, )u(t, z) = ];01 M;(t,0;, 0, )ult, ),
’ Oiu(0,2) = u;(z), =0,...,N—1,

where
L(t,01,0,) =0 + > a(t,0:)0},
0<k<N-1

with ag(t,&) homogeneous of degree N — k in &, is an Nth-order homogeneous
operator in normal form and

M;(t,00,05) = > bju(t,0,)0},

0<I<y
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with b;,;(¢,£) homogeneous of degree j — [ in &, is a lower-order term.
We assume that the roots A; of the characteristic equation L(t, A;(¢,&),
£/1€]) =0 verify Assumption 1.
We define the following vector functions, homogeneous of degree zero in ¢:
J J
=Y bt &/ €D er =Y 170 Vbu(t Oer,
1=0 1=0

where (e;) denotes the canonical basis of C¥.

Let u be a solution of the scalar equation in (3.1), and let v(¢,£) :==u(t, &)
(resp., v;(§) =u;(€)) be the Fourier transform with respect to the z-variable of
u (resp., u;); then v satisfies the system

(3.2) {L@v@tvié)v( &) = SN0 My (1,01, i€)0(4,),
0iv(0,&) =v; (&), i=0,...,N—1.

We put, for |¢| >1,

(i)t

v | e =20 |

Ny
then the scalar equation in (3.2) is equivalent to the first-order (N x N)-system
V- Z|£|Asy1(ta§)v - B(tag)v = 07

where Agy1(t,§) is the Sylvester matrix in (2.2) and B is an (N x N)-matrix with
nonzero elements only on the last row, which can be written in the following
form:

N—1

=) (e TN D¢, €).

7=0

In order to refine the estimate of |[BV| in Lemma 2.5 by using some Levi condi-
tions, we introduce the following.

DEFINITION 11
Let b= Zi\;l bie; be a vector in CV. We define by induction

N
= E bﬂ'lil,
=1

A1 [b](10,7) = Ag[b](70) — Ao[b](ﬁ)7

To — T1

Ag[b)(ro,71,72) = Aq[b](70,71) — Ao[b](m@)’

T1 — T2
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Ak[b}(To,-~-7Tk—277'k—1,7'k)

_ Ap_1[b)(10, -, Tk—3,Th—2, Th—1) — Di—1[0] (70, - - -, Th—3, Th—2, k)
Th—1— Tk '

We remark that Ag[b](o,...,Tk—2,Tk—1,Tk) is bounded for any k > 0 and that
Aolb)(7)=b-V (1), where V(1)=(1,7, 2, .. ,TNfl).

LEMMA 3.1
Let b€ CN be as in Definition 11; we have

N
szblel Z(Zblaz kKk“)wk ZAk 1[0l (Ar(1ys -5 Ar(r)) Wi
=1

k=1 1=k

where we use the notation introduced in Definition 7.

Proof
See [CT, Proposition 3.2]. O

REMARK 3.2
We remark that

(bk:~~~:bN:0):>(Ak_1[b] :“':AN_l[b]:O).

Thanks to Lemma 3.1, we can write the vector b;(t,&) € C in the form

N
t 5) = Z Akfl[bj (tv f)](Aﬂ'(l)) sy )“n'(k))wka

hence it follows that
N-1 .
BV < Y e~V b, v
=0
(3.3)
Jj+1

< Z [ j)ZIAk 101 (Ar()s -+ Anii) [[wr V],

7=0
where 7 is the permutation introduced in Definition 7. We introduce the follow-

ing.

ASSUMPTION 4
Fix a permutation 7 in Definition 7, and let ~; , € [0,00) be such that

(3.4) |Ak,1[bj](>\7r(1),... (k) )|<t%k 7=0,....N—-1, k=1,...,5+ 1.

LEMMA 3.3
If we assume that

(3.5) [Do[bjl(Ae@)| St forany l=1,...,j+1,
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then condition (3.4) is satisfied by
(3.6) Yk =l —Skalt, 1<k<j+1,

where [a]T := max{a 0} is the positive part of a, and

Y = E max kK
i — mA1<I<k m(m)m(t)

= Kr(h—1),m(k) T MAX{Kr(k—2) m(k—1)s Fr(k—2),x(k)} T +21213<X Ka(1)m(l)-

Proof
For the sake of brevity, let m be the identical permutation on I.

If ~; < S_1, then vk =0 and (3.6) follows from the boundedness of
Ag_1[bj]. If v; > E4_1, thanks to Definition 11, it is clear that

|Ak—2[b;] (A1, s Ae—1)| + [Ap—2[b;] (A1, - -, Ak—2, A) |
[Ar—1 — A
|Ak 2[b5]( A1, A1) [Ar—2[bi] (A1, Adp—2, Ak)|

tok—1k ’

[Ak—1[b5](Ars- s M)l <

on the other hand,
|Ak—2[bj]( A1y .oy Ak—2, Ak—1)]

|Ak 3[05](A1, s Ap—2)| + | Ar—3[b;](A1, ..., Ak—3, A—1)]
|Ak—2 — Ap—1]

|Ak 3[0;](A1, s Ap—2)| + | Ak—3[b;] (A1, ..., Ak—3, A—1)|

thk—2,k—1
|Ak—2[b](A1y s Ap—2, Ag)]
< 1Bnslbil (s Ak2)l + [Akalbi](An, s Aksy A

)

[Ak—2 — Ak
< |Ak=3[0](A1, -, Ak—2) [+ |Ak—3[b;] (A1, - - Ak—3, A
thk—2,k ’
Hence we may estimate |Ag_1[b;](A1,...,Ax)| with

(2|1Ak=3[b;] (A1, s Ae—2) | + [Ar—3[b] (A1, - -, Ae—s, Ap—1)]
| Ak—a b (AL, o Mg, Ag)[) /8- bk T maxtin oz ko mko2 k)

By applying induction arguments, thanks to (3.5) we can prove

Zl 1|A0[ ]( w(z))\< ti

tZk-1 ~ Sk’
that is, we have proved (3.6). O

|Ak—1[05](A1s e M) S -

REMARK 3.4
If condition (1.4) is satisfied, then

Sho1=k_1 =K1+ + Kk1
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by taking the identical permutation in Definition 7; that is, K* = {1,...,k —1}.

REMARK 3.5
With the notation in Definition 2, let Pyin(I) = Po(I) ={I1, -+ ,Im}. Then one
can take a permutation m in Definition 7 such that

Sp1=(k—1Da=%,_; for k<m.

Indeed, it is sufficient to take w(p) € I, for p < m.

DEFINITION 12
Let Assumptions 1 and 4 be satisfied. For any 1<k <j+4+ 1< N, we put
JE =T\ K*,
we remark that #(J*) =N — (k—1). For any p >k, we denote
(3.7) S0k = S emp) [T = Yk
El[Jk} — Y.k 1fp:k7
(3.8) kHE = Bik 2Pk if p >k and B3P < oo,
00 otherwise.
Now, let
(3.9) hF =min{p=*k,...,.N—1: 5% +p>N}
if the minimum exists, and let h/"* = N otherwise. We define
(3.10) V= max IV
1<k<j+1
where

(N—h)sp "+ 2
(3.11) ik .= R !
N—-(h-1) ifﬁfl’k:oo.

e ik
if ky" < o0,

For the sake of brevity, we omitted the apexes in A7"F in (3.11).

REMARK 3.6
We remark that for any j, k, it holds that

N — Pk <TIk < N — (B3P —1);
that is, I'9"* is decreasing with respect to h/**. It is clear that if we put
B := min h/"*,
k
then

max T9F =maxT9%  H;:={k: h* =hi};
1<k<j+1 H,

it follows that
N—-h <TI<N— (W -1).
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Moreover, once we have fixed h7, then for any k € H; we can write [V* as

, "
N—(W—1) -5
J.k ’

k=N — (b —1) -
hi +1

K

C . . J.k 3.k

hence it is increasing with respect to 377" | and k3.

REMARK 3.7

Let (1.4) and (3.5) be satisfied; thanks to Remark 3.4, with the notation in

Definition 12, we get
Kr={1,...0k—1}, Jt=I\K*={k,...,N}.
Hence it holds that
23k =% - T*] = [v; = Thoa[KF])T
SKptFhp— 7+ o1 =5p —y; =20
It follows that h7* > h¥'; that is, h/ = h7'. Moreover, s7'¥ < kJ!'. Therefore,
from Remark 3.6, it follows that TV =T

We are ready to state the following.

THEOREM 5
Let Assumptions 1 and 4 be satisfied. Then the Cauchy problem (3.1) is well
posed in ¢ for any 1 < d < min{d*, dmax }, where dmax is defined in (2.20), and

(3.12) d* =min{d;: j=1,...,N —1},
0 if T9 < N — j,
(3.13) dj = N f = J
1+ WNJ_J) otherwise.
REMARK 3.8

We remark that d; = oo, that is IV < N — j, if and only if either A/ > j + 1, or
hi =4 and E;—’k—i—j:N for any k € H/, that is

Zg’k + 7 <N, for any k.

REMARK 3.9
We notice that d; can be written as
1 I;
di=1+ _dB(Nij).
N—j

From Remark 3.6, being IV < N, it follows that
N
>
4 = dB(N —j)’
namely, dN—l > dB(N), dN—2 > dB(N/Q), e
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In particular, if AN~ < N/2 — 1, then d* =dx_, since

dy_1 <1+ <d; for any j < N — 2.

N/j2—-1-"

Proof of Theorem 5

The proof is based on the same energies F1 (¢,£) and Es(t,€) introduced in Defin-
itions 8 and 9, but we have to replace (2.26) with (3.3) in the proof of Lemma 2.7.
Therefore, in order to derive (2.23), we have to control the terms

€D A [ (8, )] (Ar 1) (1€ -+ Awiy (8, ) i V],
j=0, . N—1,1<k<j+1,
in t €[t (£),T], where t,(£) = |¢| "4 as in (2.15).

For the sake of brevity, let m be the identical permutation in Definition 7.
We fix j, k. Thanks to (3.4) and to Lemma 2.2, we get

. \4F .
(3.14)  [Ar—1[b](Ar, - A [[wr V] S O+ |w[KFV| S mt”’k

t N—(1+1) 1 1
< (%) p XLV Es(t,€)

for any [ > k — 1, where E{’k is defined in (3.7) for p=1.
Let h = h?'* be as in (3.9); we assume I'/"* > N — j, with the other case being
trivial, and we set ¢2(&) as in (2.28); that is,

/(s 41 (A —1) /(I .
(3.15) t2(€) = (t1.(€)) /"W FY = |~ (@ D/ 1

for H{L’k < oo and t2(§) =T for /{{L’k = 00, where lifl’k are defined in (3.8) for p = h.
For any t € [t1,ta], we take | = h— 1 in (3.14) (we remark that h/"F —1>k—1
in (3.9)); hence, thanks to (3.9), analogously to (2.29), we get

(N—h) N—h—xi* 1
Akt [b) s A ] S o7 Ve I s S B,

We notice that

N—h-%F 41 _ (N—h)rn+355 -1
Kkp+1 Kkp+1

hence, using (3.15), we get

. 1 ik 1
(3.16)  [€]" N TID AL (b Ay M) k] S Jg|T T k;vE%

For any t € [t2,T], we take | = h in (3.14); hence, thanks to (3.9) and analogously
to (2.31), we get

—(N— - -kl
Al O A ] S 87 YOO S B,

(N —h)—

By using (2.28) again we find the same estimate in (3.16) since

N —h—xik N —Rh)rp, + 208 —1 ,
—~(N—h—-1)+ A Jrn + By =1-T7k
Kp+1 Kkp+1
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Now, from

it follows that

. _ Tk _ s ko *_ *
||~ (N=3= Dyl D70 = gV =i= D+ -1)(d" = 1)/d
< |€|f(ijfl)Jr(Fj’"'71)(ij)/F"”c
= [glM/ B < Jgt Y < gt

This concludes the proof. O

4. Proof of Theorems 3 and 4

We come back to the the Cauchy problem (2.33), and we study more in detail
the ((N?) x (N?))-matrix B in (2.34). In order to describe explicitly the last row
of each (N x N)-block By; of B (the other rows are zero), we study more in
detail the systems £; and L.

DEFINITION 13
We recall that

A(t,7,i6) = x*V(t,7,i€),  x=7Iny —il{]A(t,€),
and we define

. 1 .
AVt 7 i) == ﬁaiA(t,T, i€), j=1,...,N,

N (t,7,i€) := O A(t,7,i€).
We remark that A{NV} =0 and that APV =1y

Now, since
L(ta atalg) = 815 - Z|£|A(ta§) - B(t)v
with the notation in (2.32) and in Definition 13, we get

N-1
L1(t,0,i€) = M(t, 0y, i) L(t, 04, i€) = In P(t,04,i€) = > M;(t,8y,i€),
7=0

where
M;(t,7,i€) = il§| AN (¢, 7,i€) AN (1, )
+ AW i) BV 10 (1),

Now, each of the N? entries of M;(t,7,i€), say, the (r,s)th, can be written in

the form
Z bjalr,s)(t,i&)r!

0<I<j
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where b;;[r, s](t,£) is homogeneous of degree j — [ in {. We put

bjlr,s](t:€) == > _bjalr,s](t,§/|€)era

M- M-

117900, 4, 8] (t, ) ersrs

I
=)

where (e;) denotes the canonical basis of CV. Therefore the last row of the (r, s)th
block of B is

N—1
Bprg)n-= > €N, 5] (8,€),

=0
and we have to estimate
6Ny [, 8] (8, OWS)], j=0,...,N =1, r,s=1,...,N,

as in (3.3). In order to apply Lemma 3.3 to the Cauchy problem (2.33) for £,
we look for indexes «;, not depending on r,s, such that (3.5) is satisfied for
bj = bj[r,s], for any j =0,...,N —1, and for any r,s=1,...,N. It is easy to
check that

(41) A0 [bj [T, 8]@75)] (Aw(l)) = (Mj(tv >‘7r(l)7£/|§‘))7n7s
for any 7 =0,...,N —1; hence we have to look for indexes y; such that
||Mj(t7>‘7r(l)a£/|£|)H SJ t7j7 for any = ]-a s aj + 17

with no assumption on the derivatives of A(t,¢) and B(t), the estimate above is
satisfied if

IA = Ay, €/1€D |+ AN} (8 A, €/16DI < £
(4.2)
forany [=1,...,5+1.

Similarly, with the notation in (2.32) and in Definition 13, we get
‘CQ(ta at7 Zé) = L(t7 8t7 Zé-)A(t, ata Zf) = INP(t7 at7 Zé-) - MN*I (ta ata 7’5)

with My_1 =—A"+ BA. In order to apply Lemma 3.3 to the Cauchy prob-
lem (2.33) for £;, we look for an index yy_1, not depending on r,s, such
that (3.5) is satisfied for by_1 =by_1[r,s], for any r,s=1,...,N. Thanks to
the equality (4.1) for j = N — 1, and with no assumption on B(t), we have to
look for an index yy_1 such that

1A' (&, Ay, /16NN + IACE Arry, &/1EDN S TN

forany I=1,...,5+1.

(4.3)

We have proved the following corollary of Theorem 5.
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THEOREM 6
Let Assumption 1 be satisfied, and assume that

A (8, X, /1D AT (8, A, €/1ED I+ TAE A, E/1ED TS BV,
(4.4) AN =T, A, /€D + AN =73 (8, A, &/ 1€ S 1,
j=1,...,N—2,

for any l=1,... N, with the notation in Definition 13. Moreover, as in (3.6),
let

Yik =y — Bkt

Then the Cauchy problem (1.1) is strongly well posed in ¢ for any 1 < d <
min{d*, dmax}, with the notation in Theorem 5.

By adding assumptions on the structure of A, we can obtain (4.4) and then apply
Theorem 6.

LEMMA 4.1
If Assumptions 1 and 2 are salisfied, then we get (4.4) for

Y= =1

Proof
We notice that

)N 2 o* N— 2+(_1)N—1 N-1

A=x"V =0y 1In —on_ox -+ (-1 1X X

where o7 (t,7,€) for j=1,...,N — 1 is the jth elementary symmetric function
1ntroduced in (2.3) assomated to the eigenvalues of the matrix x(t,7,i£), namely,

(=) H M) 19 ={p(1),...,p(5) €1 : p(1) <---<p(j)}.

Jlil m=1
As in Definition 13, let
* 1 * '
N ) = ook (bm8), (O = q,aqX ,

it is clear that
N-1

s 1 s .\ adj 1 r ! * r
AW = o = 3 (XD (kR )(00))

r=0 q+p=s
N-1

-7 ( 2 AL 00@).

r=0 q+p=s
We fixl=1,...,74+1. For any p< N — 1 —r, we have

oWPE (M, €€ S ()N
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To estimate the other terms we use (1.10); for any g <r, we obtain

) (8, M, €/1€D)] S et A, /1D S =

since

tr A
——/\‘<t“<t7.
N et~

Therefore we have proved (4.2) for v; = (N —1) — (N —j))y = (j —1)~y. Similarly,
we prove (4.3) for yy_1 = (IN — 2)7. This concludes the proof. O

Thanks to Lemma 4.1, we can prove Theorem 3 as a consequence of Theorem 6.

Proof of Theorem 3
Thanks to Remark 3.7, we know that IV =T7!. We claim that
(4.5) V=1 _1>19 — (N —3)

for any j; hence dy_q1 < d;. We prove (4.5) for j = N —2; that is, V"2 <
I'N=1 4 1, the other cases being analogous.
Let h=hN~1 and A’ = hV 2. Tt is clear that either ' = h or i’ = h — 1 since

O<yN-1—IWW—2=7Za
If B/ = h, then it trivially holds that
IV 2<N—-(h—1)=(N-h)+1<TVN"141.

Let A’ =h — 1. From (1.4), it follows that xj, > k,—1 and hence that

N-1,1 N-21,
Kp, 2Ky

moreover, we have

N-1,1 N-2,1
DI =kp+X, 70—

Therefore

-1 (N —h)kp +2p — (N —2)y

kp+1
_(N—(h=1)kn+3En1 = (N=3)y -
kn+1
>pN-2__ 0 _SpN-2_y
- kp+1 7 '

In order to conclude the proof, we show that d* < d,ax, where d* is as in Theo-
rem 3. We distinguish two possibilities: if h < N — 2, then

d* <dg(N — (N —2)) =2 < dmax;

whereas if h =N — 1, then kj, = w; therefore

w+1 w+1
d*:l <1 :dmx
+ZN,1—(N—2)7—1_ t oo #




A condition for systems with time-dependent coefficients 397

since
Ynvo1=k1+-F+hv2tw>(N-2)atw>(N—-2)y+w.
This concludes the proof. O

In order to prove Theorem 4, we apply Theorem 6 to the Cauchy problem (1.11).

Proof of Theorem /4
Let J4 be the Jordan canonical form of A. Because p, — iy # 0 for any ¢ >0
and thanks to Assumption 3, we can write

Ja=EP I,
qg=1

where J; is the Jordan block matrix related to the eigenvalue pq, and it has
size My. If we put

VP(t’Tvg) :Tfﬂp(tvg)a p=1,...,m,

then
A7, €/16) = (L = Ja)*Y = @ ((7as, = J)™ T] v (,7,))-
q=1 p#q
Therefore, for any I =1,...,m, since v;(¢, u;,&) =0, we have
A(t, g, €/16]) = Oy @ -+ © Ong, @ (dng, — ) [ [ = )™

p#l
@0, & ®00,,,

where we denote by 0y, a block with size M), such that all entries are zero. Now,
because M =max M,, it is easy to check that

IAGE s &/1ED] StV =M,
1A (¢, €/ 1€D | S eV =MD,
AT =Tt s €/1€D S UM for any j > M.
Thanks to Remark 3.5, we have
5 = (k—1Da ifk<m,
et 00 otherwise;
hence
B [j—M]T—(k—-1)]Ta ifk<m,
Yik = .
0 if kK >m.
We can apply Theorem 6. Since

pa ifp<N-—M,
2p = .
oo otherwise,
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we get E{;l =o0 for p> N — M + 1, that is,

rilgng;kzxi’l =00, p>N-M+1.
<p

On the other hand, for any k <p< N — M,
3P =(p— (k—1)a 7k

and analogously to Remark 3.7, it is easy to show that for any k <p< N — M,
it holds that

szk < E?l =(p—[j—MT)a fork<m,

whereas
i,k jym+1 __
E; SE; =(p-m)a form+1<k.
Thus we get
p=[—-M")a ifp<m,
sk er(p—[j—M]T)a ifm<p<N-Mandj<M+m,
max X" =
k<p P (p—m)a iftm<p<N—-—Mand M+m<j,

00 itN-M+1<p.
We distinguish three cases.
(1) Let 5> M +m. Then h¥ =N — M +1 if
(N—M—-—m)a+ (N—M)<N, thatis, if (N—M—m)a<M,
whereas h/ < N — M otherwise. In the first case, it follows that
IM=N—-(N-M)=M,
whereas in the second one we get

Fj:(th)a+(hfm)a:(me)a
a+1 a+1

(2) Let M <j<M+m. Then b =N — M +1 if

(N=M)—(j—M))a+(N—-M)<N, thatis,if (N —j)a <M,

whereas b/ < N — M otherwise. In the first case, it follows I'V = M again, whereas
in the second one we get

(N—-h)a+ (h—(j— M)« (N—j—&-M)a.

IV = =
a+1 a+1
(3) Let j <M. Then IV = M if (N — M)a < M, whereas
i — Na
a+1

if Na>M(a+1).
We assume first that M +m < N — 1. We distinguish three cases.
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« If (N — M)a < M, then I'V = M for any j; hence
d*=dy_1=dg(M).
. If there exists j*, with M < j* < M + m — 1, such that

(4.6) (N=(@G*+1)a<M<(N—ja,
then IV = M for any j > j* + 1, whereas
Fj:w’ M < j<j*,
a+1
4 N
pio Ne oy
a+1

It follows that d;« < dj«_q <--- since
>t 1>
On the other hand, from (4.6) it follows that
i < M+1a+M _
a+1
Therefore d* =dy_1 = dg(M).
< If (N—M —m)a> M, then

Ma— < M+1=T7+ 41,
a—+1

s N =ma <
a—+1
and
FN—I :_“:I\M—&-nz >1—w]\/f+’m—1 1> ...
Therefore

a+1
(N—-m—-1)a-1

We have proved (1.12). Now we assume that M +m > N, and we prove (1.13).
Case (1) is verified for no j; hence we have to distinguish three cases.

d*=dy_1=1+

« If (N — M)a < M, then I'V = M for any j; hence
d*=dy_1=dp(M).
. If there exists M < j* < N — 2 such that
(N=(@G*+1)a<M<(N—ja,
we obtain again
M+1>D7 >0 1>

Therefore d* =dy_1 =dg(M).
. If @« > M, then



400

Marcello D’Abbicco

hence
<FN72 1<1—\N717(M+]‘)a
- a+1
Therefore
a+1
d"=dy_1=1+
Nt Ma —1

This concludes the proof. O

References

[B1] M. D. Bronstein, Smoothness of roots of polynomials depending on
parameters, Sibirsk. Mat. Zh. 20 (1979), 493-501; English translation in
Siberian Math. J. 20 (1980), 347-352.

[B2] , The Cauchy problem for hyperbolic operators with characteristics of
variable multiplicity (in Russian), Trudy Moskov. Mat. Obshch. 41 (1980),
83-99.

[CT] F. Colombini and H. Ishida, Well-posedness of the Cauchy problem in Gevrey
classes for some weakly hyperbolic equations of higher order, J. Anal. Math.
90 (2003), 13-25.

[CJS]  F. Colombini, E. Jannelli, and S. Spagnolo, Well posedness in the Gevrey
classes of the cauchy problem for a nonstrictly hyperbolic equation with
coefficients depending on time, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 10
(1983), 291-312.

[CO] F. Colombini and N. Orrd, Well-posedness in C* for some weakly hyperbolic
equations, J. Math. Kyoto Univ. 39 (1999), 399-420.

[CT] F. Colombini and G. Taglialatela, Well-posedness for hyperbolic higher order
operators with finite degeneracy, J. Math. Kyoto Univ. 46 (2006), 833-877.

D] M. D’Abbicco, Some results on the Well-Posedness for Second Order Linear
Equations, Osaka J. Math. 46 (2009), 739-767.

[DAK] P. D’Ancona and T. Kinoshita, On the wellposedness of the Cauchy problem
for weakly hyperbolic equations of higher order, Math. Nachr. 278 (2005),
1147-1162.

[DAS] P. D’Ancona and S. Spagnolo, Quasi-symmetrization of hyperbolic systems
and propagation of the analytic regularity, Boll. Unione Mat. Ital., Sez. B
Artic. Ric. Mat. (8) 1 (1998), 169-185.

[DAT] M. D’Abbicco and G. Taglialatela, Some results on the well-posedness for
systems with time-dependent coefficients, Ann. Fac. Sci. Toulouse Math. (6)
18 (2009), 247-284.

[H] L. Hérmander, Linear Partial Differential Operators, Grundlehren Math.

Wiss. 116 Springer, Berlin, 1963.



A condition for systems with time-dependent coefficients 401

[Y] H. Yamahara, Cauchy problem for hyperbolic systems in Gevrey class: A
note on Gevrey indices, Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), 147-160.

Dipartimento di Matematica, Universita di Bari, via E. Orabona 4, 70125 Bari, Italy



	Introduction
	Proof of Theorem 2
	Levi conditions for the Nth order scalar equation
	Proof of Theorems 3 and 4
	References
	Author's Addresses

